Skip to main content

On Stronger Calculi for QBFs

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2016 (SAT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9710))

Abstract

Quantified Boolean formulas (QBFs) generalize propositional formulas by admitting quantifications over propositional variables. QBFs can be viewed as (restricted) formulas of first-order predicate logic and easy translations of QBFs into first-order formulas exist. We analyze different translations and show that first-order resolution combined with such translations can polynomially simulate well-known deduction concepts for QBFs. Furthermore, we extend QBF calculi by the possibility to instantiate a universal variable by an existential variable of smaller level. Combining such an enhanced calculus with the propositional extension rule results in a calculus with a universal quantifier rule which essentially introduces propositional formulas for universal variables. In this way, one can mimic a very general quantifier rule known from sequent systems.

This work was supported by the Austrian Science Fund (FWF) under grant S11409-N23. Partial results have been announced at the QBF Workshop 2014 (http://www.easychair.org/smart-program/VSL2014/QBF-program.html). We thank the reviewers for valuable comments. An extended version with proofs is available [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baaz, M., Egly, U., Leitsch, A.: Normal form transformations. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 273–333. Elsevier and MIT Press, Cambridge (2001)

    Chapter  Google Scholar 

  2. Balabanov, V., Jiang, J.-H.R.: Unified QBF certification and its applications. Formal Methods Syst. Des. 41(1), 45–65 (2012)

    Article  MATH  Google Scholar 

  3. Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169. Springer, Heidelberg (2014)

    Google Scholar 

  4. Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 81–93. Springer, Heidelberg (2014)

    Google Scholar 

  5. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science, STACS. LIPIcs, Garching, Germany, 4–7 March 2015, vol. 30, pp. 76–89. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

    Google Scholar 

  6. Beyersdorff, O., Chew, L., Janota, M.: Extension variables in QBF resolution. In: AAAI 2016 Workshop Beyond NP (2016)

    Google Scholar 

  7. Cook, S.A., Morioka, T.: Quantified propositional calculus and a second-order theory for NC\(^{\text{1 }}\). Arch. Math. Log. 44(6), 711–749 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eder, E.: Relative complexities of first order calculi. Artificial intelligence = Künstliche Intelligenz. Vieweg (1992)

    Google Scholar 

  9. Egly, U.: On sequent systems and resolution for QBFs. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 100–113. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Egly, U.: On stronger calculi for QBFs. CoRR, abs/1604.06483 (2016)

    Google Scholar 

  11. Egly, U., Seidl, M., Woltran, S.: A solver for QBFs in negation normal form. Constraints 14(1), 38–79 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Van Gelder, A.: Contributions to the theory of practical quantified boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 647–663. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclopedia of Mathematics and its Application, vol. 60. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  16. Leitsch, A.: The Resolution Calculus. Texts in Theoretical Computer Science. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  17. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2(3), 293–304 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Seidl, M., Lonsing, F., Biere, A.: qbf2epr: A tool for generating EPR formulas from QBF. In: Fontaine, P., Schmidt, R.A., Schulz, S. (eds.) PAAR@IJCAR. EPiC Series, vol. 21, pp. 139–148. EasyChair (2012)

    Google Scholar 

  19. Slivovsky, F., Szeider, S.: Variable dependencies and Q-resolution. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 269–284. Springer, Heidelberg (2014)

    Google Scholar 

  20. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic, Part II, vol. 8, pp. 234–259. Seminars in Mathematics, V.A. Steklov Mathematical Institute, Leningrad (1968)

    Google Scholar 

  21. Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability solver. In: Pileggi, L.T., Kuehlmann, A. (eds.) Proceedings of the 2002 IEEE/ACM International Conference on Computer-aided Design, ICCAD 2002, San Jose, California, USA, 10–14 November 2002, pp. 442–449. ACM/IEEE Computer Society (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Egly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Egly, U. (2016). On Stronger Calculi for QBFs. In: Creignou, N., Le Berre, D. (eds) Theory and Applications of Satisfiability Testing – SAT 2016. SAT 2016. Lecture Notes in Computer Science(), vol 9710. Springer, Cham. https://doi.org/10.1007/978-3-319-40970-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40970-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40969-6

  • Online ISBN: 978-3-319-40970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics