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Abstract. The use of formal methods and proof assistants helps to in-
crease the confidence in critical software. However, a formal proof is only
a guarantee relative to a formal specification, and not necessary about
the real requirements. There is always a jump when going from an infor-
mal specification to a formal specification expressed in a logical theory.
Thus, proving the correctness of a piece of software always makes the
implicit assumption that there is adequacy between the formalised spec-
ification –written with logical statements and predicates– and the real
requirements –often written in English–. Unfortunately, a huge part of
the complexity lies precisely in the specification itself, and it is far from
obvious that the formal specification says exactly and completely what
it should say. Why should we trust more these predicates than the code
that we’ve first refused to trust blindly, leading to these proofs? We show
in this paper that the proving activity has not replaced the testing activ-
ity but has only changed the object which requires to be tested. Instead
of testing code, we now need to test predicates. We present recent ideas
about how to conduct these tests inside the proof assistant on a few
examples, and how to automate them as far as possible.
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1 Introduction

One way to increase our confidence in software is to formally prove its correctness
using a proof assistant. Proofs assistants enable to write code, logical statements
and proofs in the same language, and offer the guarantee that every proof will
be automatically checked. Many of them are functional programming languages,
like Coq [2], Idris [3] and Agda [9], and others, like the B-Method [1] belong
to the imperative paradigm. These different paradigms are internally supported
by different logic. Systems like Coq, Idris and Agda are based on various higher
order logics (CoC, a variant of ML and UTT respectively) and are realisations
of the Curry-Howard correspondence, while the B-Method is based on Hoare
logic. These different foundations lead to different philosophies and different
ways to implement and verify a software, but all of them greatly increase the
confidence on the produced software. However, these guarantees tend to be too
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often considered as perfect, when they are in fact far from it. Knuth was –
certainly ironically– saying “Beware of bugs in the above code; I have only proved
it correct, not tried it”. The reality is precisely that a proof is not enough. When
we prove the correctness of a function, we only gain the guarantee expressed by
the proven lemma, and nothing more.

Say we want to implement a formally verified sorting function for list of
elements of type T , where T is ordered by a relation ≤. We can decide to define
the sorting function with a “weak” type, like sort : List T → List T , and to
use an external lemma to ensure the correctness of the function. Which property
does this function has to respect? First, the output has to be sorted, so we need
to define this notion of being sorted, here as an inductive predicate :

data isSorted : {T:Type} -> (Order T) -> (List T) -> Type where

NilIsSorted : (Tord : Order T) -> isSorted Tord []

SingletonIsSorted : (Tord : Order T) -> (x:T)

-> isSorted Tord [x]

ConsSorted : {Tord : Order T} -> (h1:T) -> (h2:T) -> (t:List T)

-> (isSorted Tord (h2::t)) -> (h1 ≤ h2)

-> (isSorted Tord (h1::(h2::t)))

The first and second constructor of this predicate say that [ ] and [x] are sorted
according to any order, and for any x. The third one says that a list of two
or more elements is sorted if h1 ≤ h2, and if the list deprived from its head
is also sorted. In order to express that the result of sort is sorted, we can
prove the following lemma: sort correct : ∀ (T : Type) (Tord : Order T ) (l :
List T ), isSorted Tord (sort l). The problem with this specification is that it
does not say anything about the content of the output. The function sort could
just return the empty list [ ] all the time, it would still be possible to prove
this correctness lemma. Here, the problem is that the function is underspecified,
and it is therefore possible to write a senseless implementation, which is unfor-
tunately provably correct. Only a careful reader could realise that the lemma
sort correct forgets to mention that the input and output list should be in bi-
jection, meaning that everything which was originally in the input list should
still be in the output, and that nothing else should have been added.

Another bug in the specification could have been to simply forget the third
constructor ConsSorted. But things more nasty can happen. Imagine that this
constructor would have been written with a typo, and that the condition (h1 ≤
h2) would have been incorrectly written as (h1 ≤ h1). Any list would be seen
as “sorted”, just because of this single typo, and the algorithm could for exam-
ple return its input unchanged. One could object that when doing the proof of
correctness, we should realize that the proof is being done too easily, without
having to use the essential property that the output is being built such as any
element in the list is always lower or equal than its next element. The reality is
quite different because many effort are going in the direction of proof automa-
tion, which aims to let the machine automatically generate the proof for some
kind of goals. For example, Coq has already a Ring prover [7] and many others
automations, and Idris has been recently equipped with a hierarchy of provers
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for algebraics structures [6]. There are even extensions to languages, such as
Ltac [4] and Mtac [10] that aim to help the automation of tactics. The problem
is that the machine is never going to find a proof “too easy”, and will never
report that something seems weird with the specification given by the user.

Thus, if we want to trust the proven software, we’re now forced to believe
that there is adequacy between the formal specification and the informal re-
quirements. A switch has occurred. We used to have to trust code, but we now
have to trust logical statements and predicates. But when the specification is
too often as complicated as the code, why should we blindly believe in it, when
we’ve first refused to blindly trust the code? The primary aim of this paper
is to raise awareness on the adequacy concern, and to see how heterogeneous
approaches, that mixes both proofs and tests, can help to go a step forward in
the certification process, in the context of proof assistants based on type theory.
More precisely, we :

– Show some basic approaches to the problem of underspecification (section 2)
– Present a new way to test the predicate in the proof assistant, by auto-

matically generating terms, and we completely automate these tests. We
also show how we can go a step forward by replacing these tests about the
predicate by some proofs. (section 3)

– We discuss possible directions for making dependently typed programming
languages more adapted to the testing of specifications (section 4).

We use Idris, a dependently typed programming language, but all the ideas
that we present here can be applied to any proof assistant based on type theory.
The running example that we use in this paper can be found online at https:

//github.com/FranckS/ProofsAndTests

2 Naive and usual approaches to the adequacy problem

When confronted to this problem of adequacy between the intuitive notion and
the formalised one, a first possibility is to formalise the notion multiple times,
with different predicates, and to prove that they are equivalent. With our ex-
ample, that means that we need to find another formalisation isSorted′ of be-
ing sorted, and to prove the following lemma. pred equiv : ∀ (T : Type) (l :
List T ), (isSorted l)↔ (isSorted′ l). This approach aims at increasing the con-
fidence in our formal definitions by assuming that if we’ve managed to define
multiple times the same notion, then we’ve surely succeeded to define the notion
we wanted. The biggest problem with this approach is to be able to find some
alternative formalisations that are sufficiently different from the original one.
Obviously, if the new formalisations are too similar to the original one (and in
the worst case the new ones are just syntactical variants of the first one), then
we won’t gain any guarantee. The ideal would be to capture the same notion
by using very different points of view, and we will show in section 3 an original
approach for doing so.
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In order to gain confidence in the formal specifications we write, another
traditional approach is to test the predicate on some values. That consists in
defining a few terms, usually by hand, for which we know if the predicate should
hold or not, and to prove that the predicate effectively holds when it should, and
that it does not when it should not. For example, with the predicate isSorted
defined above, we can prove that it holds on the list [3, 5, 7] that we know sorted.

isSorted_test1 : isSorted natIsOrdered [3, 5, 7]

isSorted_test1 =

let p1 : (3 <= 5) = tryDec (lowerEqDec natIsOrdered 3 5) in

let p2 : (5 <= 7) = tryDec (lowerEqDec natIsOrdered 5 7) in

ConsSorted 3 5 [7]

(ConsSorted 5 7 [] (SingletonIsSorted _ 7) p2) p1

This test is a test done by proof : we show that the predicate holds on some
specific value, here [3, 5, 7], by doing the proof. We can go a step forward by
removing the need of doing these specific proofs by hand, because in this case,
the predicate isSorted can be decided : there exists an algorithm that produces
a proof of (isSorted l) if appropriate, or a proof of (not (isSorted l)) otherwise.

decideIsSorted : (Tord : Order T) -> (l:List T)

-> Dec(isSorted Tord l)

decideIsSorted Tord [] = Yes (NilIsSorted Tord)

decideIsSorted Tord [x] = Yes (SingletonIsSorted Tord x)

decideIsSorted Tord (h1::(h2::t)) with (lowerEqDec Tord h1 h2)

| (Yes h1_lower_h2) with (decideIsSorted Tord (h2::t))

| (Yes h2_tail_sorted) = Yes

(ConsSorted h1 h2 t h2_tail_sorted h1_lower_h2)

| (No h2_tail_not_sorted) = No [...]

| (No h1_not_lower_h2) = No [...]

Now, in order to do tests by proof, we can simply run the decision procedure.

isSorted_test1’ : Dec (isSorted natIsOrdered [3,5,7])

isSorted_test1’ = decideIsSorted natIsOrdered [3,5,7]

And if we evaluate isSorted test1′, the system will answer Y es and a proof of
isSorted [3, 5, 7], which means that the predicate has passed this test. With this
technique, we can run semi-automatically a few tests on the predicate isSorted.
It is semi-automatic in the sense that we still have to define by hand some terms
that we know sorted or unsorted but we can let the machine produce the proof
that the predicate holds or not on these specific values. This is not too bad –and
this is in fact all of what is usually done, when it is actually done– but we would
like to have a stronger guarantee, and not only that the predicate will coincide
with our intuitive notion on a couple of tested terms.
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3 Testing the predicate by automatic generation of terms

The key idea that this paper wants to convey is that it is often easier to generate
examples of a notion than it is to precisely define it. We can operate an interesting
change of point of view by generating the set of terms that we precisely wanted
to describe with the predicate. With our example of sorted lists, that means that
we need to define the same notion of being sorted, but this time with a definition
example-based. Writing a function that produces all the sorted lists might be a
bit more difficult than just giving a few examples, but this complicated function
will have the main advantage of being so different from the predicate that if the
two notions agree, then we will have gain a great confidence on the predicate.
We decide to use coinduction and the type Stream (a coinductive version of lists,
potentially infinite) in order to generate –with what we call a generator– all the
sorted lists of size n.

generateSortedList : (T : Type) → (recEnu : RecEnum T ) → (Tord :
Order T )→ (n : Nat)→ Stream (List T ).

To do so, the type T needs to be recursively enumerable, which means that
there must exist a computational map Nat → Maybe c with the condition
that this map is surjective, which means that any value of type c should be
hit at least once by the map : map is surjective : (y : c) → (x : Nat ∗
∗ (computableMap x = Just y)).

We want to check that this function and the predicate coincide. Since the
predicate isSorted is decidable with decideIsSorted, we can automatically check
whether the generated sorted lists of size n are automatically sorted (according
to isSorted) by running this decision procedure. But since there can be infinitely
many generated sorted lists of size n when n > 0, we will only check that the
generator and the predicate coincide on a finite observation1 of the resulting
stream. The key point is that this observation can be arbitrary big, and the
bigger it is, the better the guarantee is about isSorted.

We show how the observation is made on an example. Let T be a type that
only contains three constant values A, B and C. Since T is finite, it is therefore
obviously recursively enumerable. We define on it the strict order A < B < C.
Let’s automatically generate the first m sorted lists of T , of size n, by unfolding
m times the result of generateSortedList.

testGenerator : (m:Nat) -> (n:Nat) -> Maybe(Vect m (List T))

testGenerator m n =

let x = generateSortedList T TisRecEnu TisOrdered n

in unfold_n_times x m

We can ask for the first 8 sorted lists of size 4 by evaluating testGenerator 8 4:

Just [[A, A, A, A], [A, A, A, B], [A, A, A, C], [A, A, B, B],

[A, A, B, C], [A, A, C, C], [A, B, B, B], [A, B, B, C]]

: Maybe (Vect 8 (List T))

1 A finite observation of a stream, also called approximation at rank m of a stream,
is a vector of size m that has the same m first elements than the stream
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Now, instead of simply generating the first m sorted lists, we run the decision
procedure on all of these m tests in order to know if the predicate and the
generator agree on this portion. The result will be a vector m booleans.

testSorted : (m:Nat) -> (n:Nat) -> Vect m Bool

testSorted m n =

let x = generateSortedList T TisRecEnu TisOrdered n in

let y = Smap (\l => let res = decideIsSorted TisOrdered l in

case res of

Yes _ => True

No _ => False) x in

unfold_n_times_with_padding y m True

And we can inspect the result of running the first 8 tests of size 4 by evaluating
testSorted 8 4.

[True, True, True, True, True, True, True, True] : Vect 8 Bool

When we want to test isSorted on a large number of tests, we might not
want to inspect manually the result of each test. We can write a function
testSorted result : (m : Nat) → (n : Nat) → Bool that calls testSorted m n
and does the boolean And on each element of the resulting vector. Now, we can
for example test the predicate on the first 50 sorted lists of size 9 by running
testSorted result 50 9 and if we do so we get the overall result True which
means that the predicate agrees with the generator on all these 50 tests.

However, if the predicate isSorted has been incorrectly written, then the
result of this test might inform us that there’s something wrong with the formal
specification. For example, if we’ve forgotten the third constructor consSorted
in the definition of isSorted, then the result of (testSorted 8 4) will be False,
which means that at least one of the produced list is not seen as sorted according
to isSorted, and we will therefore know that this predicate does not capture our
intuitive notion of sortedness.

In order to go a step forward, we can decide to replace the tests on the
predicate by proofs. Instead of testing the predicate on a finite subset of all
the generated sorted lists as we just did, we can try to prove that any of the
automatically generated sorted list is provably sorted according to isSorted.

generated_implies_pred_holds : {T:Type}

-> (recEnu:RecEnum T) -> (Tord : Order T) -> (n:Nat)

-> (All (generateSortedList T recEnu Tord n)

(\l => isSorted Tord l))

Proof. By induction on n. When n is zero, there is only one sorted list generated,
which is the empty list, and we know that the empty list is sorted thanks to the
constructor NilIsSorted. When n is some successor (S pn), we know by using
recursively the lemma on the smaller value pn that all sorted lists of size pn are
sorted according to isSorted. Since the Stream of all sorted lists of size (S pn)
has been made from the Stream of all sorted lists of size pn by adding to all of
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them –on the head position– an element lower or equal to their respective current
heads, we know that the property has been preserved at the higher rank. ut

This lemma has the advantage of not requiring the predicate to be decidable,
whereas this was needed when we automatically tested the predicate on a finite
observation. However, one could object that this lemma is itself built by using
a predicate, All, and that we can’t necessary trust blindly such a specification.
The answer is that no guarantee is perfect, and all we can do is to add some
guarantees, but there is necessarily always something to trust. Moreover, this
new kind of specifications and proofs –about the predicate itself– uses more
primitive components like streams and the predicate All, and these components
can be provided once and for all. If they are part of some standard library being
used intensively, there is very low risk that they do not capture the desired
semantic.

4 Conclusions and future work

In this paper we’ve presented a new way to test a predicate based on an auto-
matic generation of terms that should have the desired property. This adequacy
between the predicate and the generator helps to gain confidence in the predi-
cate. The technique presented on section 3 was based on a finite observation of
the terms generated in endless amount, processed by the decision procedure. We
have also shown on an example how these tests can be automated.

We haven’t been able to find much work done in the direction of predicate
testing in the environment of proof assistants, but we strongly believe that this
aspect is crucial, as there is absolutely no point to prove the “correctness” of a
function relatively to a bad specification. One could however question why formal
certification is needed at all, if after going through all the effort of interactive
theorem proving we still have to test the specification itself, and also need tools
to support it. We believe that the process of formalisation helps to uncover things
that were missing or weakly specified in the informal requirements. For example,
the development of the formally verified compiler CompCert [8] has contributed
to brought to light many under-specified behaviours in the specification of the
C standard.

The machinery developed for the running example presented in this paper is
extremely specific and it is not reasonable to believe that this work should and
could be done for every formal specification. What it shows is that we really
need to explore how proof assistants themselves could help to gain confidence
about predicates and logical formulae. A possible direction could be to build
execution engines for formal specifications written in dependent type theories.
Such a system would take in input a predicate and would produce some of the
terms that make this predicate hold. The ideal would be to have a query system
where one could ask the system to try to look if some specific terms are captured
by the predicate. Since the problem of finding proof is undecidable in the general
case in higher-order logics (that’s also the case in first-order logic), such a system
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can’t be complete and entirely automatic, and therefore the user would have to
help the system at times.

Another possible direction is to equip proof assistants with many robust and
generic concepts (like being sorted) once and for all. That would save the user
from the error prone activity of writing many primitive logical properties. Equip-
ping proof assistants with many generic and useful concepts already available,
like bricks ready to be assembled, is another current challenge to make proofs
assistants really usable.
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