Skip to main content

MCS Extraction with Sublinear Oracle Queries

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2016 (SAT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9710))

Abstract

Given an inconsistent set of constraints, an often studied problem is to compute an irreducible subset of the constraints which, if relaxed, enable the remaining constraints to be consistent. In the case of unsatisfiable propositional formulas in conjunctive normal form, such irreducible sets of constraints are referred to as Minimal Correction Subsets (MCSes). MCSes find a growing number of applications, including the approximation of maximum satisfiability and as an intermediate step in the enumeration of minimal unsatisfiability. A number of efficient algorithms have been proposed in recent years, which exploit a wide range of insights into the MCS extraction problem. One open question is to find the best worst-case number of calls to a SAT oracle, when the calls to the oracle are kept simple, and given reasonable definitions of simple SAT oracle calls. This paper develops novel algorithms for computing MCSes which, in specific settings, are guaranteed to require asymptotically fewer than linear calls to a SAT oracle, where the oracle calls can be viewed as simple. The experimental results, obtained on existing problem instances, demonstrate that the new algorithms contribute to improving the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is the case for example with the analysis of infeasible systems of linear inequalities [10].

  2. 2.

    Nevertheless, irreducible inconsistent sets of linear inequalities have been studied for more than a century [10].

  3. 3.

    By exploiting the reduction of MCS extraction to MSMP [29], a wealth of different MUS extraction algorithms can be used for MCS extraction, including the insertion-based algorithm.

  4. 4.

    Available at http://logos.ucd.ie/web/doku.php?id=mcsxl.

References

  1. Bacchus, F., Davies, J., Tsimpoukelli, M., Katsirelos, G.: Relaxation search: a simple way of managing optional clauses. In: AAAI, pp. 835–841 (2014)

    Google Scholar 

  2. Bacchus, F., Katsirelos, G.: Using minimal correction sets to more efficiently compute minimal unsatisfiable sets. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 70–86. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  3. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Bakker, R.R., Dikker, F., Tempelman, F., Wognum, P.M.: Diagnosing and solving over-determined constraint satisfaction problems. In: IJCAI, pp. 276–281 (1993)

    Google Scholar 

  5. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Commun. 25(2), 97–116 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Ben-Eliyahu, R., Dechter, R.: On computing minimal models. Ann. Math. Artif. Intell. 18(1), 3–27 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS Press, Amsterdam (2009)

    MATH  Google Scholar 

  8. Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems: structure and behaviour. J. Exp. Theor. Artif. Intell. 15(1), 25–46 (2003)

    Article  MATH  Google Scholar 

  9. Cayrol, C., Lagasquie-Schiex, M.-C., Schiex, T.: Nonmonotonic reasoning: from complexity to algorithms. Ann. Math. Artif. Intell. 22(3–4), 207–236 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chinneck, J.W.: Feasibility Infesasibility in Optimization: Algorithms and Computational Methods. International Series in Operations Research & Management Science, vol. 118. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  11. Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in linear programs. INFORMS J. Comput. 3(2), 157–168 (1991)

    Article  MATH  Google Scholar 

  12. de Siqueira J.L.N., Puget, J.: Explanation-based generalisation of failures. In: ECAI, pp. 339–344 (1988)

    Google Scholar 

  13. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://github.com/niklasso/minisat

    Chapter  Google Scholar 

  14. Felfernig, A., Schubert, M., Zehentner, C.: An efficient diagnosis algorithm for inconsistent constraint sets. AI EDAM 26(1), 53–62 (2012)

    Google Scholar 

  15. Feydy, T., Somogyi, Z., Stuckey, P.J.: Half reification and flattening. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 286–301. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Grégoire, É., Lagniez, J., Mazure, B.: An experimentally efficient method for (MSS, coMSS) partitioning. In: AAAI, pp. 2666–2673 (2014)

    Google Scholar 

  17. Grégoire, É., Mazure, B., Piette, C.: On approaches to explaining infeasibility of sets of boolean clauses. In: ICTAI, pp. 74–83 (2008)

    Google Scholar 

  18. Hemery, F., Lecoutre, C., Sais, L., Boussemart, F.: Extracting MUCs from constraint networks. In: ECAI, pp. 113–117 (2006)

    Google Scholar 

  19. Ignatiev, A., Previti, A., Liffiton, M.H., Marques-Silva, J.: Smallest MUS extraction with minimal hitting set dualization. In: CP, pp. 173–182 (2015)

    Google Scholar 

  20. Jampel, M.: A brief overview of over-constrained systems. In: Jampel, M., Maher, M.J., Freuder, E.C. (eds.) CP-WS 1995. LNCS, vol. 1106, pp. 1–22. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  21. Janota, M., Marques-Silva, J.: On the query complexity of selecting minimal sets for monotone predicates. Artif. Intell. 233, 73–83 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Junker, U.: QuickXplain: Preferred explanations and relaxations for over-constrained problems. In: AAAI, pp. 167–172 (2004)

    Google Scholar 

  23. Kavvadias, D.J., Sideri, M., Stavropoulos, E.C.: Generating all maximal models of a boolean expression. Inf. Process. Lett. 74(3–4), 157–162 (2000)

    Article  MathSciNet  Google Scholar 

  24. Kullmann, O., Marques-Silva, J.: Computing maximal autarkies with few and simple oracle queries. In: Heule, M. (ed.) SAT 2015. LNCS, vol. 9340, pp. 138–155. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24318-4_11

    Chapter  Google Scholar 

  25. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mangal, R., Zhang, X., Kamath, A., Nori, A.V., Naik, M.: Scaling relational inference using proofs and refutations. In: AAAI (2016)

    Google Scholar 

  27. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing minimal correction subsets. In: IJCAI, pp. 615–622 (2013)

    Google Scholar 

  28. Marques-Silva, J., Janota, M.: Computing minimal sets on propositional formulae I: problems & reductions. CoRR, abs/1402.3011 (2014)

    Google Scholar 

  29. Marques-Silva, J., Janota, M., Belov, A.: Minimal sets over monotone predicates in boolean formulae. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 592–607. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  30. Marques-Silva, J., Previti, A.: On computing preferred MUSes and MCSes. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 58–74. Springer, Heidelberg (2014)

    Google Scholar 

  31. Mencía, C., Marques-Silva, J.: Efficient relaxations of over-constrained CSPs. In: ICTAI, pp. 725–732 (2014)

    Google Scholar 

  32. Mencía, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In: IJCAI, pp. 1973–1979 (2015)

    Google Scholar 

  33. Nöhrer, A., Biere, A., Egyed, A.: Managing SAT inconsistencies with HUMUS. In: VaMoS, pp. 83–91 (2012)

    Google Scholar 

  34. O’Callaghan, B., O’Sullivan, B., Freuder, E.C.: Generating corrective explanations for interactive constraint satisfaction. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 445–459. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  35. Papadimitriou, C.H.: Computational Complexity. Addison Wesley, Boston (1994)

    MATH  Google Scholar 

  36. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rosa, E.D., Giunchiglia, E.: Combining approaches for solving satisfiability problems with qualitative preferences. AI Commun. 26(4), 395–408 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Rosa, E.D., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with preferences. Constraints 15(4), 485–515 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Walter, R., Felfernig, A., Kuchlin, W.: Inverse QUICKXPLAIN vs. MAXSAT - a comparison in theory and practice. In: Configuration Workshop, volume CEUR 1453, pp. 97–104 (2015)

    Google Scholar 

Download references

Acknowledgement

This work was partly funded by grant TIN2013-46511-C2-2-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Mencía .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mencía, C., Ignatiev, A., Previti, A., Marques-Silva, J. (2016). MCS Extraction with Sublinear Oracle Queries. In: Creignou, N., Le Berre, D. (eds) Theory and Applications of Satisfiability Testing – SAT 2016. SAT 2016. Lecture Notes in Computer Science(), vol 9710. Springer, Cham. https://doi.org/10.1007/978-3-319-40970-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40970-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40969-6

  • Online ISBN: 978-3-319-40970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics