
On the Complexity of Clustering

with Relaxed Size Constraints

Massimiliano Goldwurm(2), Jianyi Lin(1), Francesco Saccà (1)

(1) Dipartimento di Informatica, (2) Dipartimento di Matematica
Università degli Studi di Milano, 20100 Milano – Italy

Abstract. We study the computational complexity of the problem of
computing an optimal clustering {A1, A2, ..., Ak} of a set of points as-
suming that every cluster size |Ai| belongs to a given set M of positive
integers. We present a polynomial time algorithm for solving the prob-
lem in dimension 1, i.e. when the points are simply rational values, for
an arbitrary set M of size constraints, which extends to the `1-norm an
analogous procedure known for the `2-norm. Moreover, we prove that in
the Euclidean plane, i.e. assuming dimension 2 and `2-norm, the problem
is NP-hard even with size constraints set reduced to M = {2, 3}.

Keywords: geometric clustering problems; cluster size constraints; computa-
tional complexity; constrained k-Means

1 Introduction

In the area of unsupervised machine learning and statistical data analysis the
clustering methods play an important role with applications in pattern recogni-
tion, bioinformatics, signal and image processing, medical diagnostics. Clustering
consists in grouping a set of objects into subsets, called clusters, that are max-
imally homogeneous [5,8]. Partitional or hard clustering requires the subsets to
be disjoint and non-empty, and in the usual geometric setting the similarity be-
tween objects is measured by distance between points representing the objects
[15].

A classical clustering problem is the so-called Euclidean Minimum-Sum-of-
Squares [1], Variance-based [10] or k-Means clustering problem: given a finite
point set X ⊂ Rd, find a k-partition {A1, ..., Ak} of X minimizing the sum of
weights W (A1, ..., Ak) =

∑

iW (Ai) =
∑

i

∑

x∈Ai
‖x − µ(Ai)‖2 of all clusters,

where µ(Ai) is the sample mean of Ai and ‖ · ‖ is the Euclidean norm. This
partitional clustering problem is difficult: when d is part of the instance the
problem is NP-hard even if the number of clusters is fixed to k = 2 [1]; the same
occurs for arbitrary k with fixed dimension d = 2 [7,16]. Nonetheless, a well-
known heuristic for this problem is Lloyd’s algorithm [14], also named k-Means
Algorithm, which is not guaranteed to converge to the global optimum. This
algorithm is usually very fast, but may require exponential time in the worst
case [22].

Often one has some a-priori information on the clusters, that can be in-
corporated into traditional clustering techniques to increase the clustering per-
formance [2]. Problems that include background information are so-called con-
strained clustering and can be divided into two classes based on the constraints:
instance-level constraints typically define pairs of elements that must be (must-
link) or cannot be (cannot-link) in the same cluster [25], and cluster-level con-
straints prescribe characteristics of each cluster, such as cluster diameter or
cluster size [6,21]. In [26] cluster size constraints are used for improving cluster-
ing accuracy, for instance allowing one to avoid extremely small or large clusters
in standard cluster analysis. In the size constrained clustering (SCC) problem,
assuming an `p-norm (we suppose p ∈ N+ throughout this work), typically one
is given a finite set X ⊂ Rd of n points and k positive integers m1, ...,mk

such that
∑

i mi = n, and searches for a partition {A1, ..., Ak} of X , with
|A1| = m1, ..., |Ak| = mk, that minimizes the objective function W (A1, ..., Ak) =
∑k

i=1

∑

x∈Ai
‖x − ci‖pp , where each ci = argminc∈Rd

∑

x∈Ai
‖x − c‖pp is the `p-

centroid of Ai.
For arbitrary k ∈ N, this problem is NP-hard also in dimension d = 1, for

any (fixed) `p-norm, p ≥ 1; the same negative result holds for arbitrary d ∈ N

when the number of clusters is fixed to k = 2, for every `p-norm with p > 1 [3].
On the contrary, in the case d = 2 = k the problem is solvable in O(n2 logn)
time assuming Manhattan norm (`1) and in O(n 3

√
m log2 n) time with Euclidean

norm (`2) [13], where m is the size of one of the two clusters.
In this work we study a relaxed version of the size constrained clustering

problem, where the size of each cluster belongs to given set M of integers. We
show that in dimension d = 1, for an arbitrary (finite) M ⊂ N, assuming the
Manhattan norm, the solution can be obtained in O(n(ks+n)) time, where k is
the number of clusters and s is the cardinality of M . This extends an analogous
algorithm [4] proposed for the Euclidean norm and applied to computational
biology problems as a method for identification of promoter regions in genomic
sequences. Note instead that, in dimension 1, the SCC problem is NP-hard [3].
On the contrary, in dimension d = 2, we prove that even fixing M = {2, 3} the
problem is NP-hard with Euclidean norm.

2 Problem definition

In this section we define the problem and fix our notation. Given a positive
integer d, for every real p ≥ 1 and every point a = (a1, ..., ad) ∈ Rd, we denote

by ‖a‖p the `p-norm of a, i.e. ‖a‖p = (
∑d

1 |ai|p)1/p. Clearly, ‖a‖2 and ‖a‖1 are
the Euclidean and the Manhattan (or Taxicab) norm of a, respectively.

Given a finite set X ⊂ Rd, a cluster of X is a non-empty subset A ⊂ X , while
a clustering is a partition {A1, ..., Ak} of X in k clusters for some k. Assuming
the `p norm, the centroid and the weight of a cluster A are the values CA ∈ Rd

and Wp(A) ∈ R+ defined, respectively, by

CA = argmin
c∈Rd

∑

a∈A

‖a− c‖pp, Wp(A) =
∑

a∈A

‖a− CA‖pp

The weight of a clustering {A1, ..., Ak} isWp(A1, ..., Ak) =
∑k

1 Wp(Ai). We recall
that, in case of `2-norm, the weight of a cluster A can be computed by relation

W2(A) =
1

|A|
∑

(∗)
‖a− b‖22 (1)

where the sum is extended to all unordered pairs {a, b} of distinct elements in
A. Moreover, given a set M ⊂ N, any clustering {A1, ..., Ak} such that |Ai| ∈ M
for every i = 1, . . . , k, is called M-clustering.

RSC-d Problem (with `p-norm): Relaxed Size Constrained Clustering in Rd

Given a set X ⊂ Qd of n points, an integer k such that 1 < k < n and a finite set
M of positive integers, find an M-clustering {A1, ..., Ak} of X that minimizes
Wp(A1, ..., Ak).

1

When M is not included in the instance, but fixed in advance, we call the
problem M-RSC-d (with `p-norm). In this work we study these problems in
dimension d = 1, 2 assuming `1 and `2-norm.

3 Dynamic programming for RSC on the line

In this section we describe a polynomial-time algorithm for RSC-1 that works
assuming either `1 or `2-norm. This procedure is based on a dynamic program-
ming technique, in the style of [19], based on the so-called String Property [24,3].
A simplified version of the procedure in the case of `2-norm is also presented in
[4] and applied to problems of computational biology.

Consider an instance (X, k,M) of RSC-1, where X = (x1, x2..., xn) is a
sorted sequence of rational numbers, k ∈ {1, . . . , n − 1} and |M| = s ≤ n.
For any 1 ≤ i ≤ j ≤ n, let X [i, j] be the subsequence (xi, xi+1, ..., xj). For a
given p ∈ {1, 2}, we define the n × n matrix U = [U(i, j)]i,j=1,...,n by setting

U(i, j) = Wp(X [i, j]) =
∑j

t=i |xt − CX[i,j]|p if j − i + 1 ∈ M and U(i, j) = ∞
otherwise, that is the weight of cluster X [i, j] when it has admissible size.

Lemma 1. Given p ∈ {1, 2}, for every instance (X, k,M) of RSC-1 with |X | =
n, matrix U can be computed in O(n2) time.

Proof. First, assume p = 2. In this case it is easy to check that the weight of
any cluster A is W2(A) =

∑

a∈A a2 − 1
|A|(

∑

a∈A a)2. Denoting Q(i) :=
∑i

j=1 x
2
j

and S(i) :=
∑i

j=1 xj , the finite entries of matrix U reduce to

U(i, j) = Q(j)−Q(i− 1)− 1

j − i+ 1
(S(j)− S(i− 1))2. (2)

The sequences Q and S can be computed in linear time, and thus the computa-
tion of (2) requires constant time for each i, j. Hence, matrix U can be computed
in O(n2) time in case p = 2.

1 If X does not admit a M-clustering then symbol ⊥ is returned.

When p = 1, the weight W1(X [i, j]) is the sum of the distances between
elements and median of X [i, j]. Denote m := (i+ j)/2 and for any cluster X [i, j]
set the left and right sums L(i, j) :=

∑

i≤h<m xh and R(i, j) :=
∑

m<h≤j xh. It
can be checked ([3, Prop. 10]) that W1(X [i, j]) = R(i, j)− L(i, j). Since X [i, j]
is sorted, it can be seen that, for i < j,

L(i, j) = L(i, j − 1) if m ∈ N, L(i, j) = L(i, j − 1) + xbmc otherwise, (3)

R(i, j) = R(i, j − 1)− xm + xj if m ∈ N, V = R(i, j − 1) + xj otherwise (4)

and L(i, i) = R(i, i) = 0. By means of these recursive formulae the quantities
L(i, j), R(i, j),W1(X [i, j]), for all i ≤ j, can be computed in O(n2) time, and
hence the same holds for determining matrix U when p = 1. �

Now, for every h ∈ {1, . . . , k} and every j ∈ {1, . . . , n}, let Z(h, j) be the
weight of a solution of RSC-1 for the instance (X [1, j], h,M) in case h ≤ j, while
Z(h, j) = ∞ if h > j. These values can be derived from U .

Proposition 2. The following properties hold:
i) Z(1, j) = U(1, j) for all j = 1, ..., n;
ii) Z(h, j) = min

m∈M
(Z(h−1, j−m)+U(j−m+1, j)) for all h = 2, .., k; j = 1, ..., n.

Proof. Case i) is obvious. Since Z(h, j) is the weight of the optimal solution
for (X [1, j], h,M), the corresponding solution {A1, ..., Ah} satisfies the String
Property, i.e. each cluster Ai consists of consecutive points of X [24,3].

Then, its right-most cluster Ah has size |Ah| = m ∈ M and weightWp(Ah) =
Wp(X [j −m+ 1, j]) = U(j −m+ 1, j).

The other clusters A1, ..., Ah−1 form a feasible clustering of RSC-1 for the
instance (X [1, j−m], h−1,M), which has minimum weight Wp(A1, ..., Ah−1) =
∑h−1

1 Wp(Ai) = Z(h−1, j−m), otherwise it is easy to check that also {A1, ..., Ah}
would not be an optimal solution for (X [1, j], h,M).

As a consequence, Z(h, j) = Z(h−1, j−m)+U(j−m+1, j) for somem ∈ M,
and since Z(h, j) has to take the minimum value, property ii) is proved. �

Relying on the previous proposition we can design an algorithm for RSC-1.

Theorem 3. For any p ∈ {1, 2}, RSC-1 with `p-norm can be solved in O(n(ks+
n)) time and O(n2) space.

Proof. By Lemma 1 we first compute matrix U in O(n2) time. Then, by means of
Proposition 2, matrix Z = [Z(h, j)]h=1,...,k;j=1,...,n can be computed row by row.
Each entry requires at most s = |M| sums and comparisons. The computation
is described by the following scheme, where we store in `h,j the size of the last
cluster of the optimal solution for (X [1, j], h,M), for each pair of indices h, j.

begin

Z := {∞}k×n

for j = 1, ..., n do

{

Z(1, j) := U(1, j)
if U(1, j) 6= ∞ then `1,j := j

for h = 2, ..., k do

for j = h, ..., n do

m̂ := argminm∈M{Z(h− 1, j −m) + U(j −m+ 1, j)}
if m̂ is well-defined then

Z(h, j) := Z(h− 1, j − m̂) + U(j − m̂+ 1, j)
`h,j := m̂

end

Clearly, if `k,n is not defined then the symbol ⊥ is returned since no admissible
clustering for (X, k,M) exists. Otherwise, the solution of the problem can be
obtained by the following procedure:

begin

j := n

for h = k, k − 1, ..., 1 do







th := `h,j
Ah := X [j − th + 1, j]
j := j − th

output {A1, A2, ..., Ak}
end

The overall time required to compute matrices U and Z is O(n(ks+n)). The
space necessary to maintain all tables is O(n2) since k < n. �

It is worth noting that the analogous problem, where the size of each cluster
is fixed by the instance, is NP-hard even in dimension d = 1 for every `p-norm
[3]. This shows that the form of the size constraints for clustering problems is
relevant for the existence of polynomial time algorithms.

4 NP-hardness of RSC in the Euclidean Plane

In this section we show that, assuming `2-norm, the {2, 3}-RSC-2 problem is NP-
hard, and therefore RSC-2 also is NP-hard. To this end we introduce a decision
version of the problem and describe a polynomial-time reduction from Planar
3-SAT.

Decision {2, 3}-RSC-2 Problem
Given a point set X = {p1, ..., pn} ⊂ Q2, an integer k, 1 < k ≤ n/2, and a
rational value λ > 0 (threshold), decide whether there exists a {2, 3}-clustering
{A1, ..., Ak} of X, consisting of k clusters, such that W2(A1, ..., Ak) ≤ λ.

Recall that a 3-CNF formula Φ is a boolean formula given by the conjunction
of clauses each of which has 3 literals. If V and C are, respectively, the set of
variables and the set of clauses of Φ, the graph of Φ is defined as the undirected
bipartite graph GΦ such that V ∪C is the family of nodes and E = {{v, c} : v ∈
V, c ∈ C, and either v or v̄ appears in c} is the set of edges. A formula Φ is said

to be planar if GΦ is planar. The Planar 3-SAT problem consists in deciding
whether a planar 3-CNF formula Φ is satisfiable.

It is known that Planar 3-SAT is strongly NP-complete [12]. It is also proved
that it suffices to consider formulae whose associated graph can be embedded
in R2, with variables arranged on a straight line, and with clauses arranged
above and below the straight line [11]. Moreover, the edges between variables
and clauses can be drawn in a rectilinear fashion [17].

We also recall that a box-orthogonal drawing of a graph G is a planar em-
bedding of G on an integer grid where each vertex is mapped into a (possibly
degenerate) rectangle and each edge becomes a path of horizontal or vertical
segments of the grid. Rectangles are disjoint and paths do not intersect. Any
planar graph of n nodes admits a box-orthogonal drawing computable in O(n)
time that uses a a× b grid, where a+ b ≤ 2n [9, Th. 3].

Our goal is to show that Planar 3-SAT is reducible in polynomial time to
Decision {2, 3}-RSC-2. The proof is obtained by adapting the reduction from
Planar 3-SAT to an unconstrained version of the k-means problem in the plane,
presented in [16]. Here, the main difference is that in our construction we de-
termine directly the rational coordinates of the points given by the reduction,
avoiding the approximation of irrational values. Moreover, our reduction does
not yield multiple copies of the same point in the plane.

To describe the reduction we show how an arbitrary planar 3-CNF formula
Φ, can be associated with an instance (X, k, λ) of the Decision {2, 3}-RSC-2,
computable in polynomial time w.r.t. |Φ|, such that Φ is satisfiable if and only if
X admits a partition into k clusters of cardinality 2 or 3, having a total weight
at most λ. The definition of such a reduction is split in several phases: the first
one computes an embedding of graph GΦ into a planar integer grid; the others
determine the rational coordinates of points in X , and the values k and λ.

The general idea is to build an embedding of GΦ by representing each clause
by a point in the grid, and associating each variable with a cycle on the grid
that connects all points of clauses containing the variable. Clearly, these cycles
do not overlap, and each clause-point is touched exactly by 3 cycles. Now, the
points of X are placed along every cycle, so that there are only 2 optimal {2}-
clusterings for the points of each cycle, which may be associated to the truth
assignments of the variable. The satisfiability of each clause will correspond to
the possibility of clustering the clause-point with the nearest pair in one of the
optimal {2}-clusterings associated to a variable occurring in the clause.

1) Embedding of GΦ into a planar grid

The first phase is described by the following steps, illustrated in Figure 1.

Step 0. Compute the box-orthogonal drawing D of GΦ as stated above. We can
map any variable into a (non-empty) rectangle and any clause into a vertex of
the grid. Moreover, the base of all rectangles can be put on the same horizontal
straight line, and the vertices representing clauses above or below such a line.

Step 1. Expand the previous drawing by a factor of 2 and call D1 the new
drawing. This doubles all distances between vertices in D.

Step 2. Shift D1 half unit upward and rightward and let D2 be the new drawing.
Now, each clause corresponds to a point in the centre of a unit square of the
grid, and each path from a rectangle (variable) to a point (clause) crosses just
in the middle some unit sides of the grid.
Step 3. Expand all rectangles by half grid unit in all four vertical and horizontal
directions, and replace any point (clause) of D2 by a unit square centred at the
same location, erasing the overlapping portion (half unit long) of paths. We call
D3 the new drawing. Now, all rectangles have sides of odd length and no path
in D3 starts from a vertex of a rectangle.
Step 4. Replace every path from a rectangle (variable) to a unit square (clause)
by a strip of unit width on the grid that cover the same path, erasing the
boundary portion of rectangle overlapping the strip. The resulting drawing is
called D4. Now every variable v corresponds to a (sort of) cycle on the grid that
includes both the residual rectangle representing v and all strips towards the
unit squares (clauses) where v occurs, together with one side for each touched
square.

b

variable v

clause c

D

b

v

c

D1

b

v

c

D2

v

c

D3

v

c

D4

Expand drawing
D4 by a factor of

15

D5

Fig. 1. Main steps of the graph transformations used in the reduction.

Step 5. Expand the previous drawing by a factor of 15. We call D5 the new
drawing. Thus, each clause is now associated with a square on the grid having
side of length 15, while the strips described in Step 4 are formed by parallel
segments at distance 15 to each other. Moreover, in the following we call borders
the straight-line segments forming the cycles associated with the variables.

2) Definition of point set X

Let V = {v1, . . . , vn} and C = {c1, . . . , cm} be, respectively, the set of vari-
ables and the set of clauses of Φ. First, for every cj ∈ C, X contains a point
zj ∈ Q2 located near the centre of the square associated with cj. The exact po-
sition of each zj is defined by Fig. 2, where the cycles are represented by dashed
lines and the sides of the square are removed for sake of simplicity.

Moreover, for every variable vi ∈ V ,X contains a circuit Γi of 2Li consecutive
points {xi1, xi2, ..., xi(2Li)}, for a suitable integer Li. With few exceptions (as in
Fig. 2), all xi`’s lie inside the cycle of drawing D5 associated with vi and inside

the square associated with the clauses where vi occurs. The idea is to put almost
all points at distance 2 from the borders, setting at distance 5 from each other
most consecutive points xit, xi(t+1), as well as points xi(2Li) and xi1. Hence

X = {zj | j = 1, 2, . . . ,m} ∪ {xi` | i = 1, 2, . . . , n, ` = 1, 2, . . . , 2Li} (5)

b

b

b
b b b

b

b

bbbbb

b

b

b

b

b b

b

b

b

b
b

b

b

b

b
bbb

b

b

b b b b b
b

b

b

b

b

b

b

xit

xi(t+1)
ΓiΓi′

Γi′′

b

5.5 5.5

√
37

√
37

√
37

√
37

5.5 5.5
√
37

√
37

zj
5.5 5.5

5+ 23

30

Fig. 2. Points of 3 circuits in the neighbourhood of a clause-point zj . Edges with length
different from 5 are indicated.

The precise position of points xi`’s is illustrated in Figs. 2 and 3 and is
formally defined by conditions a), b), c) given below. Such a position depends
on the angles, inside the cycle associated with vi, formed between two incident
borders. Every angle has measure either π/2 or 3π/2; in the first case we say the
angle is convex, in the second case we say it is concave (e.g., in Fig. 3, angle β
is convex, while α is concave).

a) Near every convex (resp. concave) angle three consecutive points of Γi are
placed as shown by angles β, δ, ε, ζ, η (resp. α, γ, θ, ι) in Fig. 3. Note that the
second point of the triple always lies on the bisector.

b) Between any two consecutive angles, the other points of Γi are put on a
straight-line at distance 2 from the border, so that consecutive points are
set at distance 5 from each other, with the exception of two segments of
length 4.5 (respectively, 5.5) if both angles are concave (resp., convex). As
examples, see in Fig. 3 points between angles β and γ, ι and θ, δ and ε.

c) If vi, vi′ , vi′′ are the variables occurring in a clause cj , then near the square
of size 15× 15 associated with cj , points of Γi, Γi′ , Γi′′ are set as defined in
Fig. 2. Note that here, all pair of consecutive points are at distance 5 from
each other with two exceptions:
– triple of points close to angles are located according to condition a);
– before convex angles, points are located to form two consecutive segments

of length 5.5.

3) Weight of clusters
Note that all pairs of consecutive points in any Γi form a segment having

one of the following lengths: 4.5, 5, 5.5,
√
37. The weight of the corresponding

clusters is easily obtained from Eq. (1): 10.125, 12.5, 15.125, 18.5.
Moreover, every set Γi admits only two {2}-clusterings of minimum weight,

consisting of pairs of consecutive points, given by

π1(i) = {{xiu, xi(u+1)} | u = 1, 3, 5, . . . , 2Li − 1} and

π2(i) = {{xiu, xi(u+1)} | u = 2, 4, 6, . . . , 2Li − 2} ∪ {{xi(2Li), xi1}}

For simplicity, hereafter we call segment (respectively, triangle) a cluster of car-
dinality 2 (resp., 3).

b
b

b

b

b

b

b

b
b b b b b

b

b

b

b
b b b b b b b

b

b

b

b

b

b

b

b

b
bbbbbbb

b

b

b

b
bbb

b

b

b

b

b√
37√

37

√
37

√
37

√
37

√
37

√
37√
37 5.5 5.5 √

37

√
37

5.5

5.5

√
37

√
375.55.5

√
37√
37

√
37

√
37

4.54.5√
37

√
37

α

β γ

δ ε

ζη

θι

Fig. 3. Points of a circuit Γi inside the corresponding rectangle. Segments with length
different from 5 are indicated. Note that angles α, γ, θ, ι are concave, while β, δ, ε, ζ, η

are convex.

Now, consider a clause cj containing a variable vi (as a positive or negative
literal) and let xit, xi(t+1) be the pair of points of Γi nearest to point zj . We
say that zj touches the segment {xit, xi(t+1)}. Clearly every zj touches three
segments, one for each variable appearing in cj . Note from Fig. 2, that the
distance between zj and a touched segment is either 5.5 or 5 + 23

30 . Then, using
Eq. (1), by elementary computation we can determine the weight of any triangle
formed by each zj with its touched segments, as well as the weight of every
triangle of consecutive points in any Γi. Such a direct computation proves the
following property.

Lemma 4. If point zj touches a segment {xit, xi(t+1)} then the weight of tri-

angle {zj, xit, xi(t+1)} is given by w = 23402
675 , which satisfies 34.66 < w < 34.67.

Moreover, every triangle composed by points of Γi has weight greater than w.

4) Parity condition

By a suitable choice of the first point xi1, and possibly by adding new points
to Γi (as explained below), we can assume that the following parity condition
holds: in any Γi, every segment touched by a point zj belongs to either π1(i)
or π2(i) according to whether vi or vi appears in cj , respectively. In order to
guarantee this property, slight changes to points of Γi near the square including
zj may be necessary, which are illustrated in Figure 4. This change add two
new points (one before and one after the touched segment), and determines 4
more segments of length 4.5, two of which are to be included into π1(i), the
others into π2(i). In order to apply this transformation the circuit must contain
a rectilinear portion of length at least 30, either horizontal or vertical, as shown
in Fig. 4 (left). We may always assume this is satisfied by requiring one more
expansion of the initial drawing by a factor of 2 (executing Step 1 twice in the
embedding phase).

b b b b b b b

b b b b b b b

=⇒
b b

b b

b b b b

b b b b

b b

b b

4.5 4.5

4.5 4.5

Fig. 4. (Left) 30×15 horizontal strip preserving parity. (Right) 30×15 horizontal strip
for changing parity. The vertical case in analogous.

5) Definition of k and λ
They are given by equalities k =

∑n
1 Li and

λ =
52

2
(k − h) + wm+

1

2

[

18.5 · s√37 +

(

10 +
1

8

)

· s4.5 +
(

15 +
1

8

)

· s5.5
]

,

where w is defined as in Lemma 4, su is the total number of segments of length
u in all Γi’s for u ∈ {

√
37, 4.5, 5.5}, and h = m+ 1

2 (s
√
37 + s4.5 + s5.5).

It is easy to see that every {2, 3}-clustering π ofX into k clusters must contain
exactly m triangles. Indeed, if nT and nS denote, respectively, the number of
triangles and the number of segments of π, then |X | = 2nS +3nT = 2k+m and
nS + nT = k, which yields nT = m and nS = k − m. Recall that all triangles
in X have weight at least w. Moreover, by construction, π may include at most
su/2 many segments of length u for each u ∈ {

√
37, 4.5, 5.5} and the remaining

k − h cannot have length smaller than 5. This implies W2(π) ≥ λ.
Now, to complete the reduction we verify that Φ is satisfiable if and only if

there exists a {2, 3}-clustering of X of weight at most λ, consisting of k clusters.
Suppose Φ is satisfiable and consider a satisfying assignment. For each variable vi,
choose clustering π2(i) or π1(i) according whether its value is 0 or 1, respectively.
Since the assignment makes all clauses true, each point zj can be clustered
together with the touched segment in Γi, for a variable vi satisfying clause cj .
By the parity condition, such a touched segment belongs to the chosen clustering

(either π2(i) or π1(i)). Thus, we obtain m triangles of weight w. The other points
in each Γi can be clustered as in π2(i) or π1(i) according to the previous choice.
This yields a {2, 3}-clustering of X of weight λ having k clusters.

Vice-versa, if there exists a {2, 3}-clustering π ofX with k clusters and weight
λ, then such a clustering must contain m triangles of weight w. The only way
to obtain these triangles is to include each point zj into a touched segment
{xit, xi(t+1)}. By the parity condition this defines an assignment of values to all
variables that makes true each clause of Φ.

Theorem 5. Assuming `2-norm, the {2, 3}-RSC-2 problem is strongly NP-hard
and it does not admit an FPTAS unless P = NP . As a consequence, the same
holds in general for RSC-2 problem.

Proof. The NP-hardness follows from the discussion above. The problem is also
strongly NP-hard since the value of all integers in instances (X, k, λ) obtained by
the reduction is polynomially bounded w.r.t. n = |X |. Moreover, the objective
function to minimize is polynomially bounded with respect to the unary size of
the instance, and hence, by a classical result [23, Sec. 8.3], the same problem
does not admit an FPTAS unless P = NP . �

5 Conclusions

In this work, we have studied the clustering problem with relaxed size constraints
in dimension 1 and 2 (RSC-1 and RSC-2). First, we have shown a polynomial-
time algorithm for RSC-1 in the case of `1 and `2-norm. A natural question is
whether similar algorithm exists also for `p-norm with integer p > 2. We recall
that the clustering in dimension 1 is motivated by bioinformatics applications
as illustrated in [4].

Our second result states that M-RSC-2 problem is strongly NP-hard when
M = {2, 3}. Note that with M = {2} the problem reduces to finding a perfect
matching of minimum cost in a weighted complete graph, and hence it is solvable
in O(n3) time (even in arbitrary dimension) assuming any `p-norm, by using
classical algorithms [18]. The same occurs whenM = {1, 2} since this is reducible
to finding the minimum cost matching of given cardinality in a weighted graph,
which is known to be solvable in polynomial time (see for instance [20, sec. 3.1.1]).
Hence, a natural problem is to determine the sets M for which the M-RSC-2
problem is NP-hard.

Finally, we conjecture that {2, 3}-RSC-2 remains NP-hard also in case of
`1-norm, by a suitable extension of the proof above.

Acknowledgments We thank an anonymous referee for his/her useful com-
ments on other problems related to clustering with relaxed size constraints.

References

1. D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of Euclidean
sum-of-squares clustering. Machine Learning, 75:245–249, 2009.

2. S. Basu, I. Davidson, and K. Wagstaff. Constrained Clustering: Advances in Algo-
rithms, Theory, and Applications. Chapman and Hall/CRC, 2008.

3. A. Bertoni, M. Goldwurm, J. Lin, and F. Saccà. Size Constrained Distance Clus-
tering: Separation Properties and Some Complexity Results. Fundamenta Infor-
maticae, 115(1):125–139, 2012.

4. A. Bertoni, M. Rè, F. Saccà, and G. Valentini. Identification of promoter regions in
genomic sequences by 1-dimensional constraint clustering. In Neural Nets WIRN11,
pages 162–169, 2011.

5. C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
6. P. S. Bradley, K. P. Bennett, and A. Demiriz. Constrained K-Means Clustering.

Technical Report MSR-TR-2000-65, Miscrosoft Research Publication, May 2000.
7. S. Dasgupta. The hardness of k-means clustering. Technical Report CS2007-0890,

Dpt. of Computer Science and Engineering, Univ. of California, San Diego, 2007.
8. W. D. Fisher. On grouping for maximum homogeneity. Journal of the American

Statistical Association, 53(284):789–798, 1958.
9. U. Fößmeier, G. Kant, and M. Kaufmann. 2-Visibility drawings of planar graphs.

In Graph Drawing (Proc. GD ’96), volume 1190 of LNCS, pages 155–168, 1997.
10. S. Hasegawa, H. Imai, M. Inaba, and N. Katoh. Efficient algorithms for variance-

based k-clustering. In Proceedings of Pacific Graphics ’93, pages 75–89, 1993.
11. D. E. Knuth and A. Raghunathan. The problem of compatible representatives.

SIAM J. Discrete Math., 5(3):422–427, 1992.
12. D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput., 11(2):329–343,

1982.
13. J. Lin, A. Bertoni, and M. Goldwurm. Exact algorithms for size con-

strained 2-clustering in the plane. Theoretical Computer Science, 2015.
doi:10.1016/j.tcs.2015.10.005. In Press.

14. S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137, 1982.

15. J. B. MacQueen. Some method for the classification and analysis of multivariate
observations. In Proc. 5th Berkeley Symp. on Math. Struct., pages 281–297, 1967.

16. M. Mahajan, P. Nimbhorkar, and K. Varadarajan. The planar k-means problem
is NP-hard. Theoretical Computer Science, 442:13–21, 2012.

17. W. Mulzer and G. Rote. Minimum-weight triangulation is NP-hard. J. ACM,
55(2), 2008.

18. C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Dover, 1998.

19. M. R. Rao. Cluster Analysis and Mathematical Programming. Journal of the
American Statistical Association, 66(335):622–626, 1971.

20. R. Stephan. Cardinality constrained combinatorial optimization: Complexity and
polyhedra. Discrete Optimization, 7(3):99 – 113, 2010.

21. A. Tung, J. Han, L. Lakshmanan, and R. Ng. Constraint-based clustering in large
databases. In Database Theory ICDT 2001, volume 1973 of LNCS, pages 405–419.

22. A. Vattani. k-means Requires Exponentially Many Iterations Even in the Plane.
Discrete & Computational Geometry, 45(4):596–616, 2011.

23. V. Vazirani. Approximation Algorithms. Springer, 2001.
24. H. Vinod. Integer programming and the theory of grouping. Journal of the Amer-

ican Statistical Association, 64(326):506 – 519, 1969.
25. K. Wagstaff and C. Cardie. Clustering with instance-level constraints. In Proc.

17th Intl. Conf. on Machine Learning, pages 1103–1110, 2000.
26. S. Zhu, D. Wang, and T. Li. Data clustering with size constraints. Knowledge-

Based Systems, 23(8):883–889, 2010.

	On the Complexity of Clusteringwith Relaxed Size Constraints

