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Advances in Property-Based Testing for αProlog
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2 Università degli Studi di Milano
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Abstract. αCheck is a light-weight property-based testing tool built on
top of αProlog, a logic programming language based on nominal logic.
αProlog is particularly suited to the validation of the meta-theory of
formal systems, for example correctness of compiler translations involv-
ing name-binding, alpha-equivalence and capture-avoiding substitution.
In this paper we describe an alternative to the negation elimination al-
gorithm underlying αCheck that substantially improves its effectiveness.
To substantiate this claim we compare the checker performances w.r.t.
two of its main competitors in the logical framework niche, namely the
QuickCheck/Nitpick combination offered by Isabelle/HOL and the ran-
dom testing facility in PLT-Redex.

1 Introduction

Formal compiler verification has come a long way from McCarthy and Painter’s
“Correctness of a Compiler for Arithmetic Expression” (1967), as witnessed by
the success of CompCert and subsequent projects [21,35]. However outstanding
these achievements are, they are not a magic wand for every-day compiler writers:
not only CompCert was designed with verification in mind, whereby the imple-
mentation and the verification were a single process, but there are only a few
dozen people in the world able and willing to carry out such an endeavour. By
verification, CompCert means the preservation of certain simulation relations be-
tween source, intermediate and target code; however, the translations involved are
relatively simple compared to those employed by modern optimizing compilers.
Despite some initial work [1,7], handling more realistic optimizations seems even
harder, e.g. the verification of the call arity analysis and transformation in the
Glasgow Haskell Compiler (GHC):

“The [Nominal] Isabelle development corresponding to this paper, including the
definition of the syntax and the semantics, contains roughly 12,000 lines of code
with 1,200 lemmas (many small, some large) in 75 theories, created over the
course of 9 months” (page 11, [7]).

For the rest of us, hence, it is back to compiler testing, which is basically syn-
onymous with passing a hand-written fixed validation suite. This is not completely
satisfactory, as the coverage of those tests is difficult to assess and because, being
fixed, these suites will not uncover new bugs. In the last few years, randomized
differential testing [24] has been suggested in combination with automatic gener-
ation of (expressive) test programs, most notably for C compilers with the Csmith
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tool [36] and to a lesser extent for GHC [30]. The oracle is comparison checking :
Csmith feeds randomly generated programs to several compilers and flags the
minority one(s), that is, those reporting different outputs from the majority of
the other compilers under test, as incorrect. Similarly, the outcome of GHC on a
random program with or without an optimization enabled is compared.

Property-based testing, as pioneered by QuickCheck [12], seems to leverage the
automatic generation of test cases with the use of logical specifications (the prop-
erties), making validation possible not only in a differential way, but internally,
w.r.t. (an abstraction of) the behavior of the source and intermediate code. In
fact, compiler verification/validation is a prominent example of the more general
field of verification of the meta-theory of formal systems. For many classes of
(typically) shallow bugs, a tool that automatically finds counterexamples can be
surprisingly effective and can complement formal proof attempts by warning when
the property we wish to prove has easily-found counterexamples. The beauty of
such meta-theory model checking is that, compared to other general forms of sys-
tem validation, the properties that should hold are already given by means of the
theorems that the calculus under study is supposed to satisfy. Of course, those
need to be fine tuned for testing to be effective, but we are mostly free of the
thorny issue of specification/invariant generation.

In fact, such tools are now gaining traction in the field of semantics engineering,
see in particular the QuickCheck/Nitpick combination offered in Isabelle/HOL [4]
and random testing in PLT-Redex [18]. However, a particular dimension to vali-
dating for example optimizations in a compiler such as GHC, whose intermediate
language is a variant of the polymorphically typed λ-calculus, is a correct, sim-
ple and effective handling of binding signatures and associated notions such as
α-equivalence and capture avoiding substitutions. A small but not insignificant
part of the success of the CompCert project is due to not having to deal with any
notion of binder3. The ability to encode possibly non-algorithmic relations (such
as typing) in a declarative way would also be a plus.

The nominal logic programming language αProlog [11] offers all those facilities.
Additionally, it was among the first to propose a form of property based testing for
language specifications with the αCheck tool [9]. In contrast to QuickCheck/Nit-
pick and PLT Redex, our approach supports binding syntax directly and uses
logic programming to perform exhaustive symbolic search for counterexamples.
Systems lacking this kind of support may end up with ineffective testing capabil-
ities or requiring an additional amount of coding, which needs to be duplicated
in every case study:

“Redex offers little support for handling binding constructs in object languages.

It provides a generic function for obtaining a fresh variable, but no help in

defining capture-avoiding substitution or α-equivalence [ . . . ] In one case [ . . . ]

managing binders constitutes a significant portion of the overall time spent [

. . . ] Generators derived from grammars [ . . . ] require substantial massaging to

3 Xavier Leroy, personal communication. In fact, the encoding of the λ-calculus in [22]
does not respect α-equivalence, nor does it implement substitutions in a capture avoid-
ing way.



achieve high test coverage. This deficiency is particularly pressing in the case

of typed object languages, where the massaging code almost duplicates the

specification of the type system” (page 5, [18]).

αCheck extends αProlog with tools for searching for counterexamples, that is,
substitutions that makes the antecedent of a specification true and the conclusion
false. In logic programming terms this means fixing a notion of negation. To begin
with, αCheck adopted the infamous negation-as-failure (NF) operation, “which
put pains thousandfold upon the” logic programmers. As many good things in
life, its conceptual simplicity and efficiency is marred by significant problems:

– the lack of an agreed intended semantics against which to carry a soundness
proof: this concern is significant because the semantics of negation as failure
has not yet been investigated for nominal logic programming;

– even assuming such a semantics, we know that NF is unsound for non-ground
goals; hence all free variables must be instantiated before solving the negated
conclusion. This is obviously exponentially expensive in an exhaustive search
setting and may prevent optimizations by goal reordering.

To remedy this αCheck also offered negation elimination (NE) [3,26], a source-
to-source transformation that replaces negated subgoals to calls to equivalent pos-
itively defined predicates. NE by-passes the previous issues arising for NF since,
in the absence of local (existential) variables, it yields an ordinary (α)Prolog
program, whose intended model is included in the complement of the model of
the source program. In particular, it avoids the expensive term generation step
needed for NF , it has been proved correct, and it may open up other opportu-
nities for optimization. Unfortunately, in the experiments reported in our initial
implementation of αCheck [9], NE turned out to be slower than NF .

Perhaps to the reader’s chagrin, this paper does not tackle the validation of
compiler optimizations (yet). Rather, it lays the foundations by:

1. describing an alternative implementation of negation elimination, dubbed
NEs—“s” for simplified: this improves significantly over the performance of
NE as described in [9] by producing negative programs that are equivalent, but
much more succinct, so much as to make the method competitive w.r.t. NF ;

2. and by evaluating our checker in comparison with some of its competitors
in the logical framework niche, namely QuickCheck/Nitpick [4] and PLT-
Redex [18]. To the best of our knowledge, this is the first time any of these
three tools have been compared experimentally.

In the next section we give a tutorial presentation of the tool and move then
to the formal description of the logical engine (Section 3). In Section 4, we de-
tail the NEs algorithm and its implementation, whereas Section 5 carries out the
promised comparison on two case studies, a prototypical λ-calculus with lists and
a basic type system for secure information flow. The sources for αProlog and
αCheck can be found at https://github.com/aprolog-lang/aprolog. Supple-
mentary material, including the full listing of the case studies presented here and
an online appendix containing additional experiments and some formal notions

https://github.com/aprolog-lang/aprolog


used in Section 3, but omitted here for the sake of space, are available at [10]. We
assume some familiarity with logic programming.

2 A Brief Tour of αCheck

We specify the formal systems and the properties we wish to check as Horn logic
programs in αProlog [11], a logic programming language based on nominal logic, a
first-order theory axiomatizing names and name-binding introduced by Pitts [32].

In αProlog, there are several built-in types, functions, and relations with spe-
cial behavior. There are distinguished name types that are populated with in-
finitely many name constants. In program text, a lower-case identifier is considered
to be a name constant by default if it has not already been declared as something
else. Names can be used in abstractions, written a\M in programs, considered equal
up to α-renaming of the bound name. Thus, where one writes λx.M , ∀x.M , etc.
in a paper exposition, in αProlog one writes lam(x\M), forall(x\M), etc. In ad-
dition, the freshness relation a # t holds between a name a and a term t that
does not contain a free occurrence of a. Thus, x 6∈ FV (t) is written in αProlog as
x # t; in particular, if t is also a name then freshness is name-inequality. For con-
venience, αProlog provides a function-definition syntax, but this is just translated
to an equivalent (but more verbose) relational implementation via flattening.

Horn logic programs over these operations suffice to define a wide variety
of object languages, type systems, and operational semantics in a convenient
way. To give a feel of the interaction with the checker, here we encode a simply-
typed λ-calculus augmented with constructors for integers and lists, following the
PLT-Redex benchmark sltk.lists.rkt from http://docs.racket-lang.org/

redex/benchmark.html, which we will examine more deeply in Section 5.1. The
language is formally declared as follows:

Types A,B ::= int | ilist | A→ B
Terms M ::= x | λx:A. M |M1 M2 | c | err
Constants c ::= n | nil | cons | hd | tl
Values V ::= c | λx:A. M | cons V | cons V1 V2

We start (see the top of Figure 1) by declaring the syntax of terms, constants
and types, while we carve out values via an appropriate predicate. A similar
predicate is err characterizes the threading in the operational semantics of the
err expression, used to model run time errors such as taking the head of an empty
list.

We follow this up (see the remainder of Figure 1) with the static semantics
(predicate tc) and dynamic semantics (one-step reduction predicate step), where
we omit the judgments for the value predicate and subst function, which are
analogous to the ones in [9]. Note that err has any type and constants are typed
via a table tcf, also omitted.

Horn clauses can also be used as specifications of desired program properties
of such an encoding, including basic lemmas concerning substitution as well as
main theorems such as preservation, progress, and type soundness. This is realized
via checking directives

http://docs.racket-lang.org/redex/benchmark.html
http://docs.racket-lang.org/redex/benchmark.html


ty: type.

intTy: ty. funTy: (ty,ty) -> ty. listTy: ty.

cst: type.

toInt: int -> cst. nil: cst. cons: cst. hd: cst. tl: cst.

id: name_type.

exp: type.

var: id -> exp. lam: (id\exp,ty) -> exp. app: (exp,exp) -> exp.

c: cst -> exp. err: exp.

type ctx = [(id,ty)].

pred tc (ctx,exp,ty).

tc(_,err,T).

tc(_,c(C),T) :- tcf(C) = T.

tc([(X,T)|G],var(X),T).

tc([(Y,_)|G],var(X),T) :- X # Y, tc(G,var(X),T).

tc(G,app(M,N),U) :- tc(G,M,funTy(T,U)), tc(G,N,T).

tc(G,lam(x\M,T),funTy(T,U)) :- x # G, tc([(x,T) |G],M,U).

pred step(exp,exp).

step(app(c(hd),app(app(c(cons),V),VS)),V) :- value(V), value(VS).

step(app(c(tl),app(app(c(cons),V),VS)),VS):- value(V), value(VS).

step(app(lam(x\M,T),V), subst(M,x,V)) :- value(V).

step(app(M1,M2),app(M1’,M2)) :- step(M1,M1’).

step(app(V1,M2),app(M1,M2’)) :- value(V1), step(M2,M2’).

pred is_err(exp).

is_err(err).

is_err(app(c(hd),c(nil)))).

is_err(app(c(tl),c(nil))).

is_err(app(E1,E2)) :- is_err(E1).

is_err(app(V1,E2)) :- value(V1), is_err(E2).

Fig. 1. Encoding of the example calculus in αProlog

#check "spec" n : H1, ..., Hn => A.

where spec is a label naming the property, n is a parameter that bounds the search
space, and H1 through Hn and A are atomic formulas describing the preconditions
and conclusion of the property. As with program clauses, the specification formula
is implicitly universally quantified. Following the PLT-Redex development, we
concentrate here only on checking that that preservation and progress hold.

#check "pres" 7 : tc([],E,T), step(E,E’) => tc([],E’,T).

#check "prog" 7 : tc([],E,T) => progress(E).

Here, progress is a predicate encoding the property of “being either a value, an
error, or able to make a step”. The tool will not find any counterexample, because,
well, those properties are (hopefully) true of the given setup. Now, let us insert



a typo that swaps the range and domain types of the function in the application
rule, which now reads:

tc(G,app(M,N),U) :- tc(G,M,funTy(T,U)), tc(G,N,U). % was funTy(U,T)

Does any property become false? The checker returns immediately with this coun-
terexample to progress:

E = app(c(hd),c(toInt(N)))

T = intTy

This is abstract syntax for hd n, an expression erroneously well-typed and obvi-
ously stuck. Preservation meets a similar fate: (λx:T → int. x err) n steps to an
ill-typed term.

E = app(lam(x\app(var(x),err),funTy(T,intTy)),c(toInt(N)))

E’ = app(c(toInt(N)),err)

T = intTy

3 The Core Language

In this section we give the essential notions concerning the core syntax, to which
the surface syntax used in the previous section desugars, and semantics of αProlog
programs.

An αProlog signature is composed by sets ΣD and ΣN of, respectively, base
types δ, which includes a type o of propositions, and name types ν; a collection
ΣP of predicate symbols p : τ → o and one ΣF of function symbol declarations
f : τ → δ. Types τ are formed as specified by the following grammar:

τ ::= δ | τ × τ ′ | 1 | ν | 〈ν〉τ

where δ ∈ ΣD and ν ∈ ΣN and 1 is the unit type. Given a signature, the language
of terms is defined over sets V = {X,Y, Z, . . .} of logical variables and sets A =
{a, b, . . .} of names:

t, u ::= a | π ·X | 〈〉 | 〈t, u〉 | 〈a〉t | f(t)

π ::= id | (a b) ◦ π

where π are permutations, which we omit in case id ·X, 〈〉 is unit, 〈t, u〉 is a pair
and 〈a〉t is the abstract syntax for name-abstraction. The result of applying the
permutation π (considered as a function) to a is written π(a). Typing for these
terms is standard, with the main novelty being that name-abstractions 〈a〉t have
abstraction types 〈ν〉τ provided a : ν and t : τ .

The freshness (s #τ u) and equality (t ≈τ u) constraints, where s is a term of
some name type ν, are the new features provided by nominal logic. The former
relation is defined on ground terms by the following inference rules, where f : τ →
δ ∈ ΣF :

a 6= b

a #ν b a #1 〈〉
a #τ t

a #δ f(t)

a #τ1 t1 a #τ2 t2

a #τ1×τ2 〈t1, t2〉
a #ν′ b a #τ t

a #〈ν′〉τ 〈b〉t a #〈ν′〉τ 〈a〉t



In the same way we define the equality relation, which identifies terms modulo
α-equivalence, where (a b) · u denotes swapping two names in a term:

a ≈ν a 〈〉 ≈1 〈〉
t1 ≈τ1 u1 t2 ≈τ2 u2
〈t1, t2〉 ≈τ1×τ2 〈u1, u2〉

t ≈τ u
f(t) ≈δ f(u)

a ≈ν b t ≈τ u
〈a〉t ≈〈ν〉τ 〈b〉u

a #ν b a #ν u t ≈τ (a b) · u
〈a〉t ≈〈ν〉τ 〈b〉u

Given a signature, goals G and program clauses D have the following form:

A ::= t ≈ u | t # u

G ::= ⊥ | > | A | p(t) | G ∧G′ | G ∨G′ | ∃X:τ. G | Na:ν. G | ∀∗X:τ. G

D ::= > | p(t) | D ∧D′ | G ⊃ D | ∀X : τ. D | ⊥ | D ∨D′

The productions shown in black yield a fragment of nominal logic called N-goal
clauses [11], for which resolution based on nominal unification is sound and com-
plete. This is in contrast to the general case where the more complicated equiv-
ariant unification problem must be solved [8]. We rely on the fact that D for-
mulas in a program ∆ can always be normalized to sets of clauses of the form
∀X:τ . G ⊃ p(t), denoted def(p,∆). The fresh-name quantifier N, firstly intro-
duced in [32], quantifies over names not occurring in a formula (or in the values
of its variables).The extensions shown in red here in the language BNF (and in
its proof-theoretic semantics in Figure 2) instead are constructs brought in from
the negation elimination procedure (Section 4.1) and which will not appear in
any source programs. In particular, an unusual feature is the extensional univer-
sal quantifier ∀∗ [15]. Differently from the intensional universal quantifier ∀, for
which ∀X:τ. G holds if and only if G[x/X] holds, where x is an eigenvariable
representing any terms of type τ , ∀∗X:τ. G succeeds if and only if G[t/X] does
for every ground term of type τ .

Constraints are G-formulas of the following form:

C ::= > | t ≈ u | t # u | C ∧ C ′ | ∃X:τ. C | Na:ν. C

We write K for a set of constraints and Γ for a context keeping track of the types
of variables and names. Constraint-solving is modeled by the judgment Γ ;K |= C,
which holds if for all maps θ from variables in Γ to ground terms if θ |= K then
θ |= C. The latter notion of satisfiability is standard, modulo handling of names:
for example θ |= Na:ν. C iff for some b fresh for θ and C, θ |= C[b/a].

We can describe an idealized interpreter for αProlog with the “amalgamated”
proof-theoretic semantics introduced in [11] and inspired by similar techniques
stemming from CLP [20] — see Figure 2, sporting two kind of judgments, goal-

directed proof search Γ ;∆;K ⇒ G and focused proof search Γ ;∆;K D−→ Q.
This semantics allows us to concentrate on the high-level proof search issues,
without requiring to introduce or manage low-level operational details concerning
constraint solving. We refer the reader to [11] for more explanation and ways
to make those judgments operational. Note that the rule ∀∗ω says that goals of



Γ ;K |= A

Γ ;∆;K ⇒ A
con

Γ ;∆;K ⇒ G1 Γ ;∆;K ⇒ G2

Γ ;∆;K ⇒ G1 ∧G2
∧R

Γ ;∆;K ⇒ Gi

Γ ;∆;K ⇒ G1 ∨G2
∨Ri

Γ ;K |= ∃X:τ. C Γ,X:τ ;∆;K, C ⇒ G

Γ ;∆;K ⇒ ∃X:τ. G
∃R

Γ ;K |= Na:ν. C Γ#a:ν;∆;K, C ⇒ G

Γ ;∆;K ⇒ Na:ν. G
NR

Γ ;∆;K ⇒ > >R
Γ ;∆;K D−→ Q D ∈ ∆

Γ ;∆;K ⇒ Q
sel∧

{Γ,X:τ ;∆;K, C ⇒ G | Γ ;K |= ∃X:τ. C}
Γ ;∆;K ⇒ ∀∗X:τ. G

∀∗ω

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ ;K |= t ≈ u

Γ ;∆;K p(t)−→ p(u)
hyp

Γ ;∆;K Di−→ Q

Γ ;∆;K D1∧D2−→ Q
∧Li

Γ ;∆;K D−→ Q Γ ;∆;K ⇒ G

Γ ;∆;K G⊃D−→ Q
⊃L

Γ ;K |= ∃X:τ. C Γ,X:τ ;∆;K, C D−→ Q

Γ ;∆;K ∀X:τ. D−→ Q
∀L

Γ ;∆;K ⊥−→ Q
⊥L

Γ ;∆;K D1−→ Q Γ ;∆;K D2−→ Q

Γ ;∆;K D1∨D2−→ Q
∨L

Fig. 2. Proof search semantics of αProlog programs

the form ∀∗X:τ.G can be proved if Γ,X:τ ;∆;K, C ⇒ G is provable for every
constraint C such that Γ ;K |= ∃X:τ. C holds. Since this is hardly practical, the
number of candidate constraints C being infinite, we approximate it by modifying
the interpreter so as to perform a form of case analysis: at every stage, as dictated
by the type of the quantified variable, we can either instantiate X by performing
a one-layer type-driven case distinction and further recur to expose the next layer
by introducing new ∀∗ quantifiers, or we can break the recursion by instantiation
with an eigenvariable.

4 Specification Checking

Informally, #check specifications correspond to specification formulas of the form

Na.∀X. G ⊃ A (1)



where G is a goal and A an atomic formula (including equality and freshness
constraints). Since the N-quantifier is self-dual, the negation of (1) is of the form
Na.∃X.G ∧ ¬A. A (finite) counterexample is a closed substitution θ providing

values for X such that θ(G) is derivable, but the conclusion θ(A) is not. Since we
live in a logic programming world, the choice of what we mean by “not holding”
is crucial, as we must choose an appropriate notion of negation.

In αCheck the reference implementation reads negation as finite failure (not):

Na.∃X:τ . G ∧ gen[[τ ]](X) ∧ not(A) (2)

where gen[[τ ]] are type-indexed predicates that exhaustively enumerate the (ground)
inhabitants of τ . For example, gen[[ty]] yields the predicate:

gen_ty(intTy). gen_ty(listTy).

gen_ty(funTy(T1,T2)) :- gen_ty(T1), gen_ty(T2).

A check such as (2) can simply be executed as a goal in the αProlog interpreter,
using the number of resolution steps permitted to solve each subgoal as a bound
on the search space. This method, combined with a complete search strategy such
as iterative deepening, will find a counterexample, if one exists. This realization
of specification checking is simple and effective, while not escaping the traditional
problems associated with such an operational notion of negation.

4.1 Negation Elimination

Negation Elimination [3,26] is a source-to-source transformation that replaces
negated subgoals with calls to a combination of equivalent positively defined
predicates. In the absence of local (existential) variables, NE yields an ordinary
(α)Prolog program, whose intended model is included in the complement of the
model of the source program. In other terms, a predicate and its complement
are mutually exclusive. Exhaustivity, that is whether a program and its comple-
ment coincide with the Herbrand base of the program’s signature may or may not
hold, depending on the decidability of the predicate in question; nevertheless, this
property, though desirable, is neither frequent nor necessary in a model check-
ing context. When local variables are present, the derived positivized program
features the extensional universal quantifier presented in the previous section.

The generation of complementary predicates can be split into two phases: term
complementation and clause complementation.

Term complementation A cause of atomic goal failure is when its arguments do
not unify with any of the program clause heads in its definition. The idea is then
to generate the complement of the term structure in each clause head by con-
structing a set of terms that differ in at least one position. However, and similarly
to the higher-order logic case, the complement of a nominal term containing free
or bound names cannot be represented by a finite set of nominal terms. For our
application nonetheless, we can pre-process clauses so that the standard comple-
mentation algorithm for (linear) first order terms applies [19]. This forces terms



notG(>) = ⊥ notD(>) = ⊥
notG(⊥) = > notD(⊥) = >

notG(p(t)) = p¬(t) notD(G ⊃ p(t)) =
∧
{∀(p¬(u)) | u ∈ not[[τ ]](t)} ∧

(notG(G) ⊃ p¬(t))
notG(t ≈τ u) = neq [[τ ]](t, u)
notG(a #τ u) = nfr [[ν, τ ]](a, u)
notG(G ∧G′) = notG(G) ∨ notG(G′) notD(D ∧D′) = notD(D) ∨ notD(D′)
notG(G ∨G′) = notG(G) ∧ notG(G′) notD(D ∨D′) = notD(D) ∧ notD(D′)

notG(∀∗X:τ. G) = ∃X:τ. notG(G) notD(∀X:τ. D) = ∀X:τ. notD(D)
notG(∃X:τ. G) = ∀∗X:τ. notG(G)
notG( Na:ν. G) = Na:ν. notG(G) notD(∆) = notD(def(p,∆))

Fig. 3. Negation of a goal and of clause

in source clause heads to be linear and free of names (including swapping and
abstractions), by replacing them with logical variables, and, in case they occurred
in abstractions, by constraining them in the clause body by a concretion to a fresh
variable. A concretion, written t@a, is the elimination form for abstractions and
can be implemented by translating a goal G with an occurrence of [t@a] (notation
G[t@a]) to ∃X.t ≈ 〈a〉X ∧ G[X]. For example, the clause for typing lambdas is
normalized as:
tc(G,lam(M,T),funTy(T,U)):- new x. tc([(x,T) |G],M@x,U).

Hence, we can use a type-directed version of first-order term complementation,
not[[τ ]] : τ → τ set and prove its correctness in term of exclusivity following [3,27]:
the intersection of the set of ground instances of a term and its complement is
empty. Exhaustivity also holds, but will not be needed. The definition of not[[τ ]]
is in the appendix [10], but we offer the following example:

not[[exp]](app(c(hd), )) =

{lam( , ), err, c( ), var( ), app(c(tl), ), app(c(nil), ), app(c(toInt( )), ),

app(var( ), ), app(err, ), app(lam( , ), ), app(app( , ), )}

Clause complementation The idea of the clause complementation algorithm is to
compute the complement of each head of a predicate definition using term comple-
mentation, while clause bodies are negated pushing negation inwards until atoms
are reached and replaced by their complement and the negation of constraints is
computed. The contributions (in fact a disjunction) of each of the original clauses
are finally merged. The whole procedure can be seen as a negation normal form
procedure, which is consistent with the operational semantics of the language.

The first ingredient is complementing the equality and freshness constraints,
yielding (α-)inequality neq [[τ ]] and non-freshness nfr [[ν, δ]]: we implement these
using type-directed code generation within the αProlog interpreter and refer again
to the appendix [10] for their generic definition.



Figure 3 shows goal and clause complementation: most cases of the former,
via the notG function, are intuitive, being classical tautologies. Note that the
self-duality of the N-quantifier allows goal negation to be applied recursively.
Complementing existential goals is where we introduce extensional quantification
and invoke its proof-theory.

Clause complementation is where things get interesting and differ from the
previous algorithm [9]. The complement of a clause G ⊃ p(t) must contain a
“factual” part, built via term complementation, motivating failure due to clash
with (some term in) the head. We obtain the rest by negating the body with
notG(G). We take clause complementation definition-wise, that is the negation of
a program is the conjunction of the negation of all its predicate definitions. An
example may help: negating the typing clauses for constants and application (tc
from Fig. 2) produces the following disjunction:

(not_tc(_,err,_) /\ not_tc(_,var(_),_) /\ not_tc(_,app(_,_),_) /\

not_tc(_,lam(_,_),_) /\ not_tc(_,c(C),T):- neq(tcf(C), T))

\/

(not_tc(_,err,_) /\ not_tc(_,var(_),_) /\ not_tc(_,c(_),_) /\

not_tc(_,lam(_,_),_) /\

not_tc(G,app(M,N),U):- forall* T. not_tc(G,M,funTy(T,U)) /\

not_tc(G,app(M,N),U):- forall* T. not_tc(G,N,T))

Notwithstanding the top-level disjunction, we are not committing to any form of
disjunctive logic programming: the key observation is that ‘∨’ can be restricted to
a program constructor inside a predicate definition; therefore it can be eliminated
by simulating unification in the definition:

(G1 ⊃ Q1) ∨ (G2 ⊃ Q2) ≡ θ(G1 ∧G2 ⊃ Q1)

where θ = mgu(Q1, Q2). Because ∨ is commutative and associative we can per-
form this merging operation in any order. However, as with many bottom-up
operations, merging tends to produce a lot of redundancies in terms of clauses
that are instances of each other. We have implemented backward and forward
subsumption [23], by using an extension of the αProlog interpreter itself to check
entailment between newly generated clauses and the current database (and vice-
versa). Despite the fact that this subsumption check is partial, because the cur-
rent unification algorithm does not handle equivariant unification with mixed
prefixes [25] and extensional quantification [8], it makes all the difference: the
not_is_err predicate definition decreases from an unacceptable 128 clauses to a
much more reasonable 18. The final definition of not tc follows, where we (as in
Prolog) use the semicolon as concrete syntax for disjunction in the body:

not_tc(_,c(C),T) :- neq_ty(tcf(C),T).

not_tc([],var(_),_).

not_tc([(X,T)|G],var(X’),T’) :- (neq_ty(T,T’); fresh_id(X,X’)),

not_tc(G,var(X’),T’).

not_tc(G,app(M,N),U) :- forall* T:ty. not_tc(G,M,funTy(T,U));

not_tc(G,N,T).

not_tc(G,app(M,N),listTy) :- forall* T:ty. not_tc(G,M,funTy(T,listTy));

not_tc(G,N,T).

not_tc(G,app(M,N),intTy) :- forall* T:ty. not_tc(G,M,funTy(T,intTy));



not_tc(G,N,T).

not_tc(_,lam(_),listTy).

not_tc(_,lam(_),intTy).

not_tc(G,lam(M,T),funTy(T,U)):- new x:id. not_tc([(x,T)|G],M@x,U).

Regardless of the presence of two subsumed clauses in the app case that our
approach failed to detect, it is a big improvement in comparison to the 38 clauses
generated by the previous algorithm [9]. And in exhaustive search, every clause
counts.

Having synthesized the negation of the tc predicate, αCheck will use it inter-
nally while searching, for instance in the preservation check, for

∃E.∃T. tc([],E ,T ), step(E ,E ′), not tc([],E ′,T )

Soundness of clause complementation is crucial for the purpose of model check-
ing; we again express it in terms of exclusivity. The proof follows the lines of [26].

Theorem 1 (Exclusivity). Let K be consistent. It is not the case that:

– Γ ;∆;K ⇒ G and Γ ; notD(∆);K ⇒ notG(G);

– Γ ;∆;K D−→ Q and Γ ; notD(∆);K notD (D)−→ notG(Q).

5 Case Studies

We have chosen as case studies here the Stlc benchmark suite, introduced in
Section 2, and an encoding of the Volpano et al. security type system [34], as
suggested in [5]. For the sake of space, we report at the same time our comparison
between the various forms of negation, in particular NEs vs. NE , and the other
systems of reference, accordingly, PLT-Redex and Nitpick.

PLT-Redex [13] is an executable DSL for mechanizing semantic models built on
top of DrRacket. Redex has been the first environment to adopt the idea of random
testing a la QuickCheck for validating the meta-theory of object languages, with
significant success [18]. As we have mentioned, the main drawbacks are the lack of
support for binders and low coverage of test generators stemming from grammar
definitions. The user is therefore required to write her own generators, a task
which tends to be demanding.

The system where proofs and disproofs are best integrated is arguably Is-
abelle/HOL [4]. In the appendix [10] we report some comparison with its version
of QuickCheck, but here we concentrate on Nitpick [5], a higher-order model finder
in the Alloy lineage supporting (co)inductive definitions. Nitpick works translating
a significant fragment of HOL into first-order relational logic and then invoking
Alloy’s SAT-based model enumerator. The tool has been used effectively in several
case studies, most notably weak memory models for C++ [6]. It would be natural
to couple Isabelle/HOL’s QuickCheck and/or Nitpick’s capabilities with Nominal
Isabelle [33], but this would require strengthening the latter’s support for compu-
tation with names, permutations and abstract syntax modulo α-conversion. So,



at the time of writing, αCheck is unique as a model checker for binding signatures
and specifications.

All test have been performed under Ubuntu 15.4 on a Intel Core i7 CPU 870,
2.93GHz with 8GB RAM. We time-out the computation when it exceeds 200
seconds. We report 0 when the time is <0.01. These tests must be taken with a
lot of salt: not only is our tool under active development but the comparison with
the other systems is only roughly indicative, having to factor differences between
logic and functional programming (PLT-Redex), as well as the sheer scale and
scope of counter-examples search in a system such as Isabelle/HOL.

5.1 Head-to-Head with PLT-Redex

We first measure the amount of time to exhaust the search space (TESS) using
the three versions of negations supported in αCheck, over a bug-free version of
the Stlc benchmark for n = 1, 2, . . . up to the point where we time-out. This gives
some indication of how much of the search space the three techniques explore,
keeping in mind that what is traversed is very different in shape; hence the more
reliable comparison is between NE and NEs. As the results depicted in Figure 4
suggests, NEs shows a clear improvement over NE , while NF holds its ground,
however hindered by the explosive exhaustive generation of terms.
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However, our mission is
finding counterexamples and
so we compare the time to find
counterexamples (TFCE) us-
ing NF , NE , NEs on the said
benchmarks. We list in Ta-
ble 1 the 9 mutations from the
cited site. Every row describes
the mutation inserted with an
informal classification inher-
ited from ibidem — (S)imple,
(M)edium or (U)nusual, bet-
ter read as artificial. We also
list the counterexamples found
by αCheck under NF (NE(s)
being analogous but less in-
stantiated) and the depths at
which those are found or a
time-out occurred.

The results in Table 1 show a remarkable improvement of NEs over NE , in
terms of counter-examples that were timed-out (bug 2 and 5), as well as major
speedups of more than an order of magnitude (bugs 3 (ii) and 7). Further, NEs
never under-performs NE , probably because it locates counterexample at a lower
depth. In rare occasions (bug 5 again) NEs even outperforms NF and in several
cases it is comparable (bug 1, 3, 7, 8 and 9). Of course there are occasions (2 and



bug check NF NE NEs cex Description/Class

1 pres 0.3 (7) 1 (7) 0.37 (7) (λx. x err) n range of function in app rule
prog 0 (5) 3.31 (9) 0.27 (5) hd n matched to the arg. (S)

2 prog 0.27 (8) t.o. (11) 85.3 (12) (cons n) nil value (cons v) v omitted (M)
3 pres 0.04 (6) 0.04 (6) 0.3 (6) (λx. n) m order of types swapped

prog 0 (5) 3.71 (9) 0.27 (8) hd n in function pos of app (S)
4 prog t.o. t.o. t.o. ? the type of cons is incorrect (S)
5 pres t.o. (9) t.o. (10) 41.5 (10) tl ((cons n) err) tail red. returns the head (S)
6 prog 29.8 (11) t.o. (11) t.o. (12) hd ((cons n) nil) hd red. on part. applied cons (M)
7 prog 1.04 (9) 18.5 (10) 1.1 (9) hd ((λx. err) n) no eval for argument of app (M)
8 pres 0.02 (5) 0.03 (5) 0.1 (5) (λx. x) nil lookup always returns int (U)
9 pres 0 (5) 0.02 (5) 0.1 (5) (λx. y) n vars do not match in lookup (S)

Table 1. TFCE on the Stlc benchmark, Redex-style encoding

6), where NF is still dominant, as NEs counter-examples live at steeper depths
(12 and 16, respectively) that cannot yet be achieved within the time-out.

We do not report TFCE of PLT-Redex, because, being based on randomized
testing, what we really should measure is time spent on average to find a bug.
The two encodings are quite different: Redex has very good support for evaluation
contexts, while we use congruence rules. Being untyped, the Redex encoding treats
err as a string, which is then procedurally handled in the statement of preservation
and progress, whereas for us it is part of the language. Since [18], Redex allows the
user to write certain judgments in a declarative style, provided they can be given
a functional mode, but more complex systems, such as typing for a polymorphic
version of a similar calculus, require very indirect encoding, e.g. CPS-style. We
simulate addition on integers with numerals (omitted from the code snippets
presented in Section 2 for the sake of space), as we currently require our code to be
pure in the logical sense, as opposed to Redex that maps integers to Racket’s ones.
W.r.t. lines of code, the size of our encoding is roughly 1/4 of the Redex version,
not counting Redex’s built-in generators and substitution function. The adopted
checking philosophy is also somewhat different: they choose to test preservation
and progress together, using a cascade of three built-in generators and collect all
the counterexamples found within a timeout.

The performance of the negation elimination variants in this benchmark is
not too impressive. However, if we adopt a different style of encoding (let’s call it
PCF, akin to what we used in [9]), where constructors such as hd are not treated
as constants, but are first class, e.g.:

tc(G,hd(E),intTy) :- tc(G,E,listTy).

step(hd(cons(H,Tl)), H) :- value(H),value(Tl).

then all counter-examples are found very quickly, as reported in Table 2. In bug
4, NEs struggles to get at depth 13: on the other hand PLT-Redex fails to find
that very bug. Bug 6 as well as several counterexamples disappear as not well-
typed. This improved efficiency may be due to the reduced amount of nesting of



bug# check NF NE NEs cex

1 pres 0.05 (5) 2.79 (5) 0.04 (5) (λx. hd x) N
2 prog 0 (4) 7.76 (9) 0.8 (7) (cons N) nil
3 pres 0 (4) 0.05 (4) 0 (4) (λx. nil) nil
4 prog 0.15 (7) t.o. (10) 199.1 (12) N + (cons N nil)
5 pres 0(4) 0.04 (4) 0(4) tl (cons N) nil
7 prog 5.82 (9) 151.2 (11) 19.54. (10) (λx. nil) (N +M)
8 pres 0.01 (4) 0.04 (4) 0.1 (4) (λx. x) nil
9 pres 0 (4) 0.04 (4) 0.1 (4) (λx. y) N

Table 2. TFCE on the Stlc benchmark, PCF-style encoding. NEs cex shown

terms, which means lower depth of exhaustive exploration. This is not a concern
for random generation and (compiled) functional execution as in PLT-Redex.

5.2 Nitpicking Security Type Systems

To compare Nitpick with our approach, we use the security type system due to
Volpano, Irvine and Smith [34], whereby the basic imperative language IMP is
endowed with a type system that prevents information flow from private to public
variables4. For our test, we actually selected the more general version of the type
system formalized in [28], where the security levels are generalized from high and
low to natural numbers. Given a fixed assignment sec of such security levels to
variables, then lifted to arithmetic and Boolean expressions, the typing judgment
l ` c reads as “command c does not contain any information flow to variables
< l and only safe flows to variables ≥ l.” Following [28], we call this system
syntax-directed.

The main properties of interest relate states that agree on the value of each
variable (strictly) below a certain security level, denoted as σ1 ≈<l σ2 iff ∀x. sec x <
l → σ1(x) = σ2(x). Assume a standard big-step evaluation semantics for IMP,
relating an initial state σ and a command c to a final state τ :

Confinement If 〈c, σ〉 ↓ τ and l ` c then σ ≈<l τ ;
Non-interference If 〈c, σ〉 ↓ σ′, 〈c, τ〉 ↓ τ ′, σ ≈≤l τ and 0 ` c then σ′ ≈≤l τ ′;

We extend this exercise by considering also a declarative version (std) l `d c
of the syntax directed system, where anti-monotonicity is taken as a primitive
rule instead of an admissible one as in the previous system; finally we encode
also a syntax-directed termination-sensitive (stT ) version l `⇓ c, where non-
terminating programs do not leak information and its declarative cousin (stTd)
l `⇓d c. We then insert some mutations in all those systems, as detailed in Table 3
and investigate whether the following equivalences among those systems still hold:

4 For an interesting case study regarding instead dynamic information flow and carried
out in Haskell, see [17]. A large part of the paper is dedicated to the fine tuning of
custom generators and shrinkers.



bug check Nitpick NF NE NEs Description

1 conf (sp) 0.03 (5) 4.4 (8) 2.1 (7) second premise of seq rule omitted
non-inter t.o. 9.13 (8) 6.71 (8) 6.1 (8) ditto

2 non-inter (sp) 3.3 (8) 2.1 (8) 1.9 (8) var swapping in ≤ premise of assn rule
3 st→std 0.95 t.o. t.o t.o. inversion of ≤ in antimono rule

std→st 0.75 0.8 (7) 0.3 (7) 0.3 (7) ditto
4 st→std ≤ assumption omitted in IF: true

std→st 1.3 0.9 (7) t.o. t.o. ditto
5 st→std 5.1(sp) 24.5 (11) t.o. t.o. as 2 but on decl. version of the rule

std→st 1.1 0.2 (7) t.o. 24.6 (11) ditto
6 stT→stTd 5.1(sp) t.o. t.o. t.o. as 2 but on term. version of the rule

stTd→stT 1.0 0.01 (5) 0.32 (7) 0.05 (6) ditto
7 stT→stTd same as 4 but on term-decl. rule: true

stTd→stT 1.6 1.7 (8) 12.5 (9) 1.2(8) ditto

Table 3. αCheck vs. Nitpick on the Volpano benchmark suite. (sp) indicates that Nitpick
produced a spurious counterexample.

st↔std l ` c iff l `d c and stT↔stTd l `⇓ c iff l `⇓d c.

Again the experimental evidence is quite pleasing as far as NE vs. NEs goes,
where the latter is largely superior (5 (ii), 1 (i), 7 (ii)). In one case NEs im-
proves on NF (1 (ii)) and in general competes with it save for 4 (ii) and 5 (i)
and (ii). To have an idea of the counterexamples found by αCheck, the com-
mand (SKIP ; x := 1), sec x = 0, l = 1 and state σ mapping x to 0 falsifies con-
finement 1 (i); in fact, this would not hold were the typing rule to check the second
premise. A not too dissimilar counterexample falsifies non-interference 1 (ii): c is
(SKIP ; x := y), sec x, y = 0, 1, l = 0 and σ maps y to 0 and x undefined (i.e. to
a logic variable), while τ maps y to 1 and keeps x undefined. We note in pass-
ing that here extensional quantification is indispensable, since ordinary generic
quantification is unable to instantiate security levels so as to find the relevant
bugs.

The comparison with Nitpick5 is more mixed. On one hand Nitpick fails to
find 1 (ii) within the timeout and in other four cases it reports spurious coun-
terexamples, which on manual analysis turn out to be good. On the other it nails
down, quite quickly, two other cases where αCheck fails to converge at all (3 (i),
6 (i)). This despite the facts that relations such as evaluations, `d and `⇓d, are
reported not well founded requiring therefore a problematic unrolling.

The crux of the matter is that differently from Isabelle/HOL’s mostly func-
tional setting (except for inductive definition of evaluation and typing), our en-
coding is fully relational: states and security assignments cannot be seen as partial
functions but are reified in association lists. Moreover, we pay a significant price
in not being able to rely on built-in types such as integers, but have to deploy our

5 Settings: [sat solver=MiniSat JNI,max threads=1,check potential,timeout =

200]



clearly inefficient versions. This means that to falsify simple computations such
as n ≤ m, we need to provide a derivation for that failure. Finally, this case study
does not do justice to the realm where αProlog excels, namely it does not exercise
binders intensely: we are only using nominal techniques in representing program
variables as names and freshness to guarantee well-formedness of states and of
the table encoding the variable security settings. Yet, we could not select more
binding intensive examples due to the current difficulties with running Nitpick
under Nominal Isabelle.

6 Conclusions and Future Work

We have presented a new implementation of the NE algorithm underlying our
model checker αCheck and experimental evidence showing satisfying improve-
ments w.r.t. the previous incarnation, so as to make it competitive with the NF
reference implementation. The comparison with PLT-Redex and Nitpick, systems
of considerable additional maturity, is also, in our opinion, favourable: αCheck is
able to find similar counterexamples in comparable amounts of time; it is able to
find some counterexamples that Redex or Nitpick respectively do not; and in no
case does it report spurious counterexamples. Having said that, our comparison
is at most just suggestive and certainly partial, as many other proof assistants
have incorporated some notion of PBT, e.g. [29,31]. A notable absence here is
a comparison with what at first sight is a close relative, the Bedwyr system [2],
a logic programming engine that allows a form of model checking directly on
syntactic expressions possibly containing binding. Since Bedwyr uses depth-first
search, checking properties for infinite domains should be approximated by writ-
ing logic programs encoding generators for a finite portion of that model. Our
initial experiments in encoding the Stlc benchmark in Bedwyr have failed to find
any counterexample, but this could be imputed simply to our lack of experience
with the system. Recent work about “augmented focusing systems” [16] could
overcome this problem.

All the mutations we have inserted so far have injected faults in the spec-
ifications, not in the checks. This make sense for our intended use, where the
properties we validate are the main theorems that our calculi should satisfy. How-
ever, it would be interesting to see how our tool would fare w.r.t. mutation testing
of theorems.

Exhaustive term generation has served us well so far, but it is natural to
ask whether random generation could have a role in αCheck, either by simply
randomizing term generation under NF or more generally the logic programming
interpreter itself, in the vein of [14]. More practically, providing generators and
reflection mechanism for built-in datatypes and associated operators is a priority.

Finally, we would like to implement improvements in nominal equational unifi-
cation algorithms, which would make subsumption complete, via equivariant uni-
fication [8], and more ambitiously introduce narrowing, so that functions could be
computed rather then simulated relationally. In the long run, this could open the
door to use αCheck as a light-weight model checker for (a fragment) of Nominal
Isabelle.
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