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Abstract. This paper describes a novel initialization for Deterministic
Particle Swarm Optimization (DPSO), based on choosing specific dense
initial positions and velocities for particles. This choice tends to induce
orthogonality of particles’ trajectories, in the early iterations, in order
to better explore the search space. Our proposal represents an improve-
ment, by the same authors, of the theoretical analysis on a previously
proposed PSO reformulation, namely the initialization ORTHOinit. A pre-
liminary experience on constrained Portfolio Selection problems confirms
our expectations.
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1 Introduction

Particle Swarm Optimization (PSO) is a stochastic approach for the solution of
global optimization problems [1]. A population of particles is initialized in PSO,
and their trajectories in the search space explore potential solutions, in order to
approach a global minimum. There are several convergence studies on PSO in
the literature, focusing on the role of PSO control parameters, as for instance
swarm size, inertia weight, acceleration coefficients, velocity clamping, as well as
particles’ initialization. All these studies reveal that PSO parameters must be
confined to specific subsets of values, in order to avoid diverging trajectories, and
some of them provide necessary conditions for the trajectories convergence (see
for instance [2–6], along with [7–10]). Improper initializations of PSO parameters
may yield divergent or even cyclic behavior. The initial position and velocity of
particles may have dramatic consequences on convergence. Moreover, effective
particles initializations are often dependent on the current problem structure
(see for instance [4]).

Finally, we consider the deterministic version of PSO, namely DPSO. Earlier
studies (see for instance [7–9]) show that coupling proper control parameters
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with an efficient particles initialization may give strong synergies and improve
the algorithm effectiveness. On this guideline, here we want to propose a novel
particles initialization, for DPSO, showing the following two features:

(i) we can scatter particles trajectories, at least in the early iterations, in order
to better explore the search space

(ii) the resulting initialization is dense, i.e. a large portion of the entries of par-
ticles position and velocity is nonzero. On some problems (i.e. the portfolio
selection problem we report) the latter event partially allows particles tra-
jectory to avoid too sparse approximate solutions.

2 Preliminaries on DPSO iteration

Let us consider the following PSO iteration⎧⎨⎩ vk+1
j = �

[
wkvkj + ckj r

k
j (pkj − xkj ) + ckgr

k
g (pkg − xkj )

]
, k ≥ 0,

xk+1
j = xkj + vk+1

j , k ≥ 0.

(1)

Here j = 1, ..., P represents the j-th particle of the swarm, vkj ∈ IRn and xkj ∈ IRn

are respectively the vector of velocity and the vector of position of particle j at
step k, whereas �,wk, ckj , r

k
j , c

k
g , r

k
g are suitable positive bounded coefficients.

Finally, pkj is the best position outreached by particle j up to step k, and pkg
represents the best particle position of the overall swarm, up to step k.

Assumption 1 (DPSO) Let us be given the iteration (1) and the positive con-
stant values c, r, c̄, r̄, w. Then, for any k ≥ 0 and j = 1, ..., P , we assume that
ckj = c, rkj = r = 1, ckg = c̄, rkg = r̄ = 1 and wk = w.

As it was proved in [7], setting a = �w and ! = �(cr+ c̄r̄), with ! ∕= (1±
√
a)2,

we can consider the distinct real eigenvalues �1 and �2 of matrix

�(k) =

⎛⎝aI −!I

aI (1− !)I

⎞⎠ .

Then, we can set at step k of DPSO iteration the two nonzero parameters


1(k) =
�k1(a− �2)− �k2(a− �1)

�1 − �2

2(k) =

!(�k1 − �k2)

�1 − �2
, (2)

along with the 2n vectors

zi(k) =

⎛⎝ 
2(k)

1(k)

ei

ei

⎞⎠ ∈ IR2n, i = 1, . . . , n, (3)

zn+i(k) =

⎛⎝−
1(k)
2(k)
ei

ei

⎞⎠ ∈ IR2n, i = 1, . . . , n, (4)
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where ei ∈ IRn is the i-th unit vector of IRn. When k = 0 the vectors defined
in (3)-(4) can be used to fruitfully set the initial particles position and velocity
(respectively of the i-th and (n+i)-th particle), according with the initializations⎛⎝ v0i

x0i

⎞⎠ = �1i zi(0), �1i ∈ IR ∖ {0}, i = 1, . . . , n (5)

⎛⎝ v0n+i

x0n+i

⎞⎠ = �2i zn+i(0), �2i ∈ IR ∖ {0}, i = 1, . . . , n. (6)

The latter initializations reveal interesting properties, and proved to be effective
on several practical problems. As shown in [7], in case Assumption 1 holds (which
also implies that a DPSO iteration is considered), then

1. as long as P ≤ 2n, setting the sequences {v0i } and {x0i } as in (5)-(6), guar-
antees that the particles trajectories are nearly orthogonal at step 0 (see [7]
for details), and the latter property is in practice likely maintained also in
the subsequent early iterations;

2. in case P > 2n (i.e. more than 2n particles are considered), the initializations
(5)-(6) can be adopted for the first 2n particles; then, for the remaining
(P − 2n) particles an arbitrary initialization can be chosen by the user.

3 A possible drawback of the choice (5)-(6)

Here we detail why, on some real problems, the setting (5)-(6) for the initial
DPSO population might be still inadequate. As a preliminary consideration,
observe that the proposal (5)-(6) matches item (i) of Section 1, but possibly it
does not match also (ii). In the following we report a numerical experience on
real problems, in order to highlight the latter fact.

We experienced (5)-(6) for the solution of a tough reformulation of a nondif-
ferentiable constrained portfolio selection problem, proposed in [11]. This model
uses a coherent risk measure, based on the combination of lower and upper mo-
ments of different orders of the portfolio return distribution. Such a measure
can manage non-Gaussian distributions of asset returns, to reflect different in-
vestors’ risk attitudes. The model includes also cardinality constraints (minimum
and maximum number of assets to trade), along with constraints on the mini-
mum and the maximum capital percentage to invest in each asset. The model
uses the following parameters:

– N , number of possible assets;
– re, minimum expected return of the portfolio;
– Kd and Ku, minimum and maximum number of assets to trade;
– d and u, minimum and maximum budget (percentage) to invest in each asset;
– ri, random variable indicating the return of the i-th asset, for i = 1, . . . , N ;
– p, index of the norm used in the risk measure of the portfolio, with p ≥ 1;
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– a, parameter of the risk measure, with 0 ≤ a ≤ 1.

Moreover, the variables in our model are described as follows:

– xi, percentage of the portfolio invested in the i-th asset, for i = 1, . . . , N ;

– zi =

{
1 if the i− tℎ asset is included in the portfolio, for i = 1, . . . , N
0 otherwise;

– r, portfolio return.

In addition, E[y] indicates the expected value of the random argument y,
while y− indicates max{0,−y} and y+ indicates (−y)−. Finally, we use the
symbol r̂i for E[ri]. Given the above notation, the expected portfolio return

E[r] is equal to E[r] =
∑N
i=1 r̂ixi so that the overall portfolio selection problem

is as follows:

min
x,z

�a,p(r) = a∥(r − E[r])+∥1 + (1− a)∥(r − E[r])−∥p − E[r] (7)

s.t. E[r] ≥ re (8)
N∑
i=1

xi = 1 (9)

Kd ≤
N∑
i=1

zi ≤ Ku (10)

zid ≤ xi ≤ ziu, i = 1, . . . , N (11)

zi ∈ {0, 1}, i = 1, . . . , N. (12)

The function �a,p(r) in (7) is a coherent risk measure (i.e. it satisfies some formal
properties which are appealing for investors).

In order to solve the constrained nonsmooth mixed integer problem (7)-(12)
by DPSO, we considered the unconstrained penalty function reformulation

min
x∈IRN ,z∈IRN

P (x, z; "), (13)

P (x, z; ") = �a,p(r) +
1

"0

[
"1 max

{
0, re −

N∑
i=1

r̂ixi

}
+ "2

∣∣∣∣∣
N∑
i=1

xi − 1

∣∣∣∣∣
+ "3 max

{
0,Kd −

N∑
i=1

zi

}
+ "4 max

{
0,

N∑
i=1

zi −Ku

}
+ "5

N∑
i=1

max {0, zid− xi}

+ "6

N∑
i=1

max {0, xi − ziu}+ "7

N∑
i=1

∣zi(1− zi)∣

]
(14)

and " = ("0, "1, . . . , "7)T > 0 is a suitable set of penalty parameters, which are
adaptively chosen according with the literature.
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Note that the portfolio selection problem (13) is NP-hard and its formulation
is nonconvex, nondifferentiable, and mixed-integer, so that DPSO was specifically
adopted to provide fast approximate solutions on several scenarios.

This is indeed a typical application where tradesmen often claim for a quick
solution of different scenarios, rather than an accurate solution to propose to
their customers. In particular, for a fair comparison the initialization (5)-(6)
was tested vs. a standard random initialization of DPSO, with really effective
results in terms of fast minimization of the fitness function P (x, z; ") (as Figure
1 shows).

Fig. 1. Fitness function P (x, z; ") in (13) vs. the number of iterations: (left) when a
random DPSO initialization is chosen; (right) when the DPSO initialization (5)-(6) is
adopted.

However, we also observed that the initialization (5)-(6) tends to provide
sparse solutions, which reduce diversification and might be therefore of scarce
interest for several investors. To better appreciate the latter drawback, we mon-
itored the sparsity of the approximate solution provided by the choice (5)-(6)
in DPSO, after a relatively small number of iterations (simulating the time re-
quired by a tradesman before yielding a possible scenario to investors). After 100
iterations of DPSO, the approximate solution computed by DPSO with (5)-(6)
gave a portfolio including just 2 titles (over 32), which is often too restrictive for
many investors.

This was a consequence of the corresponding sparsity (i.e. a few nonzero en-
tries) of the initialization (5)-(6). On the other hand, though a standard random
initialization of particles’ position/velocity had a worse performance in terms of
minimization for P (x, z; ") (see again Figure 1), nevertheless it yielded a final
portfolio with several titles, allowing investors to spread the risk of investment.

4 Dense modification of the choice (5)-(6)

Starting from the conclusions of Section 3, here we want to propose a modi-
fication of PSO initialization (5)-(6), in order to possibly pursue a dense final
solution. On this purpose, let be given the 2n vectors zi(k), i = 1, . . . , 2n, in
(3)-(4). After some computation, it can be proved that they coincide with the
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orthogonal eigenvectors of the symmetric matrix A ∈ IR2n×2n, being

A =

⎛⎝�1I �2I

�2I �3I

⎞⎠
and (see also (2)) �1 = [
1(k)]2, �2 = −
1(k)
2(k), �3 = [
2(k)]2. In particular,
the (singular) matrix A has just the two eigenvalues �1 = 0 and �2 = [
1(k)]2 +
[
2(k)]2 > 0, such that respectively⎧⎨⎩Azi(k) = �1zi(k), i = 1, . . . , n,

Azi(k) = �2zi(k), i = n+ 1, . . . , 2n.
(15)

Now, following the motivations suggested in the end of Section 3, we can consider
the set of (dense) vectors �1(k), . . . , �2n(k) as in

�i(k) = zi(k)− �
n∑

j=1, j ∕=i

zj(k)− 

2n∑

j=n+1

zj(k), i = 1, . . . , n (16)

�t(k) = zt(k)− �
2n∑

j=n+1, j ∕=t

zj(k)− �
n∑
j=1

zj(k), t = n+ 1, . . . , 2n, (17)

which are obtained by linearly combining the eigenvectors {zi(k)} in (15). We
want to compute the real parameters �, �, 
 and � such that⎧⎨⎩�j(k)TA�i(k) = 0, for any 1 ≤ j ∕= i ≤ n

�Tt (k)A�s(k) = 0, for any n+ 1 ≤ t ∕= s ≤ 2n.
(18)

It can be proved after a tedious computation that conditions (18) allow to satisfy
both the properties (i) and (ii) of Section 1. Moreover, taking the values

� ∈ IR ∖ {−1, 1/n}, � =
2

n− 2
, 
 = 0, � ∈ IR ∖ {0, 1}, (19)

then the vectors �1(k), . . . , �2n(k) in (16)-(17) both satisfy (18) and are dense in
comparison with the original vectors zi(k), i = 1, . . . , 2n (which satisfy a relation
similar to (18) but are not dense).

Now, observe that z1(k), . . . , z2n(k) are mutually orthogonal in the extended
space IR2n, while the latter property in general does not hold also for the vec-
tors �1(k), . . . , �2n(k). Nevertheless, we can prove in the next proposition that
�1(k), . . . , �2n(k) are still enough scattered in IR2n, possibly being uniformly lin-
early independent. The latter fact is of great relevance and is not immediately
evident, since the singular matrix A is only positive semidefinite.

Proposition 1. Given the vectors �1(k), . . . , �2n(k) in (16)-(17) and (19), then

det[�1(k)
... ⋅ ⋅ ⋅

... �2n(k)] =
(3n− 2)nn

(n− 2)n+1
[(1 + �)n(1− n�)] ⋅det[z1(k)

... ⋅ ⋅ ⋅
... z2n(k)].
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As long as � ∕∈ {−1, 1/n}, then det[�1(k)
... ⋅ ⋅ ⋅

... �2n(k)] ∕= 0 and the vectors
�1(k), . . . , �2n(k) are possibly uniformly linearly independent. Observe that the
last limitation on � is definitely unrestrictive, considering that our proposal is
expected to be effective when the size n of the problem increases.

As regards the results on the portfolio selection problem analyzed in Sec-
tion 3, we compared the deterministic initialization (5)-(6), with the one ob-
tained replacing z1(k), . . . , z2n(k) by �1(k), . . . , �2n(k) (and using the parame-
ters � = 0.75, � = 2/(n− 2), 
 = 0, � = 0.25). We obtained similar results (see
Figure 2) in terms of decrease of the fitness function P (x, z; ") in (13). Moreover,
adopting �1(k), . . . , �2n(k), both we improved also the minimization of the risk
measure �a,p(r) (see Figure 3), and we drastically improved the density of the
final approximate solution, as expected.

Fig. 2. Fitness function P (x, z; ") in (13) vs. the number of iterations: (left) when
the DPSO initialization (5)-(6) is adopted; (right) replacing z1(k), . . . , z2n(k) by
�1(k), . . . , �2n(k) (setting the parameters � = 0.75, � = 2/(n−2), 
 = 0 and � = 0.25).

Fig. 3. Risk measure �a,p(r) vs. the number of iterations: (left) when the initialization
(5)-(6) is adopted in DPSO; (right) replacing z1(k), . . . , z2n(k) by �1(k), . . . , �2n(k)
(setting the parameters � = 0.75, � = 2/(n− 2), 
 = 0 and � = 0.25).

5 Conclusions

In this paper we have described a novel dense initialization for DPSO, which
is based on a reformulation of PSO iteration as a dynamic linear system. Our
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proposal was tested on tough portfolio selection problems, confirming its effec-
tiveness on large scale problems.
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