Skip to main content

Optimal Impulsive Thrust Trajectories for Satellite Formation via Improved Brainstorm Optimization

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9712))

Abstract

The optimization of the satellite trajectory is a product of the control thrust optimization. Using the Lambert theory formulation this paper considers the problem of a minimum fuel solution of the Lambert formulation by making use of Brainstorm Optimization (BSO). The traditional use of the Lambert formulation for generating control inputs typically pursues time dependent solutions. This paper adapted this formulation to satellite formation control to achieve fuel minimization. The numerical simulations show the feasibility of our method in obtaining minimum fuel solutions of the lambert formulation in contrast to the usual minimum time solution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Enright, P.J., Conway, B.A.: Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. J. Guid. Control Dyn. 15(4), 994–1002 (1992)

    Article  MATH  Google Scholar 

  2. Kiek, D. E.: Optimal Control Theory: An Introduction. Dover Publications (1998)

    Google Scholar 

  3. Breakwell, J.V., Redding, D.C.: Optimal Low Thrust Transfers to Synchronous Orbit. J. Guid. Control Dyn. 7(2), 148–155 (1984)

    Article  Google Scholar 

  4. Hargraves, C.R., Paris, S.W.: Direct trajectory optimization using non-linear programming and collocation. J. Guid. Control Dyn. 10(4), 338–342 (1987)

    Article  MATH  Google Scholar 

  5. Herman, A.L., Conway, B.A.: Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules. J. Guid. Control Dyn. 19(3), 592–599 (1996)

    Article  MATH  Google Scholar 

  6. Kiusalaas, J.: Numerical Methods in Engineering with Matlab, 2nd edn. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  7. Lawden, D.F.: Optimal Trajectories for Space Navigation. Butterworths Publishers, London (1963)

    MATH  Google Scholar 

  8. Wall, B.J., Conway, B.A.: Near-optimal low-thrust earth-mars trajectories found via a genetic algorithm. J. Guid. Control Dyn. 28(5), 1027–1031 (2005)

    Article  Google Scholar 

  9. Mauro, P., Conway, B.A.: Optimal finite-thrust rendezvous trajectories found via particle swarm optimization. J. Spacecr. Rockets 50(6), 1222–1233 (2013)

    Article  Google Scholar 

  10. Jones, D.R., Schaub, H.: Optimal reconfigurations of two-craft coulomb formation along manifolds. Acta Astronaut. 83, 108–118 (2013)

    Article  Google Scholar 

  11. Duan, H.B., Luo, Q.N., Ma, G.J., et al.: Hybrid particle swarm optimization and genetic algorithm for multi-uavs formation reconfiguration. IEEE Comput. Intell. Mag. 8(3), 16–27 (2013)

    Article  Google Scholar 

  12. Duan, H.B., Shao, S., Su, B.W., et al.: New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle. Sci. China Technol. Ser. 53(8), 2025–2031 (2013)

    Article  Google Scholar 

  13. Zhan, Z., Zhang, J., Shi, Y.H., et al.: A modified brain storm optimization. In: Proceedings of IEEE World Congress on Computational Intelligence, Brisbane Australia, pp. 10–15 (2012)

    Google Scholar 

  14. Shen, H.J., Tsiotras, P.: Optimal two-impulse rendezvous using multiple revolution lambert solutions. J. Guidance Control Dyn. 6(1), 50–61 (2003)

    Article  Google Scholar 

  15. Zhang, G., Zhou, D., Mortari, D.: Optimal two-impulse rendezvous using constrained multiple revolution lambert solutions. Celest. Mech. Dyn. Astr. 110, 305–317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schaub, H., Srinivas, R., Junkins, L., et al.: Satellite formation flying control using mean orbit elements. J. Astronaut. Sci. 48(1), 69–87 (2000)

    Google Scholar 

  17. Schaub, H., Junkins, L.: Analytical Mechanics of Space Systems, 2nd edn., AIAA Education Series (2003)

    Google Scholar 

  18. Vallado, D.A.: Fundamentals of Astrodynamics and Applications. Space Technology Series. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  19. Shi, Y.H.: An optimization algorithm based on brainstorming process. Int. J. Swarm Intell. Res. 2(4), 35–62 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olukunle Kolawole Soyinka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Soyinka, O.K., Duan, H. (2016). Optimal Impulsive Thrust Trajectories for Satellite Formation via Improved Brainstorm Optimization. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2016. Lecture Notes in Computer Science(), vol 9712. Springer, Cham. https://doi.org/10.1007/978-3-319-41000-5_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41000-5_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40999-3

  • Online ISBN: 978-3-319-41000-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics