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Highlight: 

 A new optimization algorithm inspired by how duelist improve their skill in duel 

 In duelist algorithm, different treatment is given to each duelist based on the duel result 

 Duelist algorithm provided good result compared to the other optimization algorithms such as genetic algorithm, 

particle swarm optimization algorithm and imperialist competitive algorithm 

 
Abstract—This paper proposes an optimization algorithm based on how human fight and learn from each duelist. Since this 

algorithm is based on population, the proposed algorithm starts with an initial set of duelists. The duel is to determine the winner 

and loser. The loser learns from the winner, while the winner try their new skill or technique that may improve their fighting 

capabilities. A few duelists with highest fighting capabilities are called as champion. The champion train a new duelists such as 

their capabilities. The new duelist will join the tournament as a representative of each champion. All duelist are re-evaluated, and 

the duelists with worst fighting capabilities is eliminated to maintain the amount of duelists. Two optimization problem is applied 

for the proposed algorithm, together with genetic algorithm, particle swarm optimization and imperialist competitive algorithm.  
The results show that the proposed algorithm is able to find the better global optimum and faster iteration.  
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1.  Introduction 

Optimization is a process to achieve something better. For example, let there be a problem f(x) then optimization is a 
process to find optimum value of x which is can be maximum, minimum or at specific value in between. Different methods 
have been proposed to solve the optimization problem. One of the methods is genetic algorithm (GA) which is based on 
natural selection by evolving a population of candidate solution for defined objective function [1]. On the other hand, a 
different method for optimization called ant colony optimization is inspired by foraging behavior of real ants [2]. Another type 
of method is inspired by social behavior of animals which is called as particle swarm optimization (PSO) [3]. There’s also a 
method for optimization which inspired by imperialistic competition called imperialist competitive algorithm (ICA) [4]. All of 
these mentioned methods are population based algorithm which is mean that there’s a set of population and keep improving 
itself in each iterations [5]. There are other optimization algorithms also commonly used such as predatory search strategy [6], 
optimization algorithm based on bacterial chemotaxis [7], bacterial foraging optimization [8], society and civilization 
optimization [9], group search optimizer [10], chemical reaction optimization [11] and quantum evolutionary algorithm [12]. 
Nowadays, all this optimization methods are very useful for solving multiple problems starting from process industry, energy 
management, scheduling, resource allocation or even pattern recognition and machine learning [13-20]. 

In this paper, a new algorithm based on genetic algorithm is proposed which is inspired by human fighting and learning 
capabilities. As an overview, in genetic algorithm there are two ways to develop an individual into a new one. First is 
crossover where an individual mate with another individual to produce a new offspring, this new offspring’s genotype are 
based on their parents. The second one is mutation where an individual mutate into a new one. In duelist algorithm (DA), all 
the individual in population are called as duelist, all those duelists would fight one by one to determine the champions, 
winners and losers. The fighting itself just like real life fight where the strongest has posiblilty as a losser. There is a 
probability that the weak one would be lucky enough to win. In order to improve each duelist, there are also two ways to 
evolve. One of them is innovation which is similar to mutation in genetic algorithm. The difference is only the winners would 
possibly to be innovated. The other one is called as learning, losers would learn from winners. In genetic algorithm, both 
mutation and crossover are seem to be blind in producing any solution to find the best solution. Blind means that each solution 
or produced individu in genetic algorithm may has not better solution. In fact, it may fall into the worst one. Duelist algorithm 
tries to minimize this blind effect by giving different treatment on each duelist based on their classification. This paper 
described how duelist algorithm is designed and implemented. 
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2. Review of A Duel 

Duel can be interpreted as a fighting between one or more person(s) with other person(s). Fighting require physical 
strength, skill and intellectual capability, for example in chess and bridge games. Common type of duel which include physical 
strength is boxing, boxing is one of world’s most popular sport where two persons need to knock down each of them under 
certain rules [21]. Soccer is also categorized as a duel where two teams must have higher score goals to win the match, soccer 
is much more complicated than boxing strategy that teamwork plays important role [22]. In every duel, there are consist of the 
winner and the loser as well as the rules. Take soccer for example, winner in soccer match is defined as a team which has more 
goal score than their opponent and each team must be obey the rules. In a match the probability become the winner depend on 
strength, skill and lucky. After the match, knowing the capabilities of the winner and the loser are very useful. Loser can learn 
from how the winner, and winner can improve the capability and skill by training or trying something new from the loser. In 
the proposed algorithm, each duelist do the same to be unbeatable, by upgrading themself whether by learning from their 
opponent or developing a new technique or skill. 

3. Duelist Algorithm 

The flowchart of proposed algorithm is shown in Figure 1. First, population of duelist is registered. Each duelist has their 
properties which is encoded into binary array. Each duelist is evaluated to determine their fighting capabilities. The duel 
schedule is set to each duelist that contain a set of duel participants. In the duel, each duelist would fight one on one with other 
duelist. This one on one fighting is used rather than gladiator battle to avoid local optimum. Each duel would produce a winner 
and a loser based on their fighting capabilities and their ‘luck’. After the match, the champion is also determined. This 
champions are the duelist that has the best fighting capabilities.  

In the next step, each winner and loser have opportunity to upgrade their fighting capabilities, meanwhile each champion 
train the new duelist as such their capabilitis. The new duelist will join in the next match. Each loser would learn from their 
opponents how to be a better duelist by replacing a specific part of their binary array with winner’s binary array value. On the 
other hand, winner would try to innovate a new technique or skill by changing their binary array value into something new.  

Each duelist fighting capabilities is re-evaluated for the next match. All the duelists then re-evaluated through post-
qualification and sorted to determine who deserve to be champions. Since there are new duelists that was trained by 
champions, all the worst duelists are eliminated to maintain the amount of duelists in the tournament. Classification of each 
duelist is shown in Figure 2. This process will continue until the tournament is finished. The step by step explnation as follow: 

A. Registration of Duelist Candidate 

Each duelist in a duelist set is registered using binary array. Binary array in genetic algorithm is called as chromosome, 
however in duelist algorithm is called as skillset. In a Nvar-dimensional optimization problem, the duelist would be binary 
length times Nvar length array. 

B. Pre-Qualification 

Pre-qualification is a test that given to each duelists to measure or evaluate their fighting capabilities based on their skillset. 

C. Determination of Champions Board 

 Board of champions is determined to keep the best duelist in the game. Each champion should trains a new duelist to be as 
well as himself duel capabilities. This new duelists would replace the champion position in the game and join the next duel.  

D. Define A Duel Schedule Between Each Duelist 

The duel schedule between each duelist is set randomly. Each duelist will fight using their fighting capabilities and luck to 
determine the winner and the loser. The duel is using a simple logic. If duelist A’s fighting capabilities plus his luck are higher 
than duelist B’s, then duelist A is the winner and vice versa. Duelist’s luck is detemined by purely random function to avoid 
local optimum. The pseudocode to determine the winner and the loser is shown in Algorithm 1. 

Algorithm 1. Determination of the winner and the loser. 

Require : Duelist A and B; Luck_Coefficient 
A(Luck) = A(Fighting_Capabilities) * (Luck_Coefficient + (rand(0-1) * Luck_Coefficient)); 
B(Luck) = B(Fighting_Capabilities) * (Luck_Coefficient + (rand(0-1) * Luck_Coefficient)); 
If  ((A(Fighting_Capabilities) + A(Luck)) <= (B(Fighting_Capabilities) + B(Luck))) 
 A(Winner) = 1; 
 B(Winner) = 0; 
Else 
 A(Winner) = 0; 
 B(Winner) = 1; 
End 

E. Duelist’s Improvement 

After the match, each duelist are categorized into champion, winner and loser. To improve each duelist fighting 
capabilities there are three kind of treatment for each catagories. First treatment is for losers, each loser is trained by learning 
from winner. Learning means that loser may copy a part of winner’s skillset or binary array. The second treatment is for 
winners, each winner would improve their own capabilities by trying some thing new from the loser. This treatment consist of 
winner’s binary array random manipulation. And the last, each champion would trains a new duelist. 



F. Elimination 

Since there are some new duelists joining the game, there must be an elimination to keep duelists quantity still the same as 
defined before. Elimination is based on each duelist’s dueling capabilities. The duelist with worst dueling capabilities are 
eliminated. 

 

Fig. 1. Duelist Algorithm flowchart 
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Fig. 2. Duelist’s Classification. 

4. Experimental Studies 

This section discuss about Duelist Algorithm performance using 2 benchmarks. All these problems are maximization 
problems. The detail of these functions are shown as follow: 

Problem M1 : 

 
(1) 
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Problem M2 : 

 

(2) 

Shifted Sphere function : 

 

(3) 

 

Figure 3 shows a 3D plot of function of problem M1 in interval 0 < x,y < 10. 

 
Fig. 3. 3D plot of function in problem M1 

The initial population of 100 duelists, max generations of 200, luck coefficient of 0 and mutation probability of 0.5 is set. 
Result of first test is shown in Figure 4. 

 

Fig. 4. Duelist Algorithm’s maximum cost versus iteration in problem M1. 

Maximum value is found at 18.5285 which is supposed to be 18.5547. For comparison, a GA is applied with population 

of 100 individuals, max generations 200, mutation probability of 0.5 and crossover probability of 0.8. To eliminate any 

unfair factor such as random population, predetermined population is used for both algorithm. Since both of them have a 

pseudo-random function (e.g. mutation), both of them always provide different result every test. Figure 5 shows GA and DA 

comparison for the first test using M1 as optimization problem. 

 
Fig. 5. Duelist Algorithm and Genetic Algorithm’s maximum cost versus iteration in problem M1. 

 

 

 



 Another type of problem called M2 is also applied to GA and duelist algorithm. Figure 6 shows 3D plot function of 

problem M2 in interval 0 < x,y < 10 with maximum value 30.3489. 

 
Fig. 6. 3D plot of function in problem M2 

 Test is perform using same parameter, and the result is shown in Figure 7. Figure 7 shows that Duelist Algorithm achieve 

faster and better solution which is in 143 iterations and maximum value at 30.3060. While GA spends 166 iterations to reach 

the maximum solution and find the maximum value at 30.3017. To provide a fair comparison, 10 tests of both algorithm for 
problem M2 is performed in different optimization parameters, and the results are shown at Figure 8 and Figure 9. 

 
Fig. 7. Duelist Algorithm and Genetic Algorithm’s maximum cost versus iteration in problem M2. 

 

 
Fig. 8. Duelist Algorithm’s maximum solutions versus iteration in problem M2. 

 
Fig. 9. Genetic Algorithm’s maximum solutions versus iteration in problem M2. 

 Particle Swarm Optimization (PSO) and Imperialist Competitive Algorithm (ICA) is also utilized for other comparisons. 
Figure 10 shows the result of ICA using 100 countries, revolution rate of 0.3, assimilation coefficient of 2, assimilation angle 

 

 

 

 



coefficient of 0.5, zeta of 0.02, damp ration of 0.99, 8 initial imperialists and 200 decades. Figure 11 shows the result of PSO 
using 100 swarms, 200 iterations, speed constants of 0.4 and 0.6, and theta within range of 0.5 to 0.9. The experiments show 
that DA is faster than PSO and GA in reaching global optimum. 

 

Fig. 10. ICA’s maximum solutions versus iteration in problem M2. 

 

Fig. 11. PSO’s maximum solutions versus iteration in problem M2. 

 To evaluate the impact of each parameter in duelist algorithm, a series of test was taken by changing in the innovation 
probability, learning probability and luck coefficient. In this test, shifted sphere function is used to evaluate duelist algorithm 
performance based on its parameter. Table 1 shows the same best solution is that obtained at different learning probability, 
however the best solution is achieved at different iteration. The fastest iteration to achieved the best solution is provided by 
learning probability 0.2, while the innovation probability and luck coefficient are 0.1 and 0.01, respectively.  

 Table 1. Variation of the best solution by change in the learning probability 

Learning 
probability 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 .0.8 0.9 1.0 

Best solution 449.997 449.997 449.997 449.997 449.997 449.997 449.997 449.997 449.997 449.997 

Iteration 12 4 7 9 15 15 6 9 14 10 

 

 In the same way, The result shows that duelist algorithm provide the fastest iteration to achieved the best solution is 
obtained by using innovation probability 0.1, while the learning probability and luck coefficient are 0.2 and 0.01, respectively, 
as shown in Table 2. Table 3 shows the fastest iteration to achieved the best solution is provided by luck coefficient 0.25, 
while the learning probability and innovation probability are 0.2 and 0.4, respectively. 

Table 2. Variation of best solution by change in innovation probability 

Innovation 
probability 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 .0.8 0.9 1.0 

Best solution 449.997 449.997 449.997 449.997 449.997 449.997 449.997 449.997 449.997 449.802 

Iteration 4 8 9 5 8 27 26 29 13 14 
 

Table 3. Variation of best solution with change in luck coefficient 

Luck coefficient 0.05 0.10 0.15 0.20 0.25 0.30 0.35 .0.40 0.45 0.50 

Best solution 449.997 449.997 449.997 449.997 449.997 449.997 449.997 449.997 449.997 449.997 
Iteration 7 16 10 15 4 19 20 13 11 11 

 

 In general, the best solution is achived with different iterations, it depend on learning probability, innovation probability 
and luck coefficient as optimization parameter. The different iteration time for each different parameters are less tha a second. 
Hence DA as a new stochastic optimization may be utilized as an alternatif optimization technique to seek global optimum 
solution. 

 

 

 



5. Conclusion 

 In this paper, an optimization algorithm based on how duelist improve himself to win a fight is proposed. Each individual 
in the population is called duelist. Each duelist fight with other duelist to determine who is the winner and the loser. Winner 
and loser have their own way to improve theirself. The winners are improved by learning theirself. On the other hand, the loser 
improve himself by learning from the winner. After several improvements and duels, some duelists will become the best 
solution for given problem. The algorithm is tested by using 2 optimization problems or benchmarks. The results shows that 
the proposed algorithm is able to find the better global optimum with faster iteration compared to genetic algorithm, particle 
swarm optimization and imperialist competitive algorithm. 
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