1607.00554v1 [cs.FL] 2 Jul 2016

arxXiv

Completely Reachable Automata*

E. A. Bondar and M. V. Volkov

Institute of Mathematics and Computer Science
Ural Federal University, Lenina 51, 620000 Ekaterinburg, Russia
bondareug@gmail.com, mikhail.volkov@usu.ru

Abstract. We present a few results and several open problems concern-
ing complete deterministic finite automata in which every non-empty
subset of the state set occurs as the image of the whole state set under
the action of a suitable input word.

Keywords: Deterministic finite automaton, Complete reachability, Tran-
sition monoid, Syntactic complexity, PSPACE-completeness

1 Background and overview

We consider the most classical species of finite automata, namely, com-
plete deterministic automata. Recall that a complete deterministic finite
automaton (DFA) is a triple & = (Q, X, §), where @ and X are finite sets
called the state set and the input alphabet respectively, and §: Q@ x X — Q
is a totally defined map called the transition function. Let X* stand for
the collection of all finite words over the alphabet X', including the empty
word. The function § extends to a function @ x X* — @ (still denoted
by d) in the following natural way: for every ¢ € @ and w € X*, we set
0(q,w) := ¢ if w is empty and §(q,w) := 6(d(q,v),a) if w = va for some
word v € X* and some letter a € Y. Thus, via J, every word w € XL*
induces a transformation of the set Q.

Let P(Q) stand for the set of all non-empty subsets of the set Q. The
function § can be further extended to a function P(Q) x X* — P(Q)
(again denoted by d) by letting §(P,w) := {d(q,w) | ¢ € P} for every
non-empty subset P C Q. Thus, the triple P(&) = (P(Q), X,0) is a
DFA again; this DFA is referred to as the powerset automaton of <.

* Supported by the Russian Foundation for Basic Research, grant no. 16-01-00795,
the Ministry of Education and Science of the Russian Federation, project no.
1.1999.2014/K, and the Competitiveness Program of Ural Federal University. The
paper was written during the second author’s stay at Hunter College of the City Uni-
versity of New York as Ada Peluso Visiting Professor of Mathematics and Statistics
with a generous support from the Ada Peluso Endowment.

http://arxiv.org/abs/1607.00554v1

Whenever we deal with a fixed DFA, we simplify our notation by
suppressing the sign of the transition function; this means that we may
introduce the DFA as the pair (Q, X) rather than the triple (@, X,) and
may write ¢.w for 0(¢,w) and P .w for 6(P,w).

Given a DFA & = (Q, YY), we say that a non-empty subset P C @
is reachable in & if P = Q. w for some word w € X*. A DFA is called
completely reachable if every non-empty subset of its state set is reachable.

Let us start with an example that served as a first spark which ignited
our interest in completely reachable automata. A DFA o = (Q,X) is
called synchronizing if it has a reachable singleton, that is, Q.w is a
singleton for some word w € X*. Any such word w is said to be a reset
word for the DFA. The minimum length of reset words for &7 is called
the reset threshold of 7. In 1964 Cerny [8] constructed for each n > 1
a synchronizing automaton %, with n states, 2 input letters, and reset
threshold (n — 1)2. Recall the definition of €,. If we denote the states
of €, by 1,2,...,n and the input letters by a and b, the actions of the
letters are as follows:

. 1 if i <mn, . i1+ 1 ifi<n,
i.a = 7.b:=
1 ifi=mn; 1 if i =n.

The automaton %, is shown in Fig.[l

Fig. 1. The automaton %,

The automata in the Cerny series are well-known in the connection
with the famous Cerny conjecture about the maximum reset threshold
for synchronizing automata with n states, see [20]. The automata %,

provide the lower bound (n — 1)? for this maximum, and the conjecture
claims that these automata represent the worst possible case since it has
been conjectured that every synchronizing automaton with n states can
be reset by a word of length (n — 1)2. The automata %, also have other
interesting properties, including the one registered here:

Ezxample 1. Each automaton %, n > 1, is completely reachable.

The result of Example [Il was first observed by Maslennikova [16],
Proposition 2], see also [I7], in the course of her study of the so-called
reset complexity of regular ideal languages. Later, Don [9, Theorem 1]
found a sufficient condition for complete reachability that applies to the
automata %,. In Section [2] we present another sufficient condition that
both simplifies and generalizes Don’s one. We provide an example show-
ing that our condition is not necessary but we conjecture that it may be
necessary for a stronger version of complete reachability.

In Section [§] we discuss the problem of recognizing completely reach-
able automata. We show PSPACE-completeness of the following decision
problem: given a DFA & = (@, Y) and a subset P C @, decide whether
or not P is reachable in 7. We also outline a polynomial algorithm that
recognizes completely reachable automata with 2 input letters modulo
the conjecture from Section [2

Given a DFA & = (Q, X)), its transition monoid M (<) is the monoid
of all transformations of the set) induced by the words in X*. By the
syntactic complexity of o/ we mean the size of M (/). Clearly, the syn-
tactic complexity of a completely reachable automaton @7 with n states
cannot be less than 2" — 1 since, for each non-empty subset P of the state
set, the transition monoid of &/ must contain a transformation whose
image is P. In Section Ml we address the question of the existence and
classification of minimal completely reachable automata, i.e., completely
reachable automata with minimum possible syntactic complexity. This
question has been recently investigated in the realm of transformation
monoids by the first author [3l4]; here we translate her results into the
language of automata theory and augment them by determining the input
alphabet size of minimal completely reachable automata.

The present paper is in fact a work-in-progress report, and therefore,
each of Sections 2H4l includes some open questions. Several additional
open questions form Section [B} they mostly deal with synchronization
properties of completely reachable automata.

We assume the reader’s acquaintance with some basic concepts of
graph theory, monoid theory, and computational complexity.

2 A Sufficient Condition

If @ is a finite set, we denote by T'(Q) the full transformation monoid
on @, i.e., the monoid consisting of all transformations ¢: @ — Q. For
v € T(Q), its defect is defined as the size of the set @ \ Qp. Observe that
the defect of a product of transformations is greater than or equal to the
defect of any of the factors and is equal to the defect of a factor whenever
the other factors are permutations of (). In particular, if a product of
transformations has defect 1, then one of the factors must have defect 1.

Let o7 = (Q, X) be a DFA. The defect of a word w € X* with respect
to «f is the defect of transformation induced by w. Consider a word w of
defect 1. For such a word, the set Q\ @ . w consists of a unique state, which
is called the excluded state for w and is denoted by excl(w). Further, the
set (). w contains a unique state p such that p = ¢; . w = g3 . w for some
q1 # qo; this state p is called the duplicate state for w and is denoted by
dupl(w). Let Dq(«7) stand for the set of all words of defect 1 with respect
to 7, and let I'j(«7) denote the directed graph having @ as the vertex
set and the set

Ey = {(excl(w),dupl(w)) | w € D1(«)}

as the edge set. Since we consider only directed graphs in this paper,
we call them just graphs in the sequel. Recall that a graph is strongly
connected if for every pair of its vertices, there exists a directed path
from the first vertex to the second.

Theorem 1. If a« DFA o/ = (Q,X) is such that the graph I'i(<7) is
strongly connected, then < is completely reachable.

Proof. Take an arbitrary non-empty subset P C (). We prove that P is
reachable in &/ by induction on k := |@Q \ P|. If K = 0, then P = @ and
nothing is to prove as () is reachable via the empty word. Now let £ > 0
so that P is a proper subset of (. Since the graph I'j(&/) is strongly
connected, there exists an edge (q,p) € Ep that connects @ \ P and P
in the sense that ¢ € @ \ P while p € P. By the definition of Ej, there
exists a word w of defect 1 with respect to .« for which ¢ is the excluded
state and p is the duplicate state. By the definition of the duplicate state,
p=q.w = qs.w for some q; # ¢o, and since the excluded state g for w
does not belong to P, for each state r € P\{p}, there exists a unique state
' € Q such that r = 1" . w. Now letting R := {q1,q2} U {r' | r € P\ {p}},
we conclude that P = R.w and |R| = |P|+ 1. Then |Q\ R| =k — 1, and
the induction assumption applies to the subset R whence R = @ .v for
some word v € X*. Then P = @) .vw so that P is reachable as required.

Don [9] has formulated a sufficient condition for complete reachability
in the terms of what he called a state map. Consider a DFA & = (Q, X)
with n states in which every subset of size n — 1 is reachable. Let W be
a set of n words of defect 1 with respect to @ such that for every subset
P C Q with |P| = n — 1 there is a unique word w € W with P = Q . w.
(Such a set is termed a 1-contracting collection in [9]). The state map
ow: Q — Q induced by W is defined by

gow := dupl(w) for w € W such that g = excl(w).

The following is one of the main results in [9]:

Theorem 2. A DFA < is completely reachable if it admits a 1-contract-
ing collection such that the induced state map is a cyclic permutation of
the state set of <.

Even though Theorem [2] is stated in different terms, it is easily seen
to constitute a special case of Theorem [Il Indeed, if W is a 1-contracting
collection and oy is the corresponding state map, then each pair (g, gow)
can be treated as an edge in F. Therefore, if oy is a cyclic permutation of
@, then the set of edges {(q,qow) | ¢ € Q} forms a directed Hamiltonian
cycle in the graph (%) whence the latter is strongly connected.

We believe that Theorem [[l may have strongly wider application range
than Theorem [2] even though at the moment we do not have any example
confirming this conjecture. If the conditions of the two theorems were
equivalent, every strongly connected graph of the form I (/') would pos-
sess a directed Hamiltonian cycle, and this does not seem to be likely.

Now we demonstrate that the condition of Theorem [lis not necessary.

Ezample 2. Consider the DFA &3 with the state set {1, 2,3} and the input
letters ajy), ajg), ajz), ap,2) that act as follows:

, 2 ifi=1,2 , 1 ifi=1,2,
1.Q = 1.Q =
B =3 273 it =3
, 1 ifi=1,2, , ‘
t.ap = {2 i3 i.apg =3 forall i=1,23.

The automaton &3 is shown in Fig.2l on the left. The graph I7(&3) is
shown in Fig.[2 on the right; it is not strongly connected. However, it can
be checked by a straightforward computation that the automaton &3 is
completely reachable.

@[2]5 A[1] A[1,2]

an)

Fig. 2. The automaton &3 and the graph I7(&3)

The reason of why the converse of Theorem [fails becomes obvious if
one analyzes the above proof. In fact, we have proved more than we have
formulated, namely, our proof shows that if a DFA & is such that the
graph I(47) is strongly connected, then every proper non-empty subset
of the state set of &/ is reachable via a product of words of defect 1.
Of course, this stronger property has no reason to hold in an arbitrary
completely reachable automaton. For instance, in the automaton &3 of
Example 2] the singleton {3} is not an image of any product of words of
defect 1. On the other hand, for the stronger property italicized above,
the condition of Theorem [[l may be not only sufficient but also necessary.
We formulate this guess as a conjecture.

Conjecture 1. If for every proper non-empty subset P of the state set of
a DFA & there is a product w of words of defect 1 with respect to <«
such that P = @ . w, the graph I} (&) is strongly connected.

One can formulate further sufficient conditions for complete reacha-
bility in terms of strong connectivity of certain hypergraphs related to
words of defect 2.

3 Complexity of Deciding Reachability

Given a DFA, one can easily decide whether or not it is completely reach-
able considering its powerset automaton: a DFA &7 = (Q, X) is completely
reachable if and only if) is connected with every its non-empty subset by
a directed path in the powerset automaton P(<7), and the latter property
can be recognized by breadth-first search on P(%7) starting at). This
algorithm is however exponential with respect to the size of &7, and it
is natural to ask whether or not complete reachability can be decided in
polynomial time. First, consider the following decision problem:

REACHABLE SUBSET: Given a DFA of = (Q,X,0) and a non-empty
subset P C @, is it true that P is reachable in o7 ?

Theorem 3. The problem REACHABLE SUBSET is PSPACE-complete.

Proof. The fact that REACHABLE SUBSET is in the class PSPACE is easy
and known, see, e.g., [, Lemma 6, item 1].

To prove PSPACE-hardness of REACHABLE SUBSET, we reduce to
it in logarithmic space the well-known PSPACE-complete problem FAI
(FINITE AUTOMATA INTERSECTION, see [14]). Recall that an instance
of FAT consists of k DFAs «7; = (Q;,X,9;), j = 1,...,k, with disjoint
state sets and a common input alphabet. In each DFA <7; an initial state
sj € Q; and a final state t; € Q; are specified; a word w € L™ is said to
be accepted by <7 if §;(sj, w) =t;. The question of FAI asks whether or
not there exists a word w € X* which is simultaneously accepted by all
automata 4, ..., .

Now, given an instance of FAI as above, we construct the following
instance (7, P) of REACHABLE SUBSET. The state set of the DFA &
is Q := U?Zl Qj; the input alphabet of &7 is X with one extra letter p
added. The transition function §: @ x (X' U {p}) — @ is defined by the
rule

5(q,a) = {5j(q,a) %faEEandquj, (1)
5 if a =pand q € Q.

Expressing this rule less formally, it says that, given a state g € @, one
first should find the index j € {1,...,k} such that ¢ belongs to Q;; then
every letter a € X' acts on ¢ in the same way as it does in the automaton
<7; while the added letter p sends ¢ to the initial state s; of <7 (so p
artificially ‘initializes’ each ;). Observe that each set @); is closed under
the action of each letter in X’ U{p}. Finally, we set P := {t1,...,t;}, that
is, P consists of the final states of @, ..., 9.

We claim that the subset P is reachable in & if and only if there
exists a word w € 2™ which is simultaneously accepted by all automata
A, ..., 9. Indeed, if such a word w exists, then §(Q, pw) = P since we
have §(Q,p) = {s1,...,s;} by (1) and 0(s;,w) = 0;(sj,w) = t; for each
j=1,...,k by the choice of w. Conversely, suppose that P is reachable in
o/, that is, 6(Q,u) = P for some word u € (X' U{p})*. Then we must have
0;(Qj,u) = {t;} for each j =1,..., k. If the word u has no occurrence of
the letter p, then v € X* and §;(s;,u) = {t;} for each j =1,...,k so that
u is simultaneously accepted by all automata 7, . .., @%. Otherwise we fix
the rightmost occurrence of p in v and denote by w the suffix of u following

this occurrence so that w € X* and u = vpw for some v € (X' U {p})*.
Then 0;(Qj,vp) = {s;} and 0;(s,w) = 6(Q;,vpw) = {t;} for each j =
1,..., k. We conclude that w is simultaneously accepted by all automata
A, ...,9,. This completes the proof of our claim and establishes the
reduction which obviously can be implemented in logarithmic space.

The reduction used in the above proof is an adaptation of a slightly
more involved log-space reduction used by Brandl and Simon [5, Section 3|
to show PSPACE-hardness of a natural problem about transformation
monoids presented by a bunch of generating transformations. Using a
trick from Martyugin’s paper [15], one can modify this reduction to show
that REACHABLE SUBSET remains PSPACE-complete even if restricted
to automata with only 2 input letters.

In connection with Theorem Bl an interesting result by Goraléik and
Koubek [I3, Theorem 1] is worth being mentioned. If stated in the lan-
guage adopted in the present paper, their result says that, given a DFA
o =(Q,X) with |Q| = n, |X| = m and a subset P C @ with |P| = k,
one can decide in O((k + 1)nk+1m) time whether or not there exists a
word w € X* such that P = Q.w = P.w. (The difference from our def-
inition of reachability is that here one looks for a word not only having
the subset P as its image but also acting on P as a permutation.) Thus,
if the size of the target set P is treated as a parameter, the algorithm
from [13] becomes polynomial. One can ask if a similar result holds for
the parameterized version of REACHABLE SUBSET formulated as follows:

REACHABLE SUBSETy: Given a DFA o = (Q,X,0) and a non-empty
subset P C @ of size k, is it true that P is reachable in of ¢

For k = 1, the cited result by Goraléik and Koubek applies since,
for P being a singleton, any word w € X* such that P = @ .w auto-
matically satisfies the additional condition P.w = P. For k > 1, the
question about the exact complexity of REACHABLE SUBSET) is open.
The reduction from the proof of Theorem [3] cannot help here because the
size k of the subset P in this reduction is equal to the number of DFAs
in the instance of FAI from which we depart, and for each fixed k, there
is a polynomial algorithm that decides on all instances of FAI with k
automata. Pribavkina and Rodaro [I8] Sections 7 and 8] used REACH-
ABLE SUBSET: as an intermediate problem in their study of so-called
finitely gemerated synchronizing automata; from their results it follows
that REACHABLE SUBSETs is co-NP-hard even if restricted to automata
with only 2 input letters.

Now we return to the question of whether or not complete reachability
can be decided in polynomial time. It should be noted that Theorem
does not imply any hardness conclusion here: while checking reachabil-
ity of individual subsets is PSPACE-complete, checking reachability of
all non-empty subsets may still be polynomial even though the latter
problem consists of exponentially many individual problems! One can il-
lustrate this phenomenon of ‘simplification due to collectivization’ with
the following example. If is known [I4] that the following membership
problem for transition monoids of DFAs is PSPACE-complete: given a
DFA & = (Q,X) and a transformation ¢: @ — @, does ¢ belongs to
the transition monoid M (47), i.e., is there a word w € X* such that
qp = q.w for all ¢ € Q7 On the other hand, one can decide in polynomial
time whether or not every transformation of the state set belongs to the
transition monoid of a given DFA. Indeed, given a DFA o = (Q, X)), we
partition the alphabet X as X' = II U A, where II consists of all letters
that act on) as permutations and A contains all letters with non-zero
defect. First we inspect A: if no letter in A has defect 1, then it is clear
that the monoid M (<) contains no transformation of defect 1 (see the
observation registered at the beginning of Section [2)). Further, we invoke
twice the polynomial algorithm by Furst, Hopcroft and Luks [I1] for the
membership problem in permutation groups: we fix a cyclic permutation
and a transposition of @) and check if they belong to the permutation
group on () generated by the permutations induced by the letters in I1.
If the answers to all these queries are affirmative, then M (/) contains
a cyclic permutation, a transposition, and a transformation of defect 1,
and it is well-known that any such trio of transformations generates the
full transformation monoid 7'(Q), see, e.g., [12, Theorem 3.1.3].

Thus, the complexity of deciding complete reachability for a given
DFA remains unknown so far. We expect this problem to be computa-
tionally hard for automata over unrestricted alphabets while for automata
with a fixed number of letters a polynomial algorithm may exist. For in-
stance, if Conjecture [I] holds true, there exists a polynomial algorithm
that recognizes completely reachable automata among DFAs with 2 in-
put letters. Indeed, let &7 = (Q, {a,b}) be a DFA with n states, n > 1.
Every subset of the form @ . w, where w is a non-empty word over {a, b},
is contained in either @).a or @ .b. At least one of the letters must have
defect 1 since no subset of size n — 1 is reachable otherwise, and if the
other letter has defect greater than 1, only one subset of size n — 1 is
reachable. Hence, if &/ is a completely reachable automaton, one of its
letters has defect 1 while the other has defect at most 1. Therefore for

each proper reachable subset P C @, there is a product w of words of
defect 1 with respect to o7 such that P = @) .w. In view of Theorem [I]
if Conjecture [holds true, then complete reachability of & is equiva-
lent to strong connectivity of the graph I (7). It remains to show that
for automata with 2 input letters, the latter condition can be verified in
polynomial time.

Once the graph I'j(«7) is constructed, checking its strong connectiv-
ity in polynomial time makes no difficulty. However, it is far from being
obvious that I'1(<), even though it definitely has polynomial size, can
always be constructed in polynomial time. Indeed, by the definition, the
edges of I'j(«7) arise from transformations of defect 1 in the transition
monoid of &7, and for an automaton with n states, the number of trans-
formations of defect 1 in M (<) may reach n!(%). Our algorithm depends
on some peculiarities of automata with 2 input letters. It incrementally
appends edges to a spanning subgraph of I'1(.2) in a way such that one
can reach a conclusion about strong connectivity of I'(.2/) by examin-
ing only polynomially many transformations of defect 1. In the following
brief and rather informal description of the algorithm, we use the notation
introduced in Section 2lin the course of defining the graph Iy (7).

Thus, again, let & = (@, {a,b}) be a DFA with n states, n > 1. For
certainty, let a stand for the letter of defect 1. If b also has defect 1,
then at most two subsets of size n — 1 are reachable (namely, @ .a and
@ .b), and &/ can only be completely reachable provided that n = 2.
The automaton &7 is then nothing but the classical flip-flop, see Fig. Bl

OG0

a

Fig. 3. Filp-flop

Beyond this trivial case, b must be a permutation of () whence b" acts on
@ as the identity transformation. Then the set {excl(w) | w € D;i(«/)}
of the states at which edges of I'j(«7) may originate is easily seen to
coincide with the set {excl(a),excl(ab),...,excl(ab”1)}. For I'l(<) to
be strongly connected, it is necessary that every vertex is an origin of an
edge whence the latter set must be equal to). Taking into account that
excl(ab®) = excl(a).b* for each k = 1,...,n — 1, we conclude that b must

be a cyclic permutation of Q. It is easy to show that excl(w) . b = excl(wb)
and dupl(w) . b = dupl(wbd) for every word w of defect 1, and therefore, b
acts as a permutation on the edge set Fj of I'1(<).

The set E7 contains the edges

(excl(a), dupl(a)), ..., (excl(ab™ 1), dupl(ab™1)). (2)

Since dupl(ab*) = dupl(a).b* for each k = 1,...,n — 1, the edges in (@)
are the ‘translates’ of the edge (excl(a),dupl(a)). Any two edges in (2))
start at different vertices and end at different vertices, whence for some
d such that d < n and d divides n, the edges in (2)) form d directed

cycles, each of size Z. If d = 1, we can already conclude that the graph

7
I () is strongly connected. If d > 1, denote the cycles by Ci,...,Cy
and consider the words a2, aba,...,ab" 'a. It can be easily shown that

exactly two of them have defect 1; let us denote these two words by wy and
ws. Since wy and wo end with a, we have Q. w1 = Q. w2 = @ . a whence
excl(wy) = excl(wy) = excl(a). Thus, the edges (excl(wy),dupl(w;)) and
(excl(wg),dupl(ws)) start at the vertex excl(a) which can be assumed to
belong to the cycle C;. If also the ends of these edges lie in C, one can
show that no further edge in £ can connect C7 with another cycle whence
C; forms a strongly connected component of I'j (/). We then conclude
that I'1(«7) is not strongly connected.

Now suppose that the edge (excl(w;),dupl(w;)) where i =1 or ¢ = 2
connects the vertex excl(a) with a vertex from the cycle C; where j > 1.
Then we append the edge and all its translates (excl(w;b*), dupl(w;b*)),
k=1,...,n—1,to Cy,...,Cy; in the case where both (excl(w;), dupl(wy))
and (excl(wsq), dupl(ws)) leave C7, we append both these edges and all
their translates. After that, we get larger strongly connected subgraphs
D+,..., Dy isomorphic to each other, where £ < d and ¢ divides d. If
¢ =1, then the graph I'j(47) is strongly connected. If £ > 1, we iterate
by considering the words w;a, w;ba, ..., w;b" ta. Eventually, either we
reach a strongly connected spanning subgraph of I'j(«7), and then the
graph I («7) is strongly connected as well, or on some step the process
gets stacked, which means that I7(47) has a proper strongly connected
component, and therefore, is not strongly connected.

The described process branches, and in the worst case the number of
words of defect 1 to be analyzed doubles at each step. On the other hand,
since the steps are indexed by a chain of divisors of n, the number of
steps does not exceed logy n + 1. Thus, executing the algorithm, we have
to analyze at most

14+244+-..4 2flosan]+l = 0(n)

words of maximum length O(nlogyn), and therefore, the algorithm can
be implemented in polynomial time.

We illustrate the above algorithm by running it on the DFA & with
the state set {1,2,3,4,5,6} and the input letters a,b that act as follows:

t.a:=4¢9—4 ifi=3,0, e
1 if 1 =6.

i+1 ifi=1,2,) o
) {z—i—l if i <6,
i.b:=

) if i =4,5;

The automaton & is shown in Fig.[l

Fig. 4. The automaton &5

FEzample 3. The automaton & is completely reachable.

We verify the claim of Example[3by constructing a strongly connected
spanning subgraph of the graph I'1(&;). As excl(a) =1 and dupl(a) = 3,
we see that the edge set F of I (&) contains the edge 1 — 3, and hence,
also its translates 2 —+ 4,3 — 5,4 — 6,5 — 1, and 6 — 2. Altogether, we
have 6 edges of the form (2)); they make 2 disjoint cycles 1 -3 — 5 — 1
and 2 -+ 4 — 6 — 2, and hence, after the first step of the algorithm we
cannot yet exhibit a strongly connected spanning subgraph in Iy (&3).

We then proceed by inspecting the words a?, aba, ab’a, ab3a, ab*a, ab’a.
The actions of these words are shown in the following table:

123456
a> 1363456
aba |6 42534
ab®a 453325
ab3a |536233
ab'a |3 24362
ab’a | 235643

We see that exactly two words, namely, aba and ab’a, are of defect 1.
Since dupl(ab®a) = 3, we discard the word ab’a because it induces the
same edge 1 — 3 as a. In contrast, dupl(aba) = 4 whence the word aba
adds the edge 1 — 4 to Fy. If we add also the translates 2 — 5, 3 — 6,
4 —1,5— 2, and 6 — 3 of this edge, we obtain the strongly connected
spanning subgraph in I (&s) shown in Fig [Bl Thus, the graph I7(&g) is

Fig. 5. A strongly connected spanning subgraph in the graph I'1 (&s)

strongly connected and the claim of Example Bl follows from Theorem [II

Don [9, Proposition 2| has found a sufficient condition for complete
reachability of a DFA & that has a letter (a, say) of defect 1 and a
letter (b, say) that act as a cyclic permutation of the state set. Namely,
let d be the least integers such that excl(a).b? = dupl(a). If d and the
number of states in & are coprime, then 2/ is completely reachable.
Our Example B demonstrates that this condition is not necessary: the
automaton &g is completely reachable while the parameter d for this DFA
equals 2 and divides the number of states. In fact, it is easy to see that
Don’s condition precisely characterizes DFAs &7 for which our algorithm
produces a strongly connected spanning subgraph in the graph I'(/)
after the first step.

We conclude this section with another example that shows the be-
haviour of our algorithm in the situation where the DFA under investi-
gation is not completely reachable. Consider the DFA &/ with the state
set {1,2,3,4,5,6} and the input letters a, b that act as follows:

, i+l ifi=1,2 , i+1 ifi<6,
i1.a:= i.b:=
9—14 ifi=3,4,5,6; 1 if 1 = 6.

The automaton & is shown in Fig.[6l

Fig. 6. The automaton &;

It can be verified that & is not completely reachable, and moreover,
it is not synchronizing. Let us run our algorithm on this DFA. As in the
previous example, the first step of the algorithm produces 2 disjoint cycles
1—+3—=5—>1and 2 -4 — 6 — 2. We then proceed by inspecting
the words a?, aba, ab’a, ab3a, ab*a, ab®a whose actions are gathered in the
following table:

123456
a’> 363456
aba 1652345
ab’a | 543234
ab3a | 436323
ab*a |3 25632
ab®a 234563

Again, we see that aba and ab®a are the only words of defect 1, and again,
ab’a induces the same edge 1 — 3 as a. We have dupl(aba) = 5 whence
aba adds the edge 1 — 5; this new edge, however, fails to connect the
cyclel -3 —5—1with 2 -4 — 6 — 2, and the algorithm stops.

4 Minimal Completely Reachable Automata

Syntactic complezity of a regular language is a well established concept
that has attracted much attention lately, see, e.g., [6l7]. It can be defined
as the size of the transition monoid of the minimal DFA recognizing the
language. It appears to be worthwhile to extend this concept to automata
by defining the syntactic complexity of an arbitrary DFA & as the size
of its transition monoid M (7). In fact, if one thinks of a DFA as a
computational device rather than acceptor, its transition monoid can be
thought of as the device’s ‘software library’ since the monoid contains
exactly all programs (transformations) that the automaton can execute.
From this viewpoint, measuring the complexity of an automaton by the
size of its ‘software library’ is fairly natural.

As already mentioned in Section [Il the syntactic complexity of a com-
pletely reachable automaton with n states cannot be less than 2™ — 1. It
turns out that this lower bound is tight if one considers automata over un-
restricted alphabet. We present now a construction for completely reach-
able automata with n states and syntactic complexity 2" — 1; for short,
we call them minimal completely reachable automata.

Our construction produces minimal completely reachable automata
from full binary trees satisfying certain subordination conditions. Recall
that a binary tree is said to be full if each its vertex v either is a leaf
or has exactly two children that we refer to as the left child or the son
of v and the right child or the daughter of v. (Thus, all vertices except
the root have a gender.) It is well known (and easy to verify) that a full
binary tree with n leaves has 2n — 1 vertices. As full binary trees are the
only trees occurring in this paper, we call them just trees in the sequel.

If I' is a tree and v is a vertex in I', we denote by I}, the subtree of
I" rooted at v. The span of v, denoted span(v), is the number of leaves in
the subtree I',. Fig. [[shows a tree with vertices labelled by their spans.

By a homomorphism between two trees I and [, we mean a map
from the vertex set of I] into the vertex set of Iy that sends the root
of Il to the root of Iy and preserves the parent—child relation and the
genders of non-root vertices. Given two trees I and Iy, we say that I}
subordinates Iy if there exists a 1-1 homomorphism I7 — I5. If v and v
are two vertices of the same tree I', we say that v subordinates v if the
subtree I, subordinates the subtree I3,. A tree is said to be respectful if
it satisfies two conditions:

(S1) if a male vertex has a nephew, the nephew subordinates his uncle;
(S2) if a female vertex has a niece, the niece subordinates her aunt.

For an illustration, the tree shown in Fig. [7 satisfies (S1) but fails to
satisfy (S2): the daughter of the root has a niece but this niece does not
subordinates her aunt. On the other hand, the tree shown in Fig. [is
respectful. (In order to ease the inspection of this claim, we have shown
the uncle-nephew and the aunt—niece relations in this tree with dotted
and dashed arrows respectively.)

It is easy to show that there exist respectful trees with any number of
leaves. In the following table (borrowed from [4]) we present the numbers
of respectful trees with up to 10 leaves.

Number of leaves 112134567 |8|9]10
Number of respectful trees| 1 | 1 | 2 | 3 | 6 |10]18|32|58|101

We are not aware of any closed formula for the number of respectful trees
with a given number of leaves.

In our construction, we use certain markings of trees by intervals of
the set N of positive integers considered as a chain under the usual order:

1<2<---<n<....

If i,7 € N and i < j, the interval [i,j] is the set {k € X, | i < k < j}.
We write [¢] instead of [i,i]. Now, a faithful interval marking of a tree I’
is a map u from the vertex set of I" into the set of all intervals in N such
that for each vertex v,

— the number of elements in the interval vy is equal to span(v);
— if v = [i,j] and s and d are respectively the son and the daughter of
v, then su = [i, k] and dp = [k + 1, j] for some k such that : < k < j.

Fig. 7. An example of a tree with spans of its vertices shown

It easy to see that every tree I' admits a faithful interval marking which
is unique up to an additive translation: given any two markings u, i’ of I,
there is an integer m such that v = vy’ + m for every vertex v. Observe
that if u is a faithful interval marking of a tree I" and v is a vertex of I,
then the restriction of u to the subtree I, is a faithful interval marking
of the latter. Fig. [0 demonstrates a faithful interval marking of the tree
from Fig. B

We have prepared everything and can now present our construction.

Construction T2A (trees to automata). For each respectful tree I’
with n leaves and each its faithful interval marking u, we construct an
automaton denoted by .7,(I"). The states of «7,(I") are the elements of
the interval ru, where r stands for the root of I', and the input alphabet
of «7,(I") consists of 2n — 2 letters a,, one for each non-root vertex v
of I'. To define the action of the letters, we proceed by induction on n.
For n = 1, that is, for the trivial tree I" with one vertex r and no edges,
a7,(I") is the trivial automaton with one state and no transitions, so that
nothing has to be defined.

Now suppose that n > 1. Take any non-root vertex v of I'; we have
to define the action of the letter a, on the elements of the interval ru. If
s and d are respectively the son and the daughter of r, the interval ru is
the disjoint union of sy and du. If v # s and v # d, then v is a non-root
vertex in one of the subtrees Iy or Iy. These two cases are symmetric, so
that we may assume that v belongs to I's. By the induction assumption
applied to Iy and its marking induced by u, the action of a, is already
defined on the states from the interval su; we extend this action to the
whole interval ru by setting y.a, := y for each y € du.

Fig. 8. An example of a respectful tree

It remains to define the action of the letters a; and ag. Again, by sym-
metry, it suffices to handle one of these cases, so that we define the action
of as. First we define how as acts on the interval sy. If s has no nephew
in I, then d is a leaf and du = [y| for some y € N. Then we let x.as:=y
for each x € ru. Otherwise let ¢ be the nephew of s. The subordination
condition (S1) implies that there exists a 1-1 homomorphism £: I — I.
It is easy to see that the intervals (££)u, where £ runs over the set of all
leaves of the tree I}, form a partition of the interval su. Now we define
the action of as on sy as follows: if a number z € sy belongs to (££)u for
some leaf ¢ of I, and fu = [y] for some y € N, we let z.a, :=y.

By the induction assumption applied to the subtree I'; and its marking
induced by p, the action of the letter a; is already defined on the states
from the interval du; now we extend the action of as; to du by setting
y.as :=1y.az for all y € du. This completes our construction.

The reader may find it instructive to work out Construction T2A on
a concrete example. For the tree from Fig. 8 and [used for illustrations
above, computing all 12 input letters of the corresponding automaton
would be rather cumbersome but one can check, for instance, that the
letters as and ag4 act on the set [1,7] as follows:

0 — 1234567 S 1234567
*T\6666667) "¢ \1112345)"
Those who prefer a complete example can look at the DFA &3 from Ex-
ample [2} the automaton was in fact derived by Construction T2A from

the respectful tree with 3 leaves shown in Fig. [0l In particular, this ex-
plains our choice of notation for the input letters of &3 that perhaps had

Fig. 9. A faithful interval marking of the tree from Fig. [§

Fig. 10. The tree behind the automaton &3

slightly puzzled the reader when she or he encountered this automaton
in Section 2l By the way, the flip-flop in Fig. Bl also can be obtained by
Construction T2A (from the unique tree with 2 leaves).

Observe that all automata constructed from different markings of the
same respectful tree are isomorphic since passing to another marking only
results in a change of the state names. Taking this into account, we omit
the reference to p in the notation and denote the automaton derived from
any marking of a given respectful tree I" simply by <7 (I").

We say that two DFAs o = (Q, X,) and BB = (Q, A, () are syntac-
tically equivalent if their transition monoids coincide. Now we are ready
for the main result of this section.

Theorem 4. 1. For each respectful tree I', the automaton <7 (I") is a
minimal completely reachable automaton.
2. Every minimal completely reachable automaton is syntactically equiv-
alent to an automaton of the form <7 (I") for a suitable respectful tree I.
3. Every minimal completely reachable automaton with n states has
at least 2n — 2 input letters.

Claims 1 and 2 in Theorem [] are essentially equivalent to the main re-
sults of the papers [3l[4] by the first author who has used a slightly different
construction expressed in the language of transformation monoids: given
a marking of a respectful tree I' she constructs the transition monoid of
</ (I") rather than the automaton itself. Claim 3 is new but we have not
included its proof here due to the space limitations because the only proof
we have at the moment requires reproducing several concepts and results
from [34] and restating them in the language adopted in the present pa-
per. It is very tempting to invent a direct proof of this claim that would
bypass rather bulky considerations from [3]/4].

Theorem [4] leaves widely open the question about lower bounds for
syntactic complexity of completely reachable automata with restricted
alphabet. In particular, the case of completely reachable automata with

2 input letters both is of interest and seems to be tractable. The latter
conclusion follows from our analysis of completely reachable automata
with 2 input letters at the end of Section Bl which demonstrates that such
DFAs have rather a specific structure.

We say that a DFA o = (Q,X,9) induces a DFA % = (Q, A, ()
on the same state set if the transition monoid of & contains that of
AB. Equivalently, this means that for every letter b € A, there exists a
word w € X* such that ((¢,b) = d(q,w) for every ¢ € Q. This relation
between automata plays an essential role in the theory of synchronizing
automata, see, e.g., [2]. With respect to completely reachable automata,
the following question is of interest: is it true that every completely reach-
able automaton induces a minimal completely reachable automaton? In
other words, is it true that an automaton of the form .27 (I") ‘hides’ within
every completely reachable automaton?

5 More Open Questions

Since completely reachable automata are synchronizing, it is natural to
ask what is the maximum reset threshold for completely reachable au-
tomata with n states. In view of Example [the lower bound (n — 1)?
for this maximum is provided by the Cerny automata %,. For completely
reachable automata with 2 input letters this bound is tight because, ex-
cept for the flip-flop, such automata have a letter that acts as a cyclic
permutation of the state set, and therefore, Dubuc’s result [10] applies
to them. Some partial results about synchronization of completely reach-
able automata can be found in [9], but the general problem of finding
the maximum reset threshold for completely reachable automata with n
states and unrestricted alphabet remains open.

The problem discussed in the previous paragraph basically asks what
is the minimum length of a word that reaches a singleton. For completely
reachable automata, a similar question makes sense for an arbitrary non-
empty subset. Thus, we suggest to investigate the minimum length of a
word that reaches a subset with m element in a completely reachable
automaton with n states as a function of n and m. Don [9, Conjecture 2]
has formulated a very strong conjecture that implies the upper bound
n(n —m) on this length. Observe that if this upper bound indeed holds,
then completely reachable automata satisfy the Cerny conjecture. To see
this, take a completely reachable automaton &7 = (Q, X) with n states;
it should possess a letter a € X such that q.a = ¢ .a for two different
states ¢,q' € Q. If a word w € X* of length at most n(n — 2) is such that

Fig.11. A graph and two of its colorings

Q.w = {q,q'}, the word wa is a reset word for &/ and has length at most
n(n—2)+1=(n-1)>=%

Another intriguing problem about completely reachable automata sug-
gested by the theory of synchronizing automata is a variant of the Road
Coloring Problem. We recall notions involved there. A road coloring of a
finite graph I" consists in assigning non-empty sets of labels (colors) from
some alphabet X to edges of I" such that the label sets assigned to the
outgoing edges of each vertex form a partition of X. Colored this way, I"
becomes a DFA over X; every such DFA is called a coloring of I'. Fig.[IIl
shows a graph and two of its colorings by X' = {a,b}, one of which is
the Cerny automaton %j. The Road Coloring Problem, recently solved
by Trahtman [19], had asked which strongly connected graphs admit syn-
chronizing colorings, i.e., colorings that are synchronizing automata. It
turns out that, as it was conjectured in [I], the necessary and sufficient
condition for a strongly connected graph to possess a synchronizing color-
ing is that the greatest common divisor of lengths of all directed cycles in
the graph should be equal to 1. The latter property is called aperiodicity
or primaitivity.

o

Fig. 12. The left graph has no completely reachable coloring; the central graph has no
completely reachable coloring with 2 letters but has a completely reachable coloring
with 3 letters shown in the right

An analogous question makes sense for completely reachable automata.
Namely, call a coloring of a graph completely reachable if it yields a com-
pletely reachable automaton. Our problem then consists in characterising
graphs that admit completely reachable colorings. Such graphs must be
strongly connected and primitive since every completely reachable au-
tomaton is strongly connected and synchronizing. However, it is easy to
produce an example of a strongly connected primitive graph that has no
completely reachable coloring; such a graph is shown in Fig. on the
left. Moreover, there are interesting phenomena that have no parallel in
the theory of synchronizing automata; for instance, there exist graphs
that have no completely reachable coloring with 2 letters but admit such
a coloring with 3 letters; an example of such a graph is presented in the
center of Fig. [[2] while the corresponding coloring is shown on the right.

Acknowledgement. The authors are grateful to Vladimir Gusev and Elena
Pribavkina for a number of useful suggestions.

References

1. Adler, R.L., Goodwyn, L.W., Weiss, B.: Equivalence of topological Markov shifts.
Israel J. Math. 27, 49-63 (1977)

2. Ananichev, D.S., Gusev, V.V., Volkov, M.V.: Primitive digraphs with large expo-
nents and slowly synchronizing automata. J. Math. Sci. 192(3), 263-278 (2013)

3. Bondar, E.: L-cross-sections of the finite symmetric semigroup. Algebra and Dis-
crete Math. 18(1), 27-41 (2014)

4. Bondar, E.: Classification of L-cross-sections of T,. Algebra and Discrete Math.
21(1), 1-17 (2016)

5. Brandl, Ch., Simon, H.U.: Complexity analysis: transformation monoids of finite
automata. In: I. Potapov (ed.), Developments in Language Theory—19th Int.
Conf., DLT 2015. Lect. Notes Comput. Sci., vol. 9168, pp. 143-154. Springer,
Heidelberg (2015)

6. Brzozowski, J.A., Li, B.: Syntactic complexity of R and J-trivial regular languages.
Int. J. Found. Comput. Sci. 25(7): 807-822 (2014)

7. Brzozowski, J.A., Szykuta, M.: Upper bound on syntactic complexity of suffix-free
languages. In: J. Shallit, A. Okhotin (eds.), Descriptional Complexity of Formal
Systems—17th Int. Workshop, DCFS 2015. Lect. Notes Comput. Sci., vol. 9118,
pp. 33-45. Springer, Heidelberg (2015)

8. Cerny, J.: Pozndmka k homogénnym eksperimentom s koneénymi automatami.
Matematicko-fyzikalny Casopis Slovensk. Akad. Vied 14(3), 208-216 (1964) (in
Slovak)

9. Don, H.. The Cerny conjecture and l-contracting automata. CoRR,
abs/1507.06070 (2015) http://arxiv.org/abs/1607.06070

10. Dubuc, L.: Sur les automates circulaires et la conjecture de Cerny. RATRO Inform.
Théor. Appl. 32(1-3), 21-34 (1998) (in French)

http://arxiv.org/abs/1507.06070

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

Furst, M.L., Hopcroft, J.E., Luks, E.M.: Polynomial-time algorithms for permu-
tation groups. In: 21st Annual Symp. on Foundations of Comput. Sci., pp. 36—41.
IEEE Computer Society, Washington (1980)

Ganyushkin, O., Mazorchuk, V. Classical Finite Transformation Semigroups: An
Introduction. Springer, Heidelberg (2009)

Goralécik, P., Koubek, V.: Rank problems for composite transformations. Int. J.
Algebra Comput. 5(3), 309-316 (1995)

Kozen, D.: Lower bounds for natural proof systems. In: 18th Annual Symp. on
Foundations of Comput. Sci., pp. 2564-266. IEEE Computer Society, Washington
(1977)

Martyugin, P.V.: Computational complexity of certain problems related to care-
fully synchronizing words for partial automata and directing words for nondeter-
ministic automata. Theory Comput. Systems 57(2), 293-304 (2014)
Maslennikova, M.I.: Reset complexity of ideal languages. In: M. Bielikovd, G.
Friedrich, G. Gottlob, S. Katzenbeisser, R. Spanek, G. Turdn (eds.), 38th Int.
Conf. on Current Trends in Theory and Practice of Comput. Sci., SOFSEM 2012.
Vol. II, pp. 33—44. Inst. Comp. Sci. Acad. Sci. Czech Republic, Prague (2012)
Maslennikova, M.I.: Reset complexity of ideal languages. CoRR, abs/1404.2816
(2014) http://arxiv.org/abs/1404.2816

Pribavkina, E.V., Rodaro, E.: Synchronizing automata with finitely many minimal
synchronizing words. Information and Computation 209, 568-579 (2011)
Trahtman, A.N.: The road coloring problem. Israel J. Math. 172, 51-60 (2009)
Volkov, M.V.: Synchronizing automata and the Cerny conjecture. In: C. Mar-
tin-Vide, F. Otto, H. Fernau (eds.), Languages and Automata Theory and
Applications—2nd Int. Conf., LATA 2008. Lect. Notes Comput. Sci., vol. 5196,
pp. 11-27. Springer, Heidelberg (2008)

http://arxiv.org/abs/1404.2816

	Completely Reachable Automata

