Skip to main content

Electromagnetic Microactuator-Array Based Virtual Tactile Display

  • Conference paper
  • First Online:
  • 2968 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9759))

Abstract

This paper describes the development and evaluation of a novel tactile display assembled from a 4 by 5 array of electromagnetic, voice-coil type micro-actuators. Each actuator is separately controlled and operates at the optimum human tactile recognition vibrating frequency and amplitude as vibrotactile actuators (tactors). As a preprogrammed, meaningful sequence of micro-actuators is actuated, the user recognizes the vibro-tactile pattern on his/her fingertip and identifies it as a single alpha-numeric character. Human subject studies have been conducted where the actuators are vibrating vertically between their resting position and the surface of the involved fingertip in a predefined sequence, which creates the tactile perception of continuous curves. The efficiency analysis by which these curves are identified as characteristic shapes by the subjects shows an average of over 70 % recognition performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Taylor, P.M., Moser, A., Creed, A.: A sixty-four element tactile display using shape memory alloy wires. Displays 18(3), 163–168 (1998)

    Article  Google Scholar 

  2. Lee, H.S., et al.: Design analysis and fabrication of arrayed tactile display based on dielectric elastomer actuator. Sens. Actuators A: Phys. 205, 191–198 (2014)

    Article  Google Scholar 

  3. Enikov, E.T., Lazarov, K.V.: Micro-mechanical switch array for meso-scale actuation. Sens. Actuators A: Phys. 121(1), 282–293 (2005)

    Article  Google Scholar 

  4. Vidal-Verd, F., Hafez, M.: Graphical tactile displays for visually-impaired people. IEEE Trans. Neural Syst. Rehabil. Eng. 15(1), 119–130 (2007)

    Article  Google Scholar 

  5. Streque, J., et al.: Elaboration and test of high energy density magnetic micro-actuators for tactile display applications. Procedia Chem. 1(1), 694–697 (2009)

    Article  Google Scholar 

  6. Deng, K., Enikov, E.T., Zhang, H.: Development of a pulsed electromagnetic micro-actuator for 3D tactile displays. In: 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE (2007)

    Google Scholar 

  7. Deng, K., Enikov, E.T.: Design and development of a pulsed electromagnetic micro-actuator for 3D virtual tactile displays. Mechatronics 20(4), 503–509 (2010)

    Article  Google Scholar 

  8. Szabo, Z., Ganji, M., Enikov, E.T.: Development of voice-coil micro-actuator for 3-D virtual tactile displays. In: ASME 2011 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers (2011)

    Google Scholar 

  9. Szabo, Z., Enikov, E.T.: Development of wearable micro-actuator array for 3-D virtual tactile displays (2012)

    Google Scholar 

  10. Gonzales, G.R.: Symbol recognition produced by points of tactile stimulation: the illusion of linear continuity. Mayo Clin. Proc. 71(11). Elsevier (1996)

    Google Scholar 

  11. Gonzales, G.R., et al.: Tactile illusion-produced number perception in blind and sighted persons. Mayo Clin. Proc. 73(12). Elsevier (1998)

    Google Scholar 

  12. Gonzales, G.R., Gust, G.R., Hughes, K.E.: Fingertip communication: a tactile communication device for a glove. Space Technol. Appl. Int. Forum-2000, 504(1). AIP Publishing (2000)

    Google Scholar 

  13. Stevens, J.C.: Aging and spatial acuity of touch. J. Gerontol. 47(1), P35–P40 (1992)

    Article  MathSciNet  Google Scholar 

  14. Pascual-Leone, A., Torres, F.: Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain 116(1), 39–52 (1993)

    Article  Google Scholar 

  15. Kaczmarek, K.A., et al.: Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans. Biomed. Eng. 38(1), 1–16 (1991)

    Article  MathSciNet  Google Scholar 

  16. Hatzfeld, C., Kern, T.A.: Engineering Haptic devices

    Google Scholar 

  17. Erickson, M.H., Havens, R.A.: The Wisdom of Milton H. Erickson: Hypnosis and Hypnotherapy, vol. 2. Ardent Media, New York (1992)

    Google Scholar 

  18. Jeannerod, M.: The Cognitive Neuroscience of Action. Blackwell Publishing, Oxford (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eniko T. Enikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Szabo, Z., Enikov, E.T. (2016). Electromagnetic Microactuator-Array Based Virtual Tactile Display. In: Miesenberger, K., Bühler, C., Penaz, P. (eds) Computers Helping People with Special Needs. ICCHP 2016. Lecture Notes in Computer Science(), vol 9759. Springer, Cham. https://doi.org/10.1007/978-3-319-41267-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41267-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41266-5

  • Online ISBN: 978-3-319-41267-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics