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Abstract. Petri nets are a general formal model of concurrent systems
which supports both action-based and state-based modelling and reason-
ing. One of important behavioural properties investigated in the context
of Petri nets has been reversibility, understood as the possibility of re-
turning to the initial marking from any reachable net marking. Thus
reversibility in Petri nets is a global property. Reversible computation,
on the other hand, is typically a local mechanism using which a system
can undo some of the executed actions. This paper is concerned with
the modelling of reversible computation within Petri nets. A key idea
behind the proposed construction is to add ‘reverse’ versions of selected
transitions. Since such a modification can severely impact on the behav-
ior of the system, it is crucial, in particular, to be able to determine
whether the modified system has a similar set of states as the original
one. We first prove that the problem of establishing whether the two nets
have the same reachable markings is undecidable even in the restricted
case discussed in this paper. We then show that the problem of checking
whether the reachability sets of the two nets cover the same markings is
decidable.
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1 Introduction

Petri nets are a general formal model of concurrent systems which supports both
action-based and state-based modelling and reasoning. One of important be-
havioural properties investigated in the context of Petri nets has been reversibil-
ity, understood as the possibility of returning to the initial marking (a global
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state) from any reachable marking. But it is not required that any specific tran-
sitions (global states) are used to bring the net back to the initial marking.

Reversibility in Petri nets has been investigated for years, for example, in the con-
text of enforcing controllability in discrete event systems [18, 20, 29]. Intuitively,
it is a global property which is related to the existence of home states [5, 16],
i.e., those markings which can be reached from all forward reachable markings.

Unlike Petri net reversibility, reversible computation typically refers to a local
mechanism using which a system can undo (the effect of) some of the already
executed actions. Such an approach has been applied, in particular, to various
kinds of process calculi and event structures (see, e.g., [2, 7–9, 19, 22, 23, 21]). A
category theory based rendering of reversible computation with an application
to Petri nets has been proposed in [10].

1.1 Previous work

A good deal of decision problems related to reversibility as well as home states
and home spaces has been investigated over the past decades. These prob-
lems were usually considered within the domain of potentially infinite-state
Place/Transition-net (PT-nets) and their subclasses, as most problems become
trivial for finite-state net models. Typically, these problems are of one of two
kinds.

In the case of the first kind of problems, one wants to establish whether a given
marking (or a set of markings) satisfies a desirable property. For instance, the
fundamental home state problem is concerned with establishing whether a given
marking of a given PT-net is a home state. The problem was shown in [1] to
be decidable, as well as its restricted version consisting in deciding whether the
initial marking of a PT-net is a home state. Another example problem is that of
establishing whether a linear set of markings is a home space of a given PT-net,
and [11] demonstrated that such a problem is decidable. Problems of the second
kind put the emphasis on the existence of a marking (or set of markings) satis-
fying a desirable property. For example, the fundamental home state existence
problem, shown to be decidable in [4], is to establish whether there exists a home
state for a given PT-net.

Although there are several positive decidability results related to reversibility,
in general, the complexity of potential solutions appears to be high or difficult
to establish. For example, the problem of the reversibility property is decidable
but its complexity is still unknown [16], and [4] demonstrated that the problem
of home state existence is at least as hard as the reachability problem [15].
This, rather pessimistic results, meant that the quest for effective algorithms,
and indeed decidable problems, has for many years been carried out within
special subclasses of PT-nets. Such subclasses are often defined by imposing
restrictions on the structure of a net, or by assuming boundedness, with the
resulting submodels of PT-nets being still relevant for a wide range of practical
applications.
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For example, it was shown in [6] that all live and bounded free-choice nets have
home states, and the free-choice assumption cannot be changed to asymmetric
choice. The home space problem is polynomial for live and bounded free-choice
Petri nets [3, 12], and they also were shown to have home states [28]. Other, often
progressively less restricted, net classes were considered in [3, 16, 24, 26, 27].

1.2 Our contribution

This paper is concerned with the modelling of reversible computation in Petri
nets. A key idea is to add reversed versions of selected net transitions, each such
reversed transition being obtained by simply changing the directions of adjacent
arcs. The resulting reversible computations implement in a direct way what can
be seen as the undoing of an executed action, and the simple form of such an
undoing is possible thanks to the local nature of marking changes effected by
net transitions.

Adding reversed transitions can greatly impact on the behavior of the system. It
is therefore crucial to be able to determine whether the modified net has similar
set of states as the original one. In this paper we present two key results. First,
we prove that the problem of establishing whether the original net and that
resulting from adding reverse transitions have the same reachable markings is
undecidable even in the case of adding a single reverse. This is a strong result
indicating that unless reversing of transitions is applied to restricted classes of
Petri nets, such as bounded nets, controlling reversibility (so that the state space
of a system does not grow) is too hard a task. We then turn to more relaxed
requirement on the state space of the ‘reversed’ net by stipulating that what
one requires is that the two nets ‘cover’ the same sets of markings. We then
demonstrate that the problem of checking whether the reachability sets of the
two nets are equivalent w.r.t. coverability is decidable.

It should be noted that focussing on coverability still has a significant application
potential. For example, if all the markings covered by the original Petri net are
safe on a given subset of places, then all the reachable markings of the ‘reversed’
net are guaranteed to be safe on this subset of places as well, provided that the
nets cover the same sets of markings.

1.3 Organisation of this paper

The paper is organised as follows. In Section 2, we recall some basic definitions
concerning Petri nets and their behavioural properties. Section 3 contains ex-
amples motivating our work and facilitating the understanding of the proposed
approach. In Section 4, we provide the proof of undecidability of the problem of
establishing whether two given nets have the same sets of reachable markings.
In the Section 5, we prove that the problem of checking whether the reachability
sets of two nets cover the same markings is decidable. Section 6 concludes the
paper.
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2 Preliminaries

The set of non-negative integers is denoted by N. The cardinality of a set X is
denoted by |X|, and multisets over X are members of NX , i.e., mappings from
X to N. If X is finite, then the multisets in NX can be represented by vectors
N|X|, assuming a fixed ordering of the elements of X.

The set of all multisets with componentwise addition and comparison ≤ is de-
noted by NX (where |X| ≥ 1). The componentwise subtraction is also defined
if the result belongs to NX . One can extend the notion of NX to ω-multisets
NX

ω = (N∪ {ω})X , where ω = |N|, with the standard extensions of the addition,
comparison and subtraction, assuming ω + n = ω, ω − n = ω, and n < ω, for
all n ∈ N. The left closures of y ∈ NX

ω and Y ⊆ NX
ω are respectively defined by

↓y = {z ∈ NX
ω | z ≤ y} and ↓Y =

⋃
{↓y | y ∈ Y }. In a similar way we can define

ω-vectors Nk
ω as vector representations of ω-multisets.

Petri nets

A place/transition net (p/t-net) is a tuple N = (P, T,W−,W+,M0), where:

– P and T are finite disjoint sets, of places and transitions, respectively;
– W−,W+ : T → N|P | are arc weight functions; and
– M0 ∈ N|P | is the initial marking.

Any multiset in NP is a marking (global state) of N , and it will be represented
by a vector in N|P |, after assuming some fixed ordering of the places in P . The
following terminology applies to the case of ω-markings NP

ω as well.

Petri nets admit a natural graphical representation, with nodes representing
places and transitions, and annotated arcs representing the weight function.
Places are indicated by circles, and transitions by boxes. For each transition
t ∈ T and place p ∈ P , W−(t)(p) is the weight of the arc from p to t, and
W+(t)(p) is the weight of the arc from t to p. Arcs with zero weights are not
drawn at all, and arcs with unit weights are not annotated with 1. Markings are
depicted by placing tokens inside the circles.

A transition t ∈ T is enabled at a marking M of N whenever W−(t) ≤ M .
We denote this by M [t〉N , or simply M [t〉 if N is clear from the context. If t
is enabled in M , then it can be executed. The execution changes the current
marking M to the new marking M ′ = M −W−(t) +W+(t). We denote this by
M [t〉NM ′, or simply M [t〉M ′ if N is clear from the context.

The notions of transition enabledness and execution extend, in the usual way,
to strings of transitions (computations). The empty string ε is enabled at any
marking and M [ε〉M , and a string w = tw′ is enabled at a marking M whenever
M [t〉M ′ and w′ is enabled at M ′; moreover, M [w〉M ′′, where M ′[w′〉M ′′.
If M [w〉M ′, for some w ∈ T ∗, then M ′ is reachable from M , and the set of all
markings reachable from M is denoted by [M〉N , or simply [M〉 if N is clear from



Reversible Computation vs. Reversibility in Petri Nets 5

•p1

p2

p3

a

b

cd

Fig. 1. A Petri net (see [25]) consisting of three places (p1, p2 and p3) and four tran-
sitions (a, b, c, d).

the context. The reachability set of N is the set [M0〉 of all markings reachable
from the initial marking, and the markings in [M0〉 are called reachable in N .

A marking M of N is a home state if M ∈ [M ′〉, for every marking M ′ ∈ [M0〉,
and N is reversible if M0 is a home state.

A marking M ∈ NP coverable in N if there exist a reachable marking M ′ ∈ [M0〉
such that M ≤M ′, and ↓[M0〉 is the coverable set of N .

A reverse of a transition t ∈ T is a new transition t such that W−(t) = W+(t)
and W+(t) = W−(t). To improve readability, we depict transitions of the orig-
inal nets using solid lines, and the newly created reverses by dashed ones (see
Figure 2).

Reachability and Coverability Graphs

Reachability graphs represent precisely the reachability sets of nets, but can be
infinite, while coverability graphs are always finite, but represent precisely the
coverable sets rather than reachability sets (see, e.g., [15]).

The reachability graph of a p/t-net N = (P, T,W−,W+,M0) is a directed graph
RG = ([M0〉, G,M0), where [M0〉 is the set of vertices, M0 is the initial vertex

•
p1

•
p2

p3

a a

2 2

Fig. 2. A transition a and its reverse a.
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and G = {(M, t,M ′) | M ∈ [M0〉 ∧M [t〉M ′} is the set of labelled arcs. Thus,
the vertices of the reachability graph are the reachable markings of N .

In the case of a coverability graph, it is convenient to present a constructive
definition based on [17].

Algorithm constructing a coverability graph

Let N = (P, T,W−,W+,M0) be a p/t-net. The vertices of the coverability graph
constructed below are ω-vectors in N|P |ω .

Step 0. Initial vertex
We take M0 to be the initial vertex, and set it to blue (i.e., marked). GOTO
Step 1.

Step 1. Generating new working vertices
If there is no blue vertex then STOP. Otherwise, we take an arbitrary blue
vertex M and draw from it all the arcs of the form (M, t,M ′), for all t ∈ T
enabled at M (i.e., W−(t) ≤ M) and M ′ = M −W−(t) +W+(t). If M ′ is
not yet a vertex we add it and set to yellow (i.e., working). After drawing
all such arcs we set M to grey (i.e., processed). GOTO Step 2.

Step 2. Coverability adjustment
If there is no yellow vertex GOTO Step 1. Otherwise, we take an arbitrary
yellow vertex M and check, for all the paths from M0 to M , whether a
vertex M ′ such that M ′ ≤M lies on the path and store all such vertices in
V (M). If V (M) 6= ∅ then every coordinate of the marking M greater than
the corresponding coordinate of any marking M ′ ∈ V (M) changes to ω.
Finally, we set M to blue. GOTO Step 2.

The above construction always terminates, and the resulting labelled directed
graph CG = (M, Gcov,M0) is a coverability graph of N .

Coverability graphs are related to coverability sets (see, e.g., [13]), where a cov-
erability set of N is CS ⊆ NP

ω such that the following hold:

CS1 CS covers the reachability set of N , i.e., [M0〉 ⊆↓CS; and
CS2 [M0〉 tightly approximates all non-reachable vectors in CS, i.e., for ev-

ery M ∈ CS \ [M0〉, there is an infinite sequence of distinct markings
M1,M2, . . . ∈ [M0〉 such that, for all i ≥ 1:

Mi < Mi+1 and Mω/i ≤Mi ≤M ,

where Mω/i ∈ NP is obtained from M by replacing each ω by i.

Moreover, CS is minimal if no proper subset of CS is a coverability set of N .

Proposition 1. The set of vertices of the coverability graph CG constructed
above is a finite coverability set of N .
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[1, 0, 0]

[0, ω, ω]

[1, 1, 0]

[0, 1, 0] [0, 0, 1]

[0, 1, ω]

[0, ω, ω]

a b

d

c

d

c

c

d

[1, 1, 0]

[0, 1, 0] [0, 0, 1]

[0, ω, ω]

a b

d

c

c

d

(a) (b) (c)

Fig. 3. The minimal coverability set (a) and two possible coverability graphs (b) and (c)
of the net of Figure 1. During the generation of the graph of (b), the vertex [0, 1, 0]
was chosen before [0, 0, 1] in the algorithm described in Section 1, while in the case of
(c), the vertex [0, 0, 1] was chosen before [0, 1, 0].

Remark 1. Referring to [13], there exists a unique finite minimal coverability set
which can be used to represent the coverable set of N , usually smaller than the
set of all vertices of the coverability graph. Note that although the reachability
set of N is a coverability set included in NP , it contains the minimal coverability
set if and only if it is finite. Whenever the set of reachable markings is infinite,
a finite coverability set has to use true ω-markings.

3 Motivating examples

A rather natural way of implementing the undoing of executed transitions is to
introduce reverses of them, as shown in Figure 2. In this section, we will discuss
the impact of adding reverse transitions on net behaviour.

In Figure 4, the solid lines depict a p/t-net together with its reachablility graph.
Moreover, using the dashed lines, the diagram shows the reverse transition added
to the original net, and the resulting enlargement of the original reachability
graph. We observe that the original p/t-net was not reversible (it did not even
have a home state), but the modified one is reversible and its set of reachable
markings is the same as for the original net. Hence, in this case, reversing tran-
sitions ‘improved’ the overall net behaviour.

Figure 5 shows a p/t-net which has a home state [0, 0, 1, 1]. In this case, one only
needs to add a reverse b of transition b to obtain a reversible net. Also, the set
of reachable marking stays unchanged.

The first two examples demonstrated that adding reverse transitions can some-
times ‘improve’ the behaviour of the original net. In general, however, adding re-
verse transition changes the reachability set and also allows computations based



8 Kamila Barylska, Maciej Koutny, Łukasz Mikulski, and Marcin Piątkowski

b b

a

a

c

c

e

e

d

d

p1

•p2

p3

• p5

p4

[1, 0, 0, 0, 1]

[0, 1, 0, 0, 1]M0 :

[0, 0, 1, 0, 1]

[0, 1, 0, 1, 0]

[0, 0, 1, 1, 0] [1, 0, 0, 1, 0]

bb

aa

ee

d c

d c

a b

a b

Fig. 4. A p/t-net with reverses for all transitions and its reachability graph. Reverse
transitions yield reversibility.

on the original transitions which were not enabled in the original net. This may
happen even if we limit ourselves to reversing only one transition.

Figure 6 shows a p/t-net with a finite set of reachable markings for which adding
only one reverse c changes the reachability set to an infinite one. Note that the
execution of the reverse transition c is enabled before the first execution of c
at [0, 1, 1]. As a consequence, this p/t-net would model a system in which some
action can be undone before it has been done, which is contrary to our intuition
behind reversing a computation.

Starting with a net possessing a home state does not help either, as Figure 7
shows. The net has a home state [0, 1, 0, 1, 1, 0], but, again, it is enough to add
a to obtain a net with a bigger set of reachable markings.

p1

c

•
p3

p4

a b b

•
p2

[0, 1, 1, 0]

[0, 0, 1, 1]

[1, 1, 0, 0] [1, 0, 0, 1]

bb

a c

b

b

Fig. 5. A p/t-net with a single reverse transition and its reachability graph. Reverse
transition yields reversibility.
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•p1 a
p2

b p3

c

c

[1, 0, 0]

[0, 1, 0] [0, 1, 1]

[0, 0, 1] [0, 0, 2]

[1, 0, 1]

[0, 1, 2]

[0, 0, 3]

[1, 0, 2]

c

c

a

b b

c

c

a

b

c

c

Fig. 6. A p/t-net with a single reverse transition and its reachability graph, where: the
solid arcs denote arcs present in the reachability graph of the original net; the dashed
arcs denote the introduced reverse of c enabled at markings reachable in the original
net; and the dotted arcs represent transitions (or reverses) enabled only at markings
(with gray background) which were not reachable in the original net.

The above examples suggest that it is not obvious when one can add reverses to
a p/t-net without radically changing its behavior. We could also see that adding
even one such transition may cause great changes in net behaviour. Thus, it is
crucial to be able to decide whether a particular reverse can be added to a p/t-net
without changing ‘too much’ its reachability set. To this end, we will discuss the
decidability of the following problems involving comparisons of the state spaces
of two p/t-nets.

Marking equality with single transition: MEST
Are the reachability sets of two given p/t-nets, where the second one is
obtained from the first by adding a single transition, equal?

Marking equality with single transition reverse: MESTR
Are the reachability sets of two given p/t-nets, where the second one is
obtained from the first by adding a single transition reverse, equal?

Coverable set equality: CSE
Are the coverable sets of two given p/t-nets equal?

d

c

b

aa

•p2

• p6

p4

p5

•p1

p3

2

[0, 1, 1, 0, 0, 1]

[1, 1, 0, 0, 0, 1] [0, 1, 0, 1, 1, 0]

[0, 0, 1, 2, 0, 0]

[1, 0, 0, 2, 0, 0]

ba

cd

aa

a

Fig. 7. A reversible p/t-net with a single reverse transition and its reachability graph.
The marking with gray background is not reachable in the original net.
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p1

p2

pk

a

b′1b1

b′kbk

•
AR

BRe

c

d

A

B
C

D

Fig. 8. The construction used in the proof of Proposition 2.

By Theorem 7.5 of [14] MEST is undecidable. In the following section, we will
prove that MESTR is undecidable. Next, we will argue that CSE is decidable.

4 Undecidability of MESTR

In this section, we will show that MESTR is undecidable. The key observation
is formulated as the following result.

Proposition 2. MEST is reducible to MESTR.

Proof. Let A = (P, TA,W
−
A ,W+

A ,M0) and B = (P, TB ,W
−
B ,W+

B ,M0) be two
p/t-nets, with the same sets of places and initial marking, and such that TB =
{t′ | t ∈ TA} ] {a}, W−A (t) = W−B (t′) and W+

A (t) = W+
B (t′) for every t ∈ TA.

Note that B can be seen as a copy or mirror3 of A with an additional transition a
(however, the transition sets of A and B are disjoint).

We will now describe how to construct two nets, C and D, with the construction
being illustrated in Figure 8.
3 The mirror of t1t2 . . . tk ∈ T ∗A is t′1t′2 . . . t′k ∈ T ∗B , and vice versa.
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The net C = (PC , TC ,W
−
C ,W+

C ,MC
0 ) is such that PC = P ] {AR, BR} and

TC = TA ] TB ] {c, e}. Moreover,

MC
0 (p) =

M0(p) if p ∈ P
1 if p = AR

0 if p = BR

and the weight functions are as follows:

W−C (t)(p) =



W−A (t)(p) if p ∈ P & t ∈ TA

W−B (t)(p) if p ∈ P & t ∈ TB

1 if p = AR & t ∈ TA

0 if p = BR & t ∈ TA

1 if p = BR & t ∈ TB

0 if p = AR & t ∈ TB

1 if p = AR & t = c
0 if p 6= AR & t = c
1 if p = AR & t = e
0 if p 6= AR & t = e

and

W+
C (t)(p) =



W+
A (t)(p) if p ∈ P & t ∈ TA

W+
B (t)(p) if p ∈ P & t ∈ TB

1 if p = AR & t ∈ TA

0 if p = BR & t ∈ TA

1 if p = BR & t ∈ TB

0 if p = AR & t ∈ TB

1 if p = BR & t = c
0 if p 6= BR & t = c
0 if p ∈ PC & t = e

The net D = (PC , TD,W−D ,W+
D ,MC

0 ) is such that TD = TC ]{d} and the weight
functions are given by:

W−D (t)(p) =

W−C (t)(p) if p ∈ P & t ∈ TC

1 if p = BR & t = d
0 if p 6= BR & t = d

and

W+
D (t)(p) =

W+
C (t)(p) if p ∈ P & t ∈ TC

1 if p = AR & t = d
0 if p 6= AR & t = d

Note that in D, transition d is the reverse of c.

In what follows, we denote a marking MC ∈ NPC as M〈x,y〉, where M ∈ NP ,
x, y ∈ N and

MC(p) =

M(p) if p ∈ P
x if p = AR

y if p = BR
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The net C works as follows. Before the first (and only) execution of c or e we can
simulate the behaviour of A obtaining, as a result, a marking MC = M〈1,0〉 such
that M is any marking reachable in A. Then there are two ways of continuing:

– After executing c we obtain M〈0,1〉 and may proceed with the simulation of
B. Note that we can reach the same marking by executing c followed by the
mirror computation in the net B. Hence every marking reachable by some
computation containing c leads to a marking M〈0,1〉, where M is a marking
reachable in B.

– After firing e we obtain the dead marking M〈0,0〉.

As a result, the set of reachable markings of C is:

[MC
0 〉C = {M〈0,1〉 |M ∈ [M0〉B} ∪ {M〈1,0〉 |M ∈ [M0〉A}

∪ {M〈0,0〉 |M ∈ [M0〉A} .

The net D works similarly as C. The only difference is a possible transfer of
the control token from BR to AR using the transition d. This means that every
execution in the net D is an alternation of executions in A and B (possibly
followed by a single execution of e). As a result, from the point of view of
reachable markings, we may focus only on the net B (starting every computation
with c and ending it with d or de, if necessary). Hence, the set of reachable
markings of D is:

[MC
0 〉D = {M〈0,1〉 |M ∈ [M0〉B} ∪ {M〈1,0〉 |M ∈ [M0〉B}

∪ {M〈0,0〉 |M ∈ [M0〉B} .

We therefore conclude that [M0〉A = [M0〉B if and only if [MC
0 〉C = [MC

0 〉D,
which means that MEST has been reduced to MESTR. ut

As a direct consequence of the above result and Theorem 7.5 of [14] we obtain

Theorem 1. MESTR is undecidable.

Thus verifying whether reversing a transition in a p/t-net does not change its
reachability set is not a feasible problem. Clearly, for restricted classes of nets
one may still look for decision procedures but, in the general case, one needs
to relax the required correspondence between the state space of the original net
and that resulting from reversing of some of its transitions.

5 Decidability of CSE

The construction of coverability graphs in [13] differs a bit from our approach,
which is a deterministic version of Karp-Miller procedure [17]. Nevertheless, the
set of labels of the coverability graph’s nodes is the coverability set and so the
unique minimal coverability set (see [13]) might be obtained from the set of
labels of coverability graph’s nodes by taking its maximal subset.
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Theorem 2. CSE is decidable.

Proof. Let A and B be two p/t-nets with the initial markings MA
0 and MB

0 ,
respectively. We need to show that it is possible to effectively establish whether
↓[MA

0 〉 =↓[MB
0 〉. By Proposition 1, we can effectively compute finite coverability

sets, CSA and CSB , of A and B, respectively. It then suffices to show that the
following statements are equivalent:

(i) For every M ∈ CSA, there is M ′ ∈ CSB such that M ≤M ′.
(ii) ↓[MA

0 〉 ⊆↓[MB
0 〉.

(i) =⇒ (ii) :
Suppose that M ≤M ′ and M ′ ∈ [MA

0 〉. Then, by (CS1), there exists M ′′ ∈ CSA

such that M ′ ≤M ′′. Thus, by (i), there exists M ′′′ ∈ CSB such that M ′′ ≤M ′′′.
IfM ′′′ ∈ [MB

0 〉, we getM ∈↓[MB
0 〉. Otherwise, by (CS2), there existsMi ∈ [MB

0 〉
such that M ′′ ≤Mi. Hence, again, M ∈↓[MB

0 〉.
(ii) =⇒ (i) :
Suppose thatM ∈ CSA. IfM ∈ [MA

0 〉 then, by (ii), there existsM ′ ∈ [MB
0 〉 such

that M ≤ M ′. Hence, by (CS1), there exists M ′′ ∈ CSB such that M ′ ≤ M ′′.
Hence M ≤M ′′.

If M /∈ [MA
0 〉 then, by (CS2), there exist distinct M1,M2, . . . ∈ [MA

0 〉 such that,
for all i ≥ 1,Mω/i ≤Mi ≤Mi+1 ≤M . Hence, by (ii), there exist (not necessarily
distinct)M ′1,M ′2, . . . ∈ [MB

0 〉 such thatMω/i ≤Mi ≤M ′i , for all i ≥ 1. Moreover,
by (CS1), there exist M ′′1 ,M

′′
2 , . . . ∈ CSB such that Mω/i ≤ M ′i ≤ M ′′i , for all

i ≥ 1. Since CSB is finite, there exists M ′ ∈ CSB which occurs in the sequence
M ′′1 ,M

′′
2 , . . . infinitely many times. This means that Mω/i ≤ M ′, for infinitely

many i’s, and so M ≤M ′. ut

Thus, in practice, we can effectively check whether the introduction of reverse
transitions changes the coverable set of a p/t-net.

6 Concluding remarks

In this paper, we considered a very liberal way of reversing computation in
Petri nets as it allows one to ‘undo’ a transition which has not yet been exe-
cuted. Preventing such a behaviour would be straightforward by introducing
a fresh empty ‘buffer’ place pt between t and t (i.e., W+(t)(pt) = W−(t)(pt) = 1
W−(t)(pt) = W+(t)(pt) = 0). The two results we established in this paper carry
over to the modified setting as in the net D used in the proof of Proposition 2,
the executions of transitions c and d strictly alternate, starting with c.
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