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Abstract. Outdoor augmented reality applications project information
of interest onto views of the world in real-time. Their core challenge is
recognizing the meaningful objects present in the current view and re-
trieving and overlaying pertinent information onto such objects. In this
paper we report on the development of a framework for mobile outdoor
augmented reality application, applied to the overlay of peak information
onto views of mountain landscapes. The resulting app operates by esti-
mating the virtual panorama visible from the viewpoint of the user, using
an online Digital Terrain Model (DEM), and by matching such panorama
to the actual image framed by the camera. When a good match is found,
meta-data from the DEM (e.g, peak name, altitude, distance) are pro-
jected in real time onto the view. The application, besides providing a
nice experience to the user, can be employed to crowdsource the collec-
tion of annotated mountain images for environmental applications.

Keywords: Outdoor augmented reality, mobile, real-time, mountain
peak identification, environment monitoring, computer vision

1 Introduction

Outdoor augmented reality applications exploit the position and orientation sen-
sors of mobile devices to estimate the location of the user and her field of view
so as to overlay such view with information pertinent to the user’s inferred in-
terest. These solutions are finding a promising application in the tourism sector,
where they replace traditional map-based interfaces with a more sophisticated
user experience whereby the user automatically receives information based on
what he is looking at, without the need of manual search. Examples of such AR
apps include, e.g, Metro AR and Lonely Planet’s Compass Guides!. The main
challenge of such applications is providing an accurate estimation of the user’s
current interest and activity, adapted in real-time to the changing view. Commer-
cial applications, which operate mostly in the tourism field, simplify the problem

! http://www.lonelyplanet.com/guides
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by estimating the user’s interest based only on the information provided by the
device position and orientation sensors, irrespective of the content actually in
view. Examples are sky maps, which show the names of constellations, planets
and stars based on the GPS position and compass signal. An obvious limit of
these approaches is that they may provide information that does not match well
what the user is seeing, due to errors in the position and orientation estimation
or to the presence of objects partially occluding the view. These limitations pre-
vent the possibility for the AR application to create augmented content usable
for monitoring purposes. If the overlay of the meta-data onto the view is impre-
cise, it is not possible for the user to save a copy of the augmented view, e.g., in
the form of an image with captions associated to the objects. Such augmented
content could be useful for several purposes: archiving the augmented outdoor
experience, indexing visual content for supporting search and retrieval of the
annotated visual objects, and even for the extraction of semantic information
from the augmented content.

This paper describes the data management approach of Snow Watch, an out-
door mobile AR application for the automatic annotation of mountain peaks
with geographical meta-data (peak name, altitude, distance from viewer, etc).
Unlike other systems (e.g., PeakFinder), SnowWatch exploits a content-based
reality augmentation algorithm, which takes in input not only the position and
orientation of the user’s device but also the content of the current view and a
Digital Elevation Model (DEM), which is a 3D representation of the Earth’s
surface stored at the server side. First, the DEM, the position and the orien-
tation of the user are exploited to estimate a bi-dimensional projection of the
panorama that should be viewed by the camera of the mobile device and to
match such virtual panorama to the image currently captured by the camera.
Second, meta-data about mountain peaks are transferred from the DEM to the
camera view; they are superimposed to the camera view, so that the user can
save an augmented image of the mountain landscape, which integrated the con-
textual meta-data and the view captured by the user. The augmentation process
must be performed in real-time, which requires a fast processing and transmis-
sion of the DEM data, which constitute the largest portion of the data exchanged
between the application server and the mobile terminal.

The contributions of the paper can be summarized as follows:

— We introduce the problem of reality augmentation, specifically for mountain
landscape views.

— We summarize our previous results in the offline detection of mountain peaks
in static, geo-referenced images.

— We highlight the challenges of porting the offline algorithms to a mobile AR
context, in terms of accuracy, stability of the registration of the camera view
to the virtual panorama, and unreliable network connectivity.

— We describe a framework for the development and testing of outdoor mobile
AR applications created for addressing the above-mentioned challenges.

— We illustrate the application of the framework to real-time peak detec-
tion and different optimization techniques that have been introduced in the
generic framework to support the mountain peak identification task.
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— We define a performance evaluation metrics based on a scalar value simulat-
ing the error that would be perceived in a real usage session.

— We report on the preliminary results of evaluating the SnowWatch app in
real outdoor experimental conditions.

The rest of the paper is organized as follows: Section 2 overviews previous work
in the areas of outdoor augmented reality applications, mountain image anal-
ysis, and environmental monitoring applications; Section 3 states the problem
of outdoor AR application design and presents a generic architectural frame-
work addressing the challenges of this class of applications; Section 4 shows the
application of the framework to real-time mountain peak detection: it sets the
background of the problem, briefly recaps our previous results for offline peak
identification, highlights the challenges of the real-time AR version, and discusses
the optimization techniques implemented, reporting the preliminary results of
their evaluation; Section 5 concludes by presenting the outcome of using anno-
tated mountain images for the resolution of a real-world environmental problem,
and provides an outlook about the next research objectives.

2 Related work

Augmented reality applications. AR is a well established research topic
within the Human Computer Interaction field, which has recently attracted new
attention due to the announcement by major hardware vendors of low-cost,
mass-market AR devices. In particular, the recent trend of mobile devices as
AR platforms benefits from the improved standardization (most AR software
can now be used without ad hoc hardware), increased computational power and
sensor precision [13]. The survey in [3] overviews the history of research and
development in AR, introduces the definitions at the base of the discipline, and
positions it within the broader landscape of other technologies. The authors also
propose design guidelines and examples of successful AR applications and give
an outlook on future research directions. An important branch of the discipline
is the outdoor AR. Several works address the problem, usually to identify [5]
and track [21] points of interest in urban scenarios. Although standard solutions
for mobile AR already exist (e.g. Wikitude?), they rely only on compass sensors
or the a priori known appearance of the objects. We present a novel framework
for the fusion of the two techniques: refining the compass-based AR performance
without knowing a priori the appearance of the objects.

Mountain image analysis. Image analysis in mountain regions is a well
investigated area, with applications that support environmental studies on cli-
mate change and tourism [7]. Mountain image analysis research focuses on peak
identification in public photographs [2,1] and the problem of segmenting the
portion of the photograph corresponding to a certain mountain in snow cov-
ered areas [24,22]. A prominent application field of mountain image analysis is
snow information extraction. Traditionally snow is monitored through manual

2 http://www.wikitude.com/app/
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measurement campaigns, permanent measurement stations, satellite photogra-
phy, and terrestrial photography. Most approaches (e.g. [24,22]) rely on cameras
designed and positioned ad hoc by researchers, and are not applicable to user-
generated images created in uncontrolled conditions. Porzi et al. [18] propose an
app for mountain peak detection; the contribution focuses on the time efficient
peak identification and does not address mobile AR requirements, such as real-
time response, asynchronous dynamics of the algorithms and uncertain internet
connection. Furthermore, the authors report the performance of the algorithms
in terms of error vs time measures, so it is unclear which of the algorithms
would provide a better user experience. In our work we propose a Capture and
Replay testing framework that provides a unique performance measure captur-
ing exactly the error that would be perceived by the user. SnowWatch has the
potential of enabling a novel generation of mountain environment monitoring
applications, in which the augmented images created by the users during tourist
trips are reused for extracting information useful for environment management
and planning problems. We report our first results in this direction in Section 5.

Environmental citizen science applications. “Citizen science” refers to
the direct engagement of non-specialized people (the citizens) to help address
scientific problems [15]. The massive diffusion of social media, with its powerful
tools for public communication, engagement, and content sharing, has multiplied
the ways to engage volunteers and exploit relevant public User-Generated Con-
tent (UGC). In particular, social media combined with mobile devices favored
the collection of geo-located UGC in applications related to spatial information,
so-called Volunteered Geographical Information Systems (VGIS), in which cit-
izens help enhance, update or complement existing geo-spatial databases [11].
Several approaches have been applied to disaster management for e.g., earth-
quake mapping [29] and rapid flood damage estimation [19]. Applications moni-
toring hazards through the collection of user-generated content are also reported:
tweet distribution analysis for monitoring is employed in [23] for earthquakes
and in [25] for floods. Examples exist of continuous monitoring applications in
the environmental field: bird observation network [26], phenological studies [20],
hydrological risk assessment [6], plant leaf status assessment [17] and geological
surveys (http://britishgeologicalsurvey.crowdmap.com). Besides text, also
visual content, such as Flickr photographs [27] and public touristic webcams [16]
have been used to monitor environmental phenomena, such as coarse-grained
snow cover maps [27], vegetation cover maps [28], flora distribution [27], cloud
maps [16] and other meteorological processes [12].

3 A Framework for Mobile Outdoor AR applications

The problem addressed in this work is the design of mobile AR applications
for the enrichment of outdoor natural objects. Restricting the focus to devices
that support a bi-dimensional view, a generic architecture must be realized that
receives as a first input a representation of the reality - in which the user is
embedded - captured by the device sensors; such representation typically com-
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prises a sequence of camera frames captured at a fixed rate, and the position
and orientation of the device, captured by the GPS and orientation sensors; the
second input is the information about the possible objects present in a region of
interest. The output is the on-screen position of relevant objects and the associ-
ation of relevant meta-data to such objects, computed at the same frequency of
the input capture. Besides the near real-time execution time, the system must
also cope with the following requirements:

— Uncontrolled viewing conditions: the objects to be identified have no fixed,
known a priori, appearance, because the viewing conditions can drastically
change due to weather, illumination, occlusions, etc.

— Uncertain positioning: position and orientation sensor errors make the lo-
cation estimation potentially noisy; thus the identification of the relevant
objects from these signals alone cannot be assumed to be fully reliable and
must be corrected with information from the camera view.

— Bi-dimensional reduction: although the objects’ position in the real world
is estimated in the 3D space, the on-screen rendition requires a projection
onto the 2D surface of the camera view, based on a model of the camera.

— Uncertain internet connection: especially for rural and mountain regions.

Figure 1 shows a representation, through an UML component diagram, of
the reference architecture of a mobile outdoor AR application. The key idea is
to enable the near real-time reality augmentation process thanks to a proper
partition of functionality and a mix of synchronous and asynchronous commu-
nications among the modules. The architecture consists of four sub-systems: the
Sensor Manager, the Data Manager, the Position Alignment Manager and the
Bi-dimensional Graphical User Interface, which draws objects and their meta-
data in provided on-screen coordinates.

3.1 Sensor Manager

The Sensor Manager coordinates data acquisition from the device sensors. It
typically comprises one module per each signal processed by the application; the
typical configuration comprises the GPS Sensor Manager, the Orientation Sensor
Manager and the Camera Sensor Manager. The modules work asynchronously
and provide input to the Position Alignment Manager and Data Manager, which
subscribe to their interface and are notified when a new signal arrives from a
Sensor.

3.2 Data Manager

The Data Manager is responsible for providing to the other sub-systems the
initial positions of the objects in view and the meta-data for enriching them. It
receives as input the specification of an area of interest (typically, inferred from
the user’s position, which defines the region the user may be looking at, or may
be moving within), and interacts with an external repository containing a virtual
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Fig. 1. The proposed architecture of a mobile outdoor AR application.

representation of the world (e.g, a sky map or a DEM). It produces as output
Object Positions, which specify the (initially approximate) 3D coordinates of
the candidate objects to display. Within the Data Manager, a Data Provider
component queries one or more external geo-referenced data sources, with the
current user’s location, and extracts the coordinates of the objects that are
likely to lie within the view of the user. For example, in a sky observation app,
it queries the sky map for the celestial coordinates, plus meta-data such as
type, name, distance, etc., of the potentially visible objects. The Cache Manager
implements data pre-fetching and synchronization policies, based on information
about current cache content, network availability, and cost of data transfer.
Since data about the objects can be large the Cache Manager realizes a trade-off
between on-demand transfer from external data sources and caching in the local
storage of the device. Furthermore, it enables disconnected usage, as needed in
the outdoor scenario, in which internet connection may not be always granted.
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3.3 Position Alignment Manager

The Data Manager provides a fast computation of the initial Object Positions,
to enable the immediate update of the GUI. But its output may be noisy, be-
cause the estimated user’s position, the camera orientation and the virtual world
representation may all contain errors. It is well-know that the GPS and orien-
tation signal of mobile devices may be inaccurate; on the other hand, also the
virtual world representation, e.g., a DEM describing the earth surface, may be
affected by errors, e.g., due to low resolution. Therefore, the Position Align-
ment Manager comprises components for updating the positions of the objects,
adapting them to the actual content of the camera view, and projecting them
to the device’s view. It takes in input the initial object positions provided by
the Data Manager and produces in output the corrected on screen object coor-
dinates. To support the trade-off between accuracy and speed, the (demanding)
computations required for improving accuracy are delegated to separate mod-
ules, which provide asynchronous corrections to the initial candidate positions,
by applying content-based object detection techniques. These modules feed the
Object Position Corrections store (see Figure 1) with the adjustments computed
asynchronously, which the Position Updater and 3D/2D Converter components
exploit to correct the on screen coordinates used by the GUI. Examples of com-
ponents for the content-based refinement of object positions are Pattern-Based
and Similarity-Based Object Identifiers.

A Pattern-Based Object Identifier performs a frame-based match. It uses the
virtual world representation as a pattern to search within the real world image.
It takes in input the virtual representation of the world (e.g., the synthetic rendi-
tion of a constellation or of a piece of mountain skyline) and computes a ranked
list of approximate matches between the virtual image and the real one, with
respect to some similarity function. As a collateral output, the Pattern-Based
Object Identifier can also extract from the real world image the regions that
correspond to the identified objects, according to the best match. Such artifacts,
cached in the Object Appearance Store of Figure 1, denote the visual appearance
of the objects of interest in the current view and can be used for accelerating
the correction of objects’ positions when the view changes.

A Similarity-Based Object Identifier performs object-based similarity search; it
takes in input the object appearance artifacts and searches them in the frame,
using computer vision techniques.

Finally, the 2D/3D Converter projects 3D positions onto the bi-dimensional
screen space. It takes in input the device position, orientation, and Field Of
View (FOV), applies a prospective projection, determines the on-screen coordi-
nates of the candidate objects and discards those out-of-view, e.g, due to micro-
movements of the device. For example, it projects the celestial coordinates of
the relevant sky objects into on-screen coordinates. The on-screen coordinates
are used by the GUI for rendering the augmented reality view.

The asynchronous communication between the components that compute posi-
tion corrections and those that project positions and render the virtual reality
view aims at enabling a best effort, near real-time adjustment of the view. The
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prospective projection is a constant-time procedure, so that the total response
time of the Position Updater and of the 3D/2D Converter is linear w.r.t. to
the number of candidate objects. Since this number is reasonably bound, the
resulting time complexity is constant, which allows the mobile device to call the
Position Updater and the 3D /2D Converter synchronously at every frame arrival
and redraw the view in near real-time based on the best available approximation
of the object positions.

3.4 Capture and Replay Testing framework

Testing an outdoor AR application is a complex task that requires evaluating
simultaneously the precision of object positioning and the response time, two
competing objectives, in a realistic setting that considers the sensor inputs (not
available in the lab). The assessment criteria must also take into account usage
conditions: if the user keeps the device steady, low error is the prominent goal,
while higher execution time due to re-positioning after micro-movements is less
relevant; conversely, if the device is subject to movement (e.g, during walking),
fast execution can be more important than object positioning precision. There-
fore, testing should be supported by an auxiliary architecture that helps achieve
the following objectives:

— Perform lab testing in conditions equivalent to real outdoor usage.

— Contrast different designs in the same operating conditions and assess the
same designs under different operating conditions.

— Use the performance metrics best suited to a specific application and oper-
ating condition.

To support such requirements, we have extended the architecture of Figure 1
with a testing framework based on a Capture & Replay approach:

— A Capture application: it is a mobile application that can be used to record
an outdoor usage session, complete with all sensor data (camera, GPS and
orientation) and user’s activity (start, stop, video record, snapshot, etc.).

— An Annotation application: it is an application that allows one to annotate
the frames of a usage session with the position of the visible objects, so to
create a gold standard for evaluating the accuracy of object positioning.

— A Replay test driver: it is an application that can attach to the Position
Alignment Manager sub-system of the architecture of Figure 1 and measure
its performance based on a plug-in metrics.

The Capture application collects execution traces. A trace consists of a sequence
of entries that record all the events occurred during a usage session, including:
information about the device manufacturer and model; the set of frame images
taken at frequency F', with their acquisition timestamp; and the sequence of
time-stamped sensor readings, i.e., the values of the position and orientation
sensors acquired at the maximum frequency supported by the device. The above
mentioned information, logged by default, is normally sufficient to reproduce the
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user activity for a typical outdoor AR application; however, the Capture appli-
cation can be extended to support additional logging, if needed by a specific
application. The Annotation application allows the developer to associate with
each frame zero or more triples < i, x;,y; >, where i is the index of an object
visible on that frame, and x;,y; are the on-screen coordinates of that object.
The annotated frame sets can be used as the ground truth for the assessment
of the Position Alignment Manager. The Replay test driver is an application
stub that replaces the Sensor Manager, Data Manager and GUI of the archi-
tecture of Figure 1, so to reproduce the sequence of events and sensor readings
previously recorded by the Capture application. It takes in input one or more
traces and supplies to the Position Alignment Manager the frame images, at the
capture frequency F', and the corresponding values of the sensor readings; then,
it retrieves from the Position Alignment Manager the estimation of on-screen
object positions and evaluates them w.r.t. the ground truth and to a selected
metrics. The Replay test driver utilizes a metric function (called Real-Time Av-
erage Angular Error, RTAAE) that considers the positioning errors of all the
relevant objects. For each visible object ¢ = 1,...,n let (x;,y;) be the on-screen
coordinates predicted by the Position Alignment Manager, while (Z;, ;) be the
ground truth coordinates. We define the angular error in the position of the i-th
object as

E(fzayAl) = \/dx(f17xl)2 + dy(yi7yi)27

where

X : I fis
d.(Z, ) = min(360 " |Z — x|, " |Z — z|)
is the angular distance (in degrees) between the predicted and ground truth co-
ordinate along the azimuth axis, given the circular symmetry, f is the horizontal
FOV (in degrees) of the camera and w is the width (in pixels) of the image.
Similarly we define the angular distance along the roll axis:
X I
dy(9,y) =+ 19 =yl

Note than the same angular resolution in degrees/pixel is assumed for both axes,
because the elevation angles are small. The angular error for an entire sequence
can be defined as the average angular error of each frame. Finally, given N traces,
the Real-Time Average Angular Error (RTAAE) is the average over all traces.

Note that the described Capture & Replay approach allows lab tests to assess
the Position Alignment Manager in the same operating conditions that occur in
an outdoor session, because it exploits the same frame acquisition rate and sensor
sampling frequency experimented in the real time use.

4 SnowWatch: an outdoor AR application for Mountain
Image Enrichment

This section describes how the architecture of Figure 1 has been adapted to
the development of a mobile AR application for real-time mountain peak de-
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Fig. 2. Photo to panorama cylindrical and equivalent 2D Cartesian alignment.

tection, by porting existing algorithms developed for the offline identification of
peaks in geo-tagged photographs to the mobile AR context?. Here, we highlight
the challenges in adapting the algorithms to the mobile AR scenario, discuss the
application-specific solutions, and report preliminary evaluation results obtained
with the testing framework described in Section 3.4. The offline algorithms have
been developed in the SnowWatch project [9]4, which tackles mountain monitor-
ing with a Citizen Science application for the collection of public Alpine images
and the extraction of snow indexes usable in water availability prediction models.
To this aim, SnowWatch crawls a large number of images from content sharing
sites and touristic webcams, classifies those images that portrait mountain peaks
and contain the location of shooting, identifies visible peaks by automatically
aligning each image to a synthetic rendition computed from a public DEM, finds
the pixels of each peak that represent snow and calculates useful snow indexes
(e.g, minimum snow altitude). These indexes are then used to feed existing water
prediction models and compared with other official sources of information.

The SnowWatch Web architecture is mainly server-side and thus very dif-
ferent from the mobile AR architecture of Figure 1: it combines data providers
(photograph crawler and webcam crawler), data consumers (front-end web por-
tal and environmental models) and back-end processes that analyze photographs
and enrich them with landscape and environmental meta-data (orientation of the
photograph, mountain peak positions, snow covered areas). The interaction of
the user is similar to that of a sharing site: uploading one’s photos, applying fil-
ters (for peak detection, in this case), correcting the position of peaks manually,
and rating, sharing, and commenting the resulting pictures.

4.1 Offline Peak Detection for the Web

One of the key algorithms of SnowWatch Web architecture is the offline peak
identification. Peak positions are obtained through the alignment between the
photo and the terrain model. Given a photograph and the meta-data extracted
from its EXIF container (geo-tag, focal length, camera model and manufac-
turer), a matching is performed with a 360° panoramic view of the terrain syn-
thesized from a public, Web-accessible DEM. The rendered panorama contains

3 A detailed description of the offline algorithms can be found in [8, 10]
* http://snowwatch.polimi.it/?lang=en
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(d) (e)

Fig. 3. An example of the photo-to-terrain alignment: (a) input photograph (top) and
corresponding panorama (bottom), (b) edge extraction, (¢) skyline detection, filtering
and dilation (d) global alignment with refinement (e) local alignment.

the mountain peak positions, so once a correct overlap is found, peak positions
are projected from the panorama to the photo. The alignment can be seen as
the search for the correct overlap between two cylinders (assuming the zero tilt
of the photograph): one containing the 360° panorama and the other one con-
taining the photo, suitably scaled. As Figure 2 shows, this is equivalent to look
for the offset between the photo and the unfolded 2D panorama that guarantees
the best overlap. The alignment method proceeds in four steps, described below
and illustrated in Figure 3.

Preprocessing: The horizontal Field Of View (FOV) of the photograph is
calculated from the focal length and the size of the camera sensor. Then, the
photograph is rescaled considering that the width of the panorama corresponds
to a FOV equal to 360°. After this step, the photo and the panorama have the
same scale in degrees per pixel and thus matching can be performed without the
need of scale invariant methods. Then an edge extraction algorithm is applied to
both the photograph and the panorama to produce an edge map, which assigns
to each pixel the strength of the edge at that point and its direction (Figure 3b).

Matching edges of an image with those of a virtual panorama requires ad-
dressing the fact that there is not a one-to-one mapping between edge pixels
extracted from the two sources. The photo generates many noisy edges that do
not correspond to the mountain slopes, but to other objects in the foreground
(e.g., rocks, trees, lakes, houses, etc.) and in the background (e.g., clouds, snow
patches, etc.). Thus, a skyline detection algorithm is employed [14], and all the
edge pixels above the skyline are removed, being considered obstacles or clouds.
Then, a simple weighting mechanism is applied, which assigns decreasing weights
to the edge pixels as the distance from the skyline increases (Figure 3c - top). As
for the panorama, the edges corresponding to the skyline can be simply identified
as the upper envelope of the edge map, by keeping, for each column of pixels,



12 Outdoor Mobile Augmented Reality for Mountain Peak Detection

the topmost edge point. Since the edge filtering of the photograph emphasizes
the edges of the skyline, a morphological dilation is applied to emphasize the
edges corresponding to the skyline of the panorama (Figure 3c - bottom).

Global alignment: The matching between the photograph and the correspond-
ing panorama is performed using a Vector Cross Correlation (VCC) technique
[2], which takes into account both the strength and the direction of the edge
points. The output of the VCC is a correlation map that, for each possible hor-
izontal and vertical displacement between the photograph and the panorama,
indicates the strength of the matching.

Local alignment: to improve the precision of the position of each mountain
peak, a local optimization is applied. For each peak we consider a local neigh-
borhood centered in the photograph location identified as the peak position by
the global alignment. In this way each peak position is refined by identifying the
best match in its local neighborhood. Overall, this is equivalent to applying a
non-rigid warping of the photograph with respect to the panorama.

4.2 Mobile Peak Detection for AR apps

The mobile version of the mountain peak detection task requires significant adap-
tations of the offline approach, to comply with the architecture of Figure 1. The
main challenges induced by the mobile and real-time AR requirements include:

— Lower computational power w.r.t. Web multi-tier architectures.

— Higher accuracy: while it is tolerable for a web-based application to misiden-
tify mountain peaks (the image will be discarded, or manually adjusted by
the Web user), an erroneous peak identification on a mobile application used
live produces a disappointing user experience and the enriched image, once
saved, can not be easily fixed on a small screen device.

— Faster response time: peak positions must be overlaid in real-time and no
overhead for image processing initialization is acceptable, because mobile
users do not tolerate delays in the order of seconds at app every start.

— Data storage and transfer: the whole data set for peak identification (the
DEM) is too big to be stored entirely in the a mobile device; at the same
time, the internet connection for downloading the needed data on the fly, can
not be assumed always available. Indeed, a mountain peak AR app must be
usable in mountain regions, where even today internet coverage is patchy.

— Technical constraints: mobile application development imposes numerous re-
strictions on the supported architectures, frameworks and libraries.

On the other hand, a significant advantage of the mobile version is the availability
in real-time of the position and orientation sensor values, which, although subject
to error, provides an estimate of the panorama in view.

The SnowWatch mobile AR application specializes the architecture of Fig-
ure 1. In the sequel, we describe the application-specific concepts and component
refinements introduced for the mobile context.
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The objects to be identified are mountain peaks and the object positions are
3D global system coordinates laying on a unit sphere centered in the device
location.

An application-specific Cache Manager has been implemented, responsible
for pre-fetching and caching the DEM fragments corresponding to the geograph-
ical region the user is visiting. Pre-fetching is enabled when the WiFi connection
of the device is on and cache data are used by the DataProvider component to
compute the Object Positions during outdoor usage. When the user moves out
of the region for which data are in the cache, a cache miss triggers the download
of a new fragment, which, in case of cache full, replaces the fragment relative to
the region visited earliest.

The Similarity-Based Object Identifier component is implemented with a
state-of-the-art cross-correlation patch recognition technique [4], which has been
ported to the mobile execution environment.

The component where the most relevant adaptations have been introduced
is the Pattern-Based Object Identifier, described next.

4.3 Pattern-Based Object Identifier

The Pattern-Based Object Identifier implements the pattern matching between
the skyline extracted from the DEM and the skyline visible in the camera view,
and computes Object Position Corrections based on the outcome of such proce-
dure. It has been realized starting from the experience for offline peak detection
described in Section 4.1, introducing significant improvements.

Non-Zero Tilt. The web version of the matching algorithm assumes the
camera tilt as negligible (equal to 0) and reduces the problem to the alignment
between two cylinders, avoiding the (much more costly) spherical match. This
assumption proved viable experimentally; mountain ranges are far from the po-
sition of the user and the error induced by a moderate tilt is compensated by
the skyline matching algorithm. On a mobile device the assumption of zero or
constant tilt must be relaxed, to cope with the movements of the mobile device
made by the user during a viewing or shooting session. To avoid switching from
2D cylindrical to 3D spherical alignment, which would jeopardize the response
time, we designed an approximate approach: the input image is rotated by the
tilt provided by the orientation sensor, standard 2D alignment is performed, and
the final peak coordinates are rotated in the inverse direction at the end. This
method deals with tilting effectively and preserves the fast response time of the
2D alignment, to obtain corrections to the 3D object positions.

Edge Filtering and Skyline Detection. The heuristic methods described
in Section 4.1 work well for offline peak detection, because they are applied to
pre-filtered images (fixed webcams have a view that does not change and can
be manually checked once and for all for suitability; user generated photos go
through an offline binary classification step to retain only samples with obstacle-
free skyline view). But they are not well suited to a mobile AR scenario, where it
is more likely that the camera is used in adverse weather conditions and in pres-
ence of transient occlusions of the skyline. In these cases, a cloud, a high voltage
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cable, or a roof would be recognized as part of the mountain skyline; this would
impact the heuristic edge filtering, e.g., a cloud edge would be treated as skyline
and the mountain slope below it would be considered as noise. Such erroneous
classification would hamper the alignment with the DEM and the positioning of
peaks, yielding an unacceptable user’s experience.

To increase robustness even to small, transient occlusions, we developed a new
approach, based on the application of a Convolutional Neural Network (CNN)
supervised learning algorithm, which finds the landscape skyline, i.e., the set of
all points that represent the boundary between terrain slopes and the sky. First
of all, a simple and fast Canny edge detector extracts a draft binary edge map.
Then every pixel of such map is classified as positive or negative, where posi-
tive means that it belongs to the landscape skyline. The edge pixels classified
negatively are removed from the edge map. For each edge pixel a K x K x 3
RGB patch centered at the pixel coordinates is extracted and classified with an
image content-based classifier. The choice of the CNN over other machine learn-
ing algorithms (e.g. Logistic Regression, SVM, Random Forest) is motivated by
the ability of the CNN to learn the best features to employ, which avoids their
manual, and subjective, definition. Conversely, a typical downside of using CNN,
the need of a very large amount of training data, is not an obstacle in our case,
because the items to classify are small patches extracted from the neighborhood
of image edges; in our experiments, an average 640 x 480 outdoor image con-
tains tens of thousands of edge pixels. To build the training and test sets, it
is sufficient to manually annotate the image with its landscape skyline. Then,
all the patches corresponding to the edge points can be extracted and classified
automatically (positive if the center is located no more than d pixels from a sky-
line point). With this semi-automatic procedure, it is possible to generate the
massive amount of training data necessary to train the CNN, with low effort.
Figure 4 shows an example of alignment taken in very adverse conditions: the
input image (top left) is taken from behind a window, the corresponding frag-
ment of the panorama (middle left) contains two mountain peaks (red arrows).
The edges extracted from the input image (top center) contain an enormous
amount of noisy edges (mountain vegetation, houses, window frame) that would
make the alignment with the panorama impossible; the CNN filtering proce-
dure (top right, green points) successfully retains only skyline edge pixels. The
panorama skyline to match is extracted simply by picking top points (middle
center, red points); the alignment between the two skylines (middle right) allows
us to project the two peak positions on the input image with high precision (bot-
tom, augmented image). This resulted is computed in real time and the peak
positions remain precise even when the user tilts or moves the mobile phone.

Occlusion Management The virtual panorama view contains only the
peaks that could be visible by an observer based on the elevation model; in the
real image, virtually visible peaks can be occluded by irrelevant objects, such as
houses, people or even clouds or fog. The CNN network used for edge filtering
in the mobile AR scenario helps dealing with occlusions: the network is trained
to recognize the landscape skyline, i.e., the portion of the topmost edges that
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Fig. 4. Example of the peak identification in presence of many noisy edges.

actually represent the boundary of a mountain slope. This capability supports
effective occlusion detection. Given a correct alignment between the landscape
skyline of the image and the virtual skyline of the panorama, the peaks that are
actually visible in the image will have fragments of the landscape skyline in their
vicinity, while occluded peaks will not. Thus, once the alignment is found, for
each peak a visibility score v is defined as the number of landscape skyline points
located no farther than d pixels from the peak position. A peak is considered
visible if v > ¥ (where ¥ is a fixed threshold). If a peak is considered visible,
its appearance patch is extracted and cached; otherwise no patch is extracted
(or its patch is removed from the cache, if previously stored). In this way, the
Similarity-Based Peak Identifier will not find the patch inside the future frames.
Figure 5 shows an example of peak identification with 3 virtually visible peaks.
In this case, peak n.2 is occluded by the bell tower; indeed, besides a few false
positive pixels, the bell tower contour is absent in the overall identified land-
scape skyline (top right). After the alignment, the neighborhood of each peak is
analyzed (bottom right): peaks n.1 and n.3 present a large number of landscape
skyline points (green dots) in their vicinity, while peak n.2 does not, so it is
marked as non-visible and not included in the augmented image (bottom left).

Sensor Orientation The sensed orientation of the device can be used to
improve the performance of the object identification. Since the match between
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Fig. 5. Example of the peak identification in presence of occlusions.

the virtual panorama and image skyline is approximate, each candidate peak
position receives a score, which is an estimate of the confidence of the match
algorithm. Such score can be manipulated to take into account the agreement
between orientation as sensed from the compass and estimated by the Posi-
tion Alignment Manager. For example, a kernel function based on the difference
between the sensed and estimated orientation can be used as a scale factor. Fur-
thermore, the computation of peak alignment can be avoided in the areas of the
image in which the kernel factor is equal to zero, because those regions would
provide an unreliable peak position estimation. Such optimization decreases the
computation time: we assume a maximum 15° orientation sensor error and per-
form the photo-to-panorama alignment not in the whole 360° panorama, but
only in a 30° + FOV portion of it.

4.4 Experiments

This section presents the preliminary results of evaluating the landscape skyline
detection algorithm and the accuracy of peak identification, in the mobile AR
scenario. The experimental data set used for training the CNN comprises 158
mountain photos randomly crawled from Flickr and manually annotated with
the landscape skyline. Out of these, 111 were included in the train set (~ 70%)
and 47 in the test set (~ 30%). Then, for each image the binary edge map was
computed, and patches (of size 28 x 28 x 3) were extracted for each edge point and
labeled as positive or negative. To guarantee the balance of the patches data set,
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the same number of positive and negative samples was extracted from each image
(by random sub-sampling the larger class); to avoid over-emphasizing edge-rich
images, a maximum of 400 positive and 400 negative patches were derived from
each image. The splitting into test and train data sets was performed at the
image level, and not at the patch level, to ensure a bias-free estimation of the
ability of the classifier to adapt to scenarios not seen before (patches from the
same image could not belong to both the training and test set). The overall
observed accuracy of the CNN trained on the training set and evaluated on the
test set was 96%, which resulted also in a satisfactory subjective judgment of
the resulting skylines.

The evaluation of the peak identifier accuracy was performed on the VEN-
TURI Mountain Dataset [18]. The data set is a collection of 12 outdoor sequences
accompanied with GPS positions and orientation sensor logs, resulting in 3117
frames. For each frame the position of the mountain peaks is manually anno-
tated. We measured the performance of the Pattern-Based Peak Identifier in
terms of average peak position angular error. The observed average peak posi-
tion error was 1.32°, which is lower than the minimum error obtained by the
authors of [18] and defined suitable for mobile computation, namely 1.87°. The
average time currently required by the pattern- and similarity-based peak iden-
tifiers to process a frame is respectively less than 3” and less than 1”. Such times
are totally dependent on the architecture and characteristics of the device being
used, which in this case correspond to a Motorola Nexus 6 with Chipset Qual-
comm Snapdragon 805, CPU Quad-core 2.7 GHz Krait 450, GPU Adreno 420,
RAM 3GB, OS Android 5.1.1. On the other hand, due to the architecture of the
system, the on-screen peak positioning is always real-time thanks to the sensor
data, while the time complexity of peak identifiers influences only the update
frequency of corrected peak positions.

Figure 6 shows an example of the mountain identification process in the mo-

bile AR scenario. Initially, the on-screen peak positions are determined only
through the orientation sensor data (top, red icons represent the predicted
positions, arrows the real positions and the angular error is reported). After
the photo-to-panorama alignment is performed, the peak positions are esti-
mated more precisely (bottom left, green icons) and the corresponding mountain
patches are extracted. The bottom right part of the figure shows how, in the next
frames with a (slightly) different view, the same peaks can be quickly located
by the similarity-based peak identifier.
Future experiments will collect a larger image data set, with occluded mountain
skylines, which are missing in the Venturi data set. The described algorithms will
be tested using the Capture and Replay framework of Section 3.4, to evaluate
their response time with different mobile devices and RTAAE error.

5 Conclusions and Future Work

We have presented a framework for the development of outdoor mobile AR
applications and discussed its use in SnowWatch, an application for mountain



18 Outdoor Mobile Augmented Reality for Mountain Peak Detection

Fig. 6. Example of an sensor-, pattern- and similarity-based peak identifications. Im-
ages from the Venturi dataset [18] .

image enrichment. SnowWatch has the primary goal of attracting the interest of
tourists, who could use it to enhance their outdoor experience with virtual ex-
pert knowledge about the mountain peaks in view. However, the project has also
a second, equally important, goal: producing a repository of annotated moun-
tain images for supporting environmental research. This requires assessing the
environmental utility of information derived from public mountain images; to
this end, we have collected a large set of images contributed by users and au-
tomatically crawled from touristic webcams® and extracted automatically snow
information to address a water management problem in which snow is a de-
terminant factor. In particular, we exploited a water management simulation
model for the regulation of the Como Lake and evaluated the impact of adding
snow-related indexes (e.g., minimum snow altitude) extracted from annotated
mountain images to its input. Lake Como is a regulated lake in Northern Italy
with an Alpine hydro-meteorological regime characterized by scarce discharge
in winter and summer and water abundance in late spring and autumn due to
rainfall and snow melt from catchment mountains. The lake inflow and effluent
is the Adda River, which feeds hydroelectric power plants and serves five agricul-

® The data set is available at http://snowwatch.polimi.it
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tural districts. The regulation model aims to support the decision makers in the
daily setting of the lake level, so to prevent flooding in Como city, while ensur-
ing water for agriculture. Farmers downstream would like to store water for the
summer, but this increases the lake level and the flood risks. These competing
goals generate a conflict between flooding and irrigation, which can be modeled
using two quantitative objectives: 1. Flooding: the average annual number days
when the lake is higher that the flooding risk threshold. 2. Irrigation: the daily
average squared water deficit w.r.t. the daily downstream demand. Preliminary
experiments with the two-objectives policy simulation model show that the vir-
tual snow indexes computed from annotated mountain images help design more
informed, and thus closer-to-the-optimum, water management policies. Specifi-
cally, the virtual snow indexes extracted from public mountain images have been
compared with the official snow information of Region Lombardy, elaborated
from ground stations and satellite data: even the snow information extracted
from a single webcam stream in the lake catchment is capable of identifying
policies with performance comparable to those conditioned on the official snow
bulletin data. Our future plans aim at deploying the SnowWatch mobile app to
the vast community of tourists and residents of the Lombardy region, to enlarge
the mountain image data set and improve the predicting power of the mountain
image information for lake regulation and for other environmental problems.
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