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Abstract. In this paper we provide a simplified semantics for the logic
KD45(G), i.e. the many-valued Gödel counterpart of the classical modal
logic KD45. More precisely, we characterize KD45(G) as the set of valid
formulae of the class of possibilistic Gödel Kripke Frames 〈W,π〉, where
W is a non-empty set of worlds and π : W → [0, 1] is a normalized
possibility distribution on W .

1 Introduction

Possibilistic logic [7,8] is a well-known uncertainty logic to reasoning with graded
beliefs on classical propositions by means of necessity and possiblity measures.
These measures are defined in terms of possibility distributions. A (normalized)
possibility distribution is a mapping π : Ω → [0, 1], with supw∈Ω π(w) = 1,
on the set Ω of classical interpretations of a given propositional language that
ranks interpretations according to its plausibility level: π(w) = 0 means that w
is rejected, π(w) = 1 means that w is fully plausible, while π(w) < π(w′) means
that w′ is more plausible than w. A possibility distribution π induces a pair of
dual possibility and necessity measures on propositions, defined respectively as:

Π(ϕ) = sup{π(w) | w ∈ Ω,w(ϕ) = 1}
N(ϕ) = inf{1− π(w) | w ∈ Ω,w(ϕ) = 0} .

From a logical point of view, possibilistic logic can be seen as a sort of graded
extension of the non-nested fragment of the well-known modal logic of belief
KD45 [9], in fact, {0, 1}-valued possibility and necessity measures over classical
propositions can be taken as equivalent semantics for the modal operators of the
logic KD45 [1].

When trying to extend the possibilistic belief model beyond the classical
framework of Boolean propositions to many-valued propositions, one has to come
up with appropriate extensions of the notion of necessity and possibility measures
for them (see e.g. [11]). In the particular context of Gödel fuzzy logic [12], natural
generalizations that we will consider in this paper are the following. A possibility
distribution π : Ω → [0, 1] on the set Ω of Gödel propositional interpretations
induces the following generalized possibility and necessity measures over Gödel
logic propositions:
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Π(ϕ) = supw∈Ω{min(π(w), w(ϕ))}
N(ϕ) = infw∈Ω{π(w) ⇒ w(ϕ)}

where ⇒ is Gödel implication, that is, for each x, y ∈ [0, 1], x ⇒ y = 1 if
x ≤ y, x⇒ y = y, otherwise.3 These expressions agree with the ones commonly
used in many-valued modal Kripke frames (W,R) to respectively evaluate modal
formulas ♦ϕ and �ϕ (see for example [2] and references therein) when the [0, 1]-
valued accessibility relation R : W × W → [0, 1] is defined by a possibility
distribution π :W → [0, 1] as R(w,w′) = π(w′), for any w,w′ ∈W .

Actually, modal extensions of Gödel fuzzy logic have been studied by Caicedo
and Rodŕıguez [5], providing sound and complete axiomatizations for different
classes of [0, 1]-valued Kripke models. These structures are triplesM = (W,R, e),
where W is a set of worlds, R = W ×W → [0, 1] is a many-valued accessibility
relation and e :W×V ar → [0, 1] is such that, for every w ∈W , e(w, ·) is a Gödel
[0, 1]-valued evaluation of propositional variables (more details in next section)
that extends to modal formulas as follows:

e(w,♦ϕ) = supw′∈W {min(R(w,w′), e(w′, ϕ))}.
e(w,�ϕ) = infw′∈W {R(w,w′) ⇒ e(w′, ϕ)}

We will denote by KD45(G) the class of [0, 1]-models M = (W,R, e) where R
satisfies the following many-valued counterpart of the classical properties:

– Seriality: ∀w ∈ W , supw′∈W R(w,w′) = 1.
– Transitivity: ∀w,w′, w′′ ∈W , min(R(w,w′), R(w′, w′′)) ≤ R(w,w′′)
– Euclidean: ∀w,w′, w′′ ∈W , min(R(w,w′), R(w,w′′)) ≤ R(w′, w′′)

In this setting, the class ΠG of possibilistic Kripke models (W,π, e), where
π : W → [0, 1] is a normalized possibility distribution on the set of worldsW , can
be considered as the subclass of KD45(G) models (W,R, e) where R is such that
R(w,w′) = π(w′). Since ΠG ( KD45(G), it follows that the set V al(KD45(G))
of valid formulas in the class of KD45(G) is a subset of the set V al(ΠG) of valid
formulas in the class ΠG, i.e. V al(KD45(G)) ⊆ V al(ΠG).

In the classical case (where truth-evaluations, accessibility relations and pos-
sibility distributions are {0, 1}-valued) it is well known that (see e.g. [14]) that
the semantics provided by the class of Kripke frames with serial, transitive and
euclidean accessibility relations is equivalent to the class of Kripke frames with
semi-universal accessibility relations (that is, relations of the form R =W × E,
where ∅ 6= E ⊆ W ). But the latter models are nothing else than {0, 1}-valued
possibilistic models, given by the characteristic functions of the E’s.

However, over Gödel logic, the question of whether the semantics provided by
the class of [0, 1]-valued serial, transitive and euclidean Kripke frames is equiv-
alent to the possibilistic semantics, that is, whether V al(ΠG) = V al(KD45(G))
also holds, is not known. In this paper we positively solve this problem. Indeed

3 Strictly speaking, the possibility measure is indeed a generalization of the classical
one, but the necessity measure is not, since x ⇒ 0 6= 1− x.
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we show that Caicedo-Rodriguez’s Gödel modal logic KD45(G) [5] properly
captures the above possibilistic semantics. In this way, we extend the results
obtained in [11] for the non-nested fragment of the modal language. We also
note that this problem has already been solved for logics over finite and linearly
ordered residuated lattices (MTL chains), thus in particular for finite-valued
Gödel logics, but with a language expanded with truth-constants and with Baaz-
Monteiro operator ∆, see [13,3].

After this introduction, in the next section we first summarize the main
results by Caicedo-Rodriguez on Gödel modal logic KD45(G) and its semantics
given by [0, 1]-valued serial, transitive and euclidean Kripke models. Then we
consider our many-valued possibilistic Kripke semantics, and prove in the last
section that it is equivalent to the relational one. We conclude with some open
questions that we leave as future research. We also include an appendix with
several technical proofs.

2 Gödel Kripke Frames

In their paper [5] Caicedo and Rodŕıguez consider a modal logic over Gödel
logic. The language L�♦(V ar) of propositional bi-modal logic is built from a
countable set V ar of propositional variables, connectives symbols ∨,∧,→,⊥,
and the modal operator symbols � and ♦. We will simply write L�♦ assuming
V ar is known and fixed.. Then, the modal semantics is defined as follows.

Definition 1. A Gödel-Kripke frame (GK-frame) will be a structure F =
〈W,R〉 where W is a non-empty set of objects that we call worlds of F , and
R : W ×W → [0, 1]. A F-Kripke Gödel model is a pair M = 〈F , e〉 where F is
a GK-frame and e : W × V ar → [0, 1] provides in each world an evaluation of
variables. e is inductively extended to arbitrary formulas in the following way:

e(w,ϕ ∧ ψ) = min(e(w,ϕ), e(w,ψ)) e(w,ϕ ∨ ψ) = max(e(w,ϕ), e(w,ψ))
e(w,ϕ→ ψ) = e(w,ϕ) ⇒ e(w,ψ) e(w,⊥) = 0

e(w,�ϕ) = infw′∈W {R(w,w′) ⇒ e(w′, ϕ)}
e(w,♦ϕ) = supw′∈W {min(R(w,w′), e(w′, ϕ))}.

Truth, validity and entailment are defined as usual: given a GK-model M =
(W,R, e), we write (M,w) |= ϕ when e(w,ϕ) = 1, and M |= ϕ if (M,w) |= ϕ for
every w ∈ W ; given a class of GK-models N , and a set of formulas T , we write
T |=N ϕ if, for every model M = (W,R, e) and w ∈ W , (M,w) |= ϕ whenever
(M,w) |= ψ for every ψ ∈ T .

In [5] it is shown that the set V al(K) = {ϕ | |=K ϕ} of valid formulas in K,
the class of all GK-frames, is axiomatized by adding the following additional
axioms and rule to those of Gödel fuzzy logic G (see e.g. [12]):

(K�) �(ϕ→ ψ) → (�ϕ→ �ψ) (K♦) ♦(ϕ ∨ ψ) → (♦ϕ ∨ ♦ψ)
(F�) �⊤ (P ) �(ϕ→ ψ) → (♦ϕ→ ♦ψ)

(FS2) (♦ϕ→ �ψ) → �(ϕ→ ψ) (Nec) from ϕ infer �ϕ
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The resulting logic will be denoted K(G). Moreover, in [5] it is also shown that
the set V al(KD45(G)) of valid formulas in the subclass of GK-models KD45(G)
is axiomatized by adding the following additional axioms:

(D) ♦⊤
(4�) �ϕ→ ��ϕ (4♦) ♦♦ϕ→ ♦ϕ

(5�) ♦�ϕ→ �ϕ (5♦) ♦ϕ→ �♦ϕ

The logic obtained by adding these axioms to K(G) will be denoted KD45(G).

3 More about KD45(G)

Let ⊢G denote deduction in Gödel fuzzy logic G. Let L(X) denote the set of
formulas built by means of the connectives ∧,→, and ⊥, from a given subset of
variables X ⊆ V ar. For simplicity, the extension of a valuation v : X → [0, 1] to
L(X) according to Gödel logic interpretation of the connectives will be denoted
v as well. It is well known that G is complete for validity with respect to these
valuations. We will need the fact that it is actually sound and complete in the
following stronger sense, see [4].

Proposition 1. i) If T ∪ {ϕ} ⊆ L(X), then T ⊢G ϕ iff inf v(T ) ≤ v(ϕ) for
any valuation v : X → [0, 1].

ii) If T is countable, and T 0G ϕi1 ∨ ..∨ϕin for each finite subset of a countable
family {ϕi}i∈I there is an evaluation v : L(X) → [0, 1] such that v(θ) = 1
for all θ ∈ T and v(ϕi) < 1 for all i ∈ I.

The following are some theorems of K(G), see [5]:

T 1. ¬♦θ ↔ �¬θ
T 2. ¬¬�θ → �¬¬θ
T 3. ♦¬¬ϕ→ ¬¬♦ϕ
T 4. (�ϕ→ ♦ψ) ∨�((ϕ→ ψ) → ψ)
T 5. ♦(ϕ→ ψ) → (�ϕ→ ♦ψ)

The first one is an axiom in Fitting’s systems in [10], the next two were intro-
duced in [5], the fourth one will be useful in our completeness proof and is the
only one depending on prelinearity. The last is known as the first connecting
axiom given by Fischer Servi.

Next we show that in KD45(G) iterated modalities can be simplified. This
is in accordance with our intended possibilistic semantics for KD45(G) that will
be formally introduced in next section.

Proposition 2. The logic KD45(G) proves the following schemes:

(F�♦) ♦�⊤ ↔ �♦⊤ ↔ ¬⊥
(U♦) ♦♦ϕ↔ ♦ϕ↔ �♦ϕ

(U�) ��ϕ↔ �ϕ↔ ♦�ϕ
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Proof: It is easy to prove F�♦ using axioms F� and D. The details are left to
reader. For schemes U♦ and U�, axioms 4�, 4♦, 5� and 5♦ give one direction
of them. The opposite directions are obtained as follows:

Proof 1: Proof 2:
♦ϕ→ �♦ϕ axiom 5♦ ♦�ϕ→ �ϕ axiom 5�
�(ϕ→ ♦ϕ) by MP and FS2 �(�ϕ→ ϕ) by MP and FS2
♦ϕ→ ♦♦ϕ by MP and P ��ϕ→ �ϕ by MP and K

Proof 3: Proof 4 :
♦ϕ→ ♦ϕ prop. taut. �ϕ→ �ϕ prop. taut.
♦(♦ϕ → ♦ϕ) by D ♦(�ϕ→ �ϕ) by D
�♦ϕ→ ♦♦ϕ by MP and T 5 ��ϕ→ ♦�ϕ by MP and T 5
�♦ϕ→ ♦ϕ by 4♦ �ϕ→ ♦�ϕ by 4�

�

From now on we will use ThKD45(G) to denote the set of theorems of
KD45(G). We close this section with the following observation: deductions in
KD45(G) can be reduced to derivations in pure propositional Gödel logic G.

Lemma 1. For any theory T and formula ϕ in L�♦, it holds that T ⊢KD45(G) ϕ

iff T ∪ ThKD45(G) ⊢G ϕ.

4 Possibilistic semantics and completeness

In this section we will show that KD45(G) is also complete with respect to the
class of possibilistic Gödel frames.

Definition 2. A possibilistic Gödel frame (ΠG-frame) will be a structure 〈W,π〉
where W is a non-empty set of worlds, and π : W → [0, 1] is a normalized
possibility distribution over W, that is, such that supw∈W π(w) = 1.

A possibilistic Gödel model is a triple 〈W,π, e〉 where 〈W,π〉 is a ΠG-frame
frame and e :W×V ar → [0, 1] provides an evaluation of variables in each world.
For each w ∈ W , e(w, ·) extends to arbitrary formulas in the usual way for the
propositional connectives and for modal operators in the following way:

e(w,�ϕ) := infw′∈W {π(w′) ⇒ e(w′, ϕ)}
e(w,♦ϕ) := supw′∈W {min(π(w′), e(w′, ϕ))}.

Observe that the evaluation of formulas beginning with a modal operator
is in fact independent from the current world. As we already mentioned in the
introduction, it is clear that a possibilistic frame 〈W,π〉 is equivalent to the
GK-frame 〈W,Rπ〉 where Rπ =W × π.

In the rest of the paper we provide a completeness proof of the logicKD45(G)
with respect of the class ΠG of possibilistic Gödel models, in fact we are going
to prove weak completeness for deductions from finite theories.

In what follows, for any formula ϕ we denote by Sub(ϕ) ⊆ L�♦ the set of
subformulas of ϕ and containing the formula ⊥. Moreover, let X := {�θ,♦θ :
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θ ∈ L�♦} be the set of formulas in L�♦ beginning with a modal operator;
then L�♦(V ar) = L(V ar ∪X). That is, any formula in L�♦(V ar) may be seen
as a propositional Gödel formula built from the extended set of propositional
variables V ar ∪ X . In addition, for a given formula ϕ, let ∼ϕ be equivalence
relation in [0, 1]V ar∪X × [0, 1]V ar∪X defined as follows:

u ∼ϕ w iff ∀ψ ∈ Sub(ϕ) : u(�ψ) = w(�ψ) and u(♦ψ) = w(♦ψ).

Now, assume that a formula ϕ is not a theorem of KD45(G). Hence by
completeness of Gödel calculus and Lemma 1, there exists a Gödel valuation
v such that v(ThKD45(G)) = 1 and v(ϕ) < 1. Following the usual canonical
model construction, once fixed the valuation v, we define next a canonical ΠG-
model Mv

ϕ in which we will show ϕ is not valid.
The canonical model Mv

ϕ = (W v, πϕ, eϕ) is defined as follows:

• W v is the set {u ∈ [0, 1]V ar∪X | u ∼ϕ v and u(ThKD45(G)) = 1}.
• πϕ(u) = minψ∈Sub(ϕ){min(v(�ψ) → u(ψ), u(ψ) → v(♦ψ))}.
• eϕ(u, p) = u(p) for any p ∈ V ar.

In this context, we call the elements of ∆ϕ = {�θ,♦θ : θ ∈ Sub(ϕ)}, the
fixed points of the Canonical Model.

Note that having ν(ThKD45(G)) = 1 does not guarantee that ν belongs
to the canonical model because it may not take the appropriated values for the
fixed points, i.e. it may be that v 6∼ϕ ν. However, the next lemma shows how,
in certain conditions, to transform such an evaluation into another belonging to
the canonical model.

Lemma 2. Let u ∈ W v and let ν : V ar ∪X 7→ [0, 1] be a Gödel valuation.
Define α = max{u(λ) : ν(λ) < 1 and λ ∈ ∆ϕ} and β = min{u(λ) : ν(λ) =
1 and λ ∈ ∆ϕ}. If ν satisfies the following conditions:

a. ν(ThKD45(G)) = 1.
b. for any ψ, φ ∈ {λ : u(λ) ≤ α and λ ∈ ∆ϕ}, ν(ψ) < ν(φ) iff u(ψ) < u(φ).
c. ν(λ) = 1 for every λ ∈ ∆ϕ such that u(λ) > α,

then, there exists a Gödel valuation w ∈W v such that, for any formulas ψ, φ:

1. ν(ψ) = 1 implies w(ψ) ≥ δ.
2. ν(ψ) < 1 implies w(ψ) < δ.
3. 1 6= ν(ψ) ≤ ν(φ) implies w(ψ) ≤ w(φ).
4. ν(ψ) < ν(φ) implies w(ψ) < w(φ).
5. ν(ψ) = ν(φ) = 1 and u(ψ) ≤ u(φ) imply w(ψ) ≤ w(φ).
6. ν(ψ) = ν(φ) = 1 and u(ψ) < u(φ) imply w(ψ) < w(φ).

Proof: See Appendix. �

Completeness will follow from the next truth-lemma.

Lemma 3 (Truth-lemma). eϕ(u, ψ) = u(ψ) for any ψ ∈ Sub(ϕ) and any
u ∈W v.
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Proof: For simplicity, we write W for W v. We prove the identity by induction
on the complexity of the formulas in Sub(ϕ), considered now as elements of
L�♦(V ar). For ⊥ and the propositional variables in Sub(ϕ) the equation holds
by definition. The only non trivial inductive steps are: eϕ(u,�ψ) = u(�ψ) and
eϕ(u,♦ψ) = u(♦ψ) for �ψ,♦ψ ∈ Sub(ϕ). By the inductive hypothesis we may
assume that eϕ(u′, ψ) = u′(ψ) for every u′ ∈W ; thus we must prove

inf
u′∈W

{πϕ(u′) ⇒ u′(ϕ)} = u(�ϕ) (1)

sup
v′∈W

{min(πϕ(u′), u′(ϕ))} = u(♦ϕ) (2)

By definition, πϕ(u′) ≤ (v(�ψ) ⇒ u′(ψ)) and πϕ(u′) ≤ (u′(ψ) ⇒ v(♦ψ)) for
any ψ ∈ Sub(ϕ) and u′ ∈ W ; therefore, u(�ψ) = v(�ψ) ≤ (πϕ(u′) ⇒ u′(ψ))
and min(πϕ(u′), u′(ψ)) ≤ v(♦ψ) = u(♦ψ). Taking infimum over u′ in the first
inequality and the supremum in the second we get

u(�ψ) ≤ inf
u′∈W

{πϕ(u′) ⇒ u′(ψ)}, sup
u′∈W

{min(πϕ(u′), u′(ψ))} ≤ u(♦ψ).

Hence, if u(�ψ) = 1 and u(♦ψ) = 0 we obtain (1) and (2), respectively. There-
fore, it only remains to prove the next two claims for �ψ,♦ψ ∈ Sub(ϕ).

Claim 1. If u(�ψ) = α < 1, for every ε > 0, there exists a valuation w ∈ W

such that πϕ(w) > w(ψ) and w(ψ) < α+ ε, and thus (πϕ(w) ⇒ w(ψ)) < α+ ε.

Claim 2. If u(♦ψ) = α > 0 then, for any ε > 0, there exists a valuation w′ ∈W

such that w′(ψ) = 1 and πϕ(w′) ≥ α− ε, and thus min(w′(ψ), πϕ(w′)) ≥ α− ε.

The proof of these two claims are rather involved and they can be found in
the appendix. �

Theorem 1 (Finite strong completeness). For any finite theory T and for-
mula ϕ in L�♦, T |=ΠG ϕ implies T ⊢KD45(G) ϕ.

Proof: One direction is soundness, and it is easy to check that the axioms are
valid in the class ΠG of models. As for the other direction, assume T = ∅
and 6⊢KD45(G) ϕ. Then ThKD45(G) 6⊢G ϕ by Lemma 1, and thus there is,
by Proposition 1, a Gödel valuation v : V ar ∪ X → [0, 1] such that v(ϕ) <
v(ThKD45(G)) = 1. Then v is a world of the canonical model Mϕ

v and by
Lemma 3, eϕ(v, ϕ) = v(ϕ) < 1. Thus 6|=ΠG ϕ. This proof can be easily generalized
when T is a non empty and finite. �

5 Conclusions

In this paper we have studied the logic over Gödel fuzzy logic arising from many-
valued Gödel Kripke models with possibilistic semantics, and have shown that it
actually corresponds to a simplified semantics for the logic KD45(G), the exten-
sion of Caicedo and Rodriguez’s bi-modal Gödel logic with many-valued versions
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of the well-known modal axioms D, 4 and 5. The truth-value of a formula ♦ϕ in
a possibilistic Kripke model is indeed a proper generalization of the possibility
measure of ϕ when ϕ is a classical proposition, however the semantics of �ϕ is
not. This is due to the fact that the negation in Gödel logic is not involutive.

Therefore, a first open problem we leave for further research is to consider
to extension of the logic KD45(G) with an involutive negation and investigate
its possibililistic semantics. A second open problem is to investigate the logic
arising from non-normalized possibilistic Gödel frames. In the classical case,
one can show that this corresponds to the modal logic K45, that is, without
the axiom D, see e.g. [14]. However, over Gödel logic this seems to be not as
straightforward as in the classical case.
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Appendix

Proof of Lemma 2

Proof: First of all, notice that if ν satisfies the condition b, then necessarily
α < β. Let B = {ν(λ) : λ ∈ ∆ϕ, ν(λ) < 1} ∪ {0} = {b0 = 0 < b1 < . . . bN}.
Obviously, bN < 1. For each 0 ≤ i ≤ N , pick λi ∈ ∆ϕ such that ν(λi) = bi.
Define now a continuous strictly function g : [0, 1] 7→ [0, δ) ∪ {1} such that

g(1) = 1
g(bi) = v(λi) for every 0 ≤ i ≤ N

g[(bN , 1)] = (α, δ)

Notice that α = g(bN ). In addition, define another continuous strictly increasing
function h : [0, 1] 7→ [δ, 1] such that

h(0) = δ

h[(0, β)] = (δ, β)
h(x) = x, for x ∈ [β, 1]

Then we define the valuation w : V ar ∪X → [0, 1] as follows:

w(p) =

{

g(ν(p)), if ν(p) < 1,
h(u(p)), if ν(p) = 1.

First of all, let us show by induction that this extends to any propositional
formula, that is,

w(ϕ) =

{

g(ν(ϕ)), if ν(ϕ) < 1,
h(u(ϕ)), if ν(p) = 1.

Note that, since g and h are strictly increasing mappings, g ◦ ν and h ◦ u are
valuations as well. So, in the induction steps below we only need to check that
everything is fine when both are used at the same time when evaluating a com-
pound formula. The base case holds by definition.

– Assume ψ = ψ1 ∧ ψ2. We only check the case when v(ψ) < 1 and
v(ψ1) < 1 and v(ψ2) = 1. Then w(ψ) = min(w(ψ1), w(ψ2)) =
min(g(ν(ψ1)), h(u(ψ2))) = g(ν(ψ1)), since g(ν(ψ1)) < δ ≤ h(u(ψ2). But,
g(ν(ψ1)) = min(g(ν(ψ1)), 1) = min(g(ν(ψ1)), g(ν(ψ2))) = g(ν(ψ1 ∧ ψ2)) =
g(ν(ψ)).

– Assume ψ = ψ1 → ψ2, and consider two subcases:
(1) v(ψ1) < 1 and v(ψ2) = 1. Then v(ψ1 → ψ2) = 1 and w(ψ) = w(ψ1) ⇒
w(ψ2) = g(ν(ψ1)) ⇒ h(u(ψ2)) = 1 = h(u(ψ1)) ⇒ h(u(ψ2)) = h(u(ψ1 →
ψ2)) = h(u(ψ)).
(2) v(ψ1) = 1 and v(ψ2) < 1. Then v(ψ1 → ψ2) = v(ψ2) < 1 and
w(ψ) = w(ψ1) ⇒ w(ψ2) = h(u(ψ1)) ⇒ g(ν(ψ2)) = g(ν(ψ2)) = g(ν(ψ1)) ⇒
g(ν(ψ2)) = g(ν(ψ1 → ψ2)) = g(ν(ψ)).
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Properties 1 – 6 now directly follow from the above.
Finally, we prove that w ∈W v. By definition of w it is clear that w ∼ϕ v. It

remains to check that w validates all the axioms. The axioms of G are evaluated
to 1 by any Gödel valuation. As for the specific axioms of KD45(G), it is an
immediate consequence of Property 3 because it implies that if ν(ψ → φ) = 1
then w(ψ → φ) = 1. �

Claim 1 from Lemma 3. If u(�ψ) = α < 1, for every ε > 0, there exists
a valuation w ∈ W such that πϕ(w) > w(ψ) and w(ψ) < α + ε, and thus
πϕ(w) ⇒ w(ψ) = w(ψ) < α+ ε.

Proof. By definition of Gödel’s implication ⇒ in [0,1], to grant the required
conditions on w it is enough to find w ∈ W such that α ≤ w(ψ) and, for any
θ ∈ Sub(ϕ), u(�θ) ≤ w(θ) ≤ u(♦θ) ≤ α. This is achieved in two stages:

– first producing a valuation ν ∈ W satisfying ν(ψ) < 1 and preserving the
relative ordering conditions the values w(θ) must satisfy, conditions which
may be coded by a theory Γψ,u;

– and then moving the values ν(θ), for θ ∈ Sub(ϕ), to the correct valuation w
by composing ν with an increasing bijection of [0,1].

Assume u(�ψ) = α < 1, and define (all formulas involved ranging in L�♦(V ar))

Γψ,u = {λ : λ ∈ ∆ϕ and u(λ) > α}
∪{λ→ θ : λ ∈ ∆ϕ and u(λ) ≤ u(�θ)}
∪{(θ → λ) → λ : λ ∈ ∆ϕ and u(λ) < u(�θ) < 1}
∪{θ → λ : λ ∈ ∆ϕ and u(♦θ) ≤ u(λ)}
∪{(λ→ θ) → θ : λ ∈ ∆ϕ and u(♦θ) < u(λ) < 1}

Then we have u(�ξ) > α for each ξ ∈ Γψ,u. Indeed, first recall that, by U�

and U♦ of Proposition 2, for any λ ∈ ∆ϕ we have u(λ) = u(�λ) = u(♦λ). We
analyse case by case. For the first set of formulas, it is clear by construction.
For the second set, we have u(�(λ → θ)) ≥ u(♦λ → �θ) = u(♦λ) ⇒ u(�θ) =
u(λ) ⇒ u(�θ) = 1, by FS2. For the third, by FS2 and P, we have u(�((θ →
λ) → λ)) ≥ u(♦(θ → λ) → �λ) ≥ u((�θ → ♦λ) → �λ) = 1, since u(�λ) =
u(♦λ) = u(�θ → ♦λ) < 1. The fourth and fifth cases are very similar to the
second and third ones respectively.

This implies

Γψ,u 6⊢KD45(G) ψ,

otherwise there would exist ξ1, . . . , ξk ∈ Γψ,u such that ξ1, . . . , ξk ⊢KD45(G) ψ.

In such a case, we would have �ξ1, . . . ,�ξk ⊢KD45(G) �ψ by Nec and K�. Then
�ξ1, . . . ,�ξk, ThKD45(G) ⊢G �ψ by Lemma 1 and thus by Proposition 1 (i),
and recalling that u(ThKD45(G)) = 1,

α < inf u({�ξ1, . . . ,�ξk} ∪ ThKD45(G)) ≤ u(�ψ) = α,
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a contradiction. Therefore, by Proposition 1 (ii) there exists a valuation ν :
V ar ∪ X 7→ [0, 1] such that ν(Γψ,u ∪ ThKD45(G)) = 1 and ν(ψ) < 1. This
implies the following relations between u and ν, that we list for further use.
Given λ ∈ ∆ϕ, θ ∈ L�♦(V ar), we have :

#1. If u(λ) > α then ν(λ) = 1 (since then λ ∈ Γψ,u).
#2. If u(λ) ≤ u(�θ) then ν(λ) ≤ ν(θ) (since then λ→ θ ∈ Γψ,u). In particular,

if λ1, λ2 ∈ ∆ϕ and u(λ1) ≤ u(�λ2) = u(λ2) then ν(λ1) ≤ ν(λ2). Further-
more,if �θ ∈ ∆ϕ then from u(�θ) = u(�θ) by #2, ν(�θ) ≤ ν(θ). That
means, taking θ = ψ, ν(�ψ) ≤ ν(ψ) < 1.

#3. If u(λ) < u(�θ) < 1 then ν(λ) < ν(θ) or ν(λ) = 1 (since then (θ →
λ) → λ) ∈ Γψ,u). In particular, if λ1, λ2 ∈ ∆ϕ, u(λ1) < u(λ2) and u(λ2) ≤
u(�ψ) = α then ν(λ1) < ν(ψ) < 1 and thus ν(λ1) < ν(λ2). This means that
ν preserves in a strict sense the order values by u of the formulas λ ∈ ∆ϕ

such that u(λ) ≤ α.
#4. If u(♦θ) ≤ u(λ) then ν(θ) ≤ ν(λ) (because θ → λ ∈ Γψ,u). In particular, if

♦θ ∈ ∆ϕ then ν(θ) ≤ ν(♦θ).
#5. If u(♦θ) < u(λ) < 1 then ν(θ) < ν(λ) or ν(θ) = 1. In particular, if λ1, λ2 ∈

∆ϕ and u(λ1) < u(λ2) ≤ α = u(�ψ) then ν(λ1) < ν(λ2). Furthermore, if
u(λ2) > 0 then ν(λ2) > 0 (making λ1 := ♦⊥ since u(⊥) = u(♦⊥) = 0).

According to the properties #1, #2 and #3, it is clear that ν satisfies the
conditions of Lemma 2. Consequently, for all ǫ > 0 (such that α + ε < β),
taking δ = α + ε in Lemma 2, there exists a valuation w ∈ W v such that
w(ψ) < α+ ε = δ. Then in order to finish our proof, it remains to show that:

πϕ(w) = inf
λ∈sub(ϕ)

min(v(�λ) ⇒ w(λ), w(λ) ⇒ v(♦λ)) > w(ϕ) (3)

To do so, we will prove that, for any λ ∈ sub(ϕ), both implications in (3) are
greater than δ. 4 First we prove it for the first implication by cases:

- If v(�λ) ≤ α < 1 then min(v(�λ) ⇒ w(λ), w(λ) ⇒ v(♦λ)) = 1. Indeed, first
of all, by #2, from u(�λ) = v(�λ) ≤ α = u(�ψ) it follows ν(�λ) ≤ ν(ψ) <
1. Now, since u(�λ) ≤ u(�λ), by #2, we have 1 6= ν(�λ) ≤ ν(λ), and by 3
of Lemma 2 we have v(�λ) = w(�λ) ≤ w(λ). Then v(�λ) ⇒ w(λ) = 1.

- If v(�λ) > α then by #1 and #2, 1 = ν(�λ) ≤ ν(λ). Therefore, by 1 of
Lemma 2, w(λ) > δ which implies v(�λ) ⇒ w(λ) > δ.

For the second implication we also consider two cases:

- If v(♦λ) = u(♦λ) > δ then it is obvious that w(λ) ⇒ v(♦λ) > δ.
- If u(♦λ) < δ, by definition of δ and taking into account that ♦λ ∈ ∆ϕ,

then u(♦λ) < α. Now from u(♦λ) = u(♦λ) we obtain by #4, that ν(λ) ≤
ν(♦λ) < 1. Then by Lemma 2 we have w(λ) ≤ w(♦λ) = v(♦λ) and thus
w(λ) ⇒ v(♦λ) = 1. �

4 Remember that u ∼ϕ v ∼ϕ w.
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Claim 2 from Lemma 3. If u(♦ψ) = α > 0 then, for any ε > 0, there
exists a valuation w′ ∈ W such that w′(ψ) = 1 and πϕ(w′) ≥ α − ε, and thus
min(w′(ψ), πϕ(w′)) ≥ α− ε.

Proof: Assume u(♦ψ) = α > 0 and define Γψ,u in the same way that it was
defined in the proof of Claim 1. Then we consider two cases:

- If u(♦ψ) = 1, let Uψ,u = {λ : λ ∈ ∆ϕ and u(λ) < 1}. We claim that

ψ, Γψ,u 6⊢KD45(G)

∨

Uψ,u ,

otherwise we would have θ1, . . . , θn ∈ Γψ,u such that ⊢KD45(G) ψ → ((θ1 ∧ . . . ∧
θn) →

∨

Uψ,u), and then we would also have ⊢KD45(G) ♦ψ → ♦((θ1∧ . . .∧θn) →
∨

Uψ,u), that would imply in turn that ⊢KD45(G) ♦ψ → ((�θ1 ∧ . . . ∧ �θn) →
♦
∨

Uψ,u). In that case, taking the evaluation u it would yield: 1 = u(♦ψ) ≤
u(�θ1 ∧ . . .∧�θn) ⇒ u(♦

∨

Uψ,u), a contradiction, since u(�θ1 ∧ . . .∧�θn) = 1
and u(♦

∨

Uψ,u)) < 1.5

Therefore, there is a Gödel valuation ν′ (not necessarily in W ) such that
ν′(ψ) = ν′(Γψ,u) = ν′(ThKD45(G)) = 1 and ν′(

∨

Uψ,u) < 1. By #2 and
#3, it follows that for any λ1, λ2 ∈ ∆ϕ such that u(λ1), u(λ2) ≤ α, we have
u(λ1) < u(λ2) ≤ α iff ν′(λ1) < ν′(λ2). Thus, ν

′ satisfies the conditions of
Lemma 2 because it is strictly increasing in ∆ϕ (i.e. it satisfies condition b of
Lemma 2), and ν′(ThKD45(G)) = 1. Therefore, there exists a valuation w′ ∈W

such that w′(ψ) = 1.
It remains to show that πϕ(w′) = 1. Indeed, by construction, it holds that

u(�θ) ≤ w′(θ) ≤ u(♦θ), and hence min(u(�θ) ⇒ w′(θ), w′(θ) ⇒ u(♦θ)) = 1.

- If 1 > u(♦ψ) = α > 0, then we let Uψ,u = (♦ψ → ψ) → ψ. We claim that

�⊤, Γψ,u 6⊢KD45(G) Uψ,u ,

otherwise there would exist θ1, . . . , θn ∈ Γψ,u such that ⊢KD45(G) �⊤ → ((θ1 ∧
. . .∧θn) → Uψ,u), and then we would have ⊢KD45(G) ♦�⊤ → ♦((θ1∧ . . .∧θn) →
Uψ,u), which would imply ⊢KD45(G) �⊤ → ((�θ1 ∧ . . . ∧ �θn) → ♦Uψ,u). In
that case, evaluating with u it would yield 1 = u(�⊤) ≤ u(�θ1 ∧ . . . ∧ �θn) ⇒
u(♦Uψ,u)), contradiction, since u(�θ1 ∧ . . . ∧ �θn) > α and u(♦Uψ,u)) ≤ α

(because u(♦((♦ψ → ψ) → ψ)) ≤ u(�(♦ψ → ψ) → ♦ψ) ≤ u(♦ψ) ≤ α).
Therefore, there is an evaluation ν′ such that ν′(ThKD45(G)) = ν′(Γψ,u) =

1 and ν′(
∨

Uψ,u) < 1. Hence, we can conclude that the three pre-conditions a,
b and c required in Lemma 2 are satisfied. In addition, the following condition
is also satisfied:

d. ν′(♦ψ) = ν′(ψ).

At this point, we can now do a proof dual to the one for Claim 1. Again, by
Lemma 2 for δ = β−α

2 , we obtain from ν′ an evaluation w′ ∈ W v such that
w′(ψ) = α. It only remains then to show that πϕ(w) > α. But in this case, the
proof is the same than the one given for equation (3) using w′ instead of w. This
finishes the proof. �

5 Note that, in this case, the first subset of Γψ,u is empty.
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