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Abstract. Reaction systems are a formal model for computational pro-
cesses inspired by the functioning of the living cell. The key feature of
this model is that its behaviour is determined by the interactions of bio-
chemical reactions of the living cell, and these interactions are based on
the mechanisms of facilitation and inhibition. The formal treatment of
reaction systems is qualitative as there is no direct representation of the
number of molecules involved in biochemical reactions.
This paper introduces reaction systems with discrete concentrations which
are an extension of reaction systems allowing for quantitative modelling.
We demonstrate that although reaction systems with discrete concen-
trations are semantically equivalent to the original qualitative reaction
systems, they provide much more succinct representations in terms of the
number of molecules being used. We then define the problem of reacha-
bility for reaction systems with discrete concentrations, and provide its
suitable encoding in smt, together with a verification method (bounded
model checking) for reachability properties. Experimental results show
that verifying reaction systems with discrete concentrations instead of
the corresponding reaction systems is more efficient.

1 Introduction

Reaction systems (see, e.g., [5, 7, 8]) are a formal model for processes inspired
by the functioning of living cells. The key feature of this model is that the
functioning of the living cell is determined by the interactions of biochemical
reactions, and these interactions are based on the mechanisms of facilitation and
inhibition: the (products of the) reactions may facilitate or inhibit each other.
Reaction system related research topics have been motivated by biological issues
or by a need to understand computations/processes underlying the dynamic
behaviour of reaction systems.

Following their introduction, a number of extensions of reaction systems were
studied, e.g., reaction systems with time [9] and quantum and probabilistic reac-
tion systems [13]. Mathematical properties of reaction systems were investigated
in, e.g., [10–12, 17–20]. Examples of application of reaction systems to modelling



of systems include, e.g., [3, 6]. Recently, there has been an increasing interest in
verification of reaction systems as described in, e.g., [1, 2, 15].

The formal treatment of basic reaction systems is qualitative as no direct rep-
resentation of the number of molecules involved in biochemical reactions. This
paper introduces reaction systems with discrete concentrations which are an ex-
tension of reaction systems allowing for quantitative modelling. We demonstrate
that although reaction systems with discrete concentrations are semantically
equivalent to the original qualitative reaction systems, they provide much more
succinct representations in terms of the number of molecules being used.

There exist also other approaches that allow for modelling of complex depen-
dencies of concentration levels and their changes, e.g. chemical reaction networks
theory based on [14]. The formalism of reaction systems is much simpler and the
processes of reaction systems depend on interactions with the environment.

We define the problem of state reachability for reaction systems with discrete
concentrations, and provide its suitable encoding in smt, together with a verifica-
tion method (bounded model checking) for reachability properties. Experimental
results show that verifying reaction systems with discrete concentrations instead
of the corresponding reaction systems is more efficient.

2 Preliminaries

A reaction system is a pair rs = (S,A), where S is a finite background set and
A is a set of reactions over the background set. Each reaction in A is a triple
b = (R, I, P ) such that R, I, P are nonempty subsets of S with R ∩ I = ∅.
The sets R, I, and P are respectively denoted by Rb, Ib, and Pb and called the
reactant, inhibitor, and product set of reaction b.

A reaction b ∈ A is enabled by T ⊆ S, denoted enb(T ), if Rb ⊆ T and
Ib ∩ T = ∅. The result of b on T is given by resb(T ) = Pb if enb(T ), and by
resb(T ) = ∅ otherwise. Then the result of A on T is resA(T ) =

⋃
{resb(T ) | b ∈

A} =
⋃
{Pb | b ∈ A and enb(T )}.

Intuitively, T represents a state of a biochemical system being modelled by
listing all present biochemical entities. A reaction b is enabled by T and can take
place if all its reactants are present and none of its inhibitors is present in T .

Example 1. Let (S,A) = ({1, 2, 3, 4}, {a1, a2, a3, a4}) be a reaction system, where:

a1 = ({1, 4}, {2}, {1, 2}) a2 = ({2}, {3}, {1, 3, 4})
a3 = ({1, 3}, {2}, {1, 2}) a4 = ({3}, {2}, {1})

In state T = {1, 3, 4} reactions a1, a3, and a4 are enabled, while a2 is not. Hence
resA(T ) = resa1

(T ) ∪ resa3
(T ) ∪ resa4

(T ) = {1, 2} ∪ {1, 2} ∪ {1} = {1, 2}. ut

Entities in reaction systems are non-permanent, i.e., if entity x is present in
the successor state T ′ of a current state T then it must have been produced
(sustained) by a reaction enabled by T (thus x ∈ resA(T )). Also, there are
no conflicts between reactions enabled by T . Therefore there is no counting in
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reaction systems, and so it is a qualitative model. This follows from the level of
abstraction adopted for the basic model. However, in the broad framework of
reaction systems (see, e.g., [7]) one considers models with aspects of counting.

A reaction system is a finite system in the sense that the size of each state is a
priori limited (by the size of the background set), and the state transformations it
describes are deterministic since there are no conflicts between enabled reactions.
This changes once we decided to take account of the external environment which
is necessary to reflect the fact that the living cell is an open system. Such an
environment can be represented by a context automaton.

A context automaton over a finite set Ct, is a triple ca = (Q, q0, R), where
Q is a finite set of states, q0 ∈ Q is the initial state, and R ⊆ Q × Ct × Q is a
transition relation labelled with elements of Ct.

A context restricted reaction system is a pair crrs = (rs, ca) such that rs =
(S,A) is a reaction system, and ca = (Q, q0, R) is a context automaton over 2S .
The dynamic behaviour of crrs is then captured by the state sequences of its
interactive processes. An interactive process in crrs is π = (ζ, γ, δ), where:

– ζ = (z0, z1, . . . , zn), γ = (C0, C1, . . . , Cn), and δ = (D0, D1, . . . , Dn)
– z0, z1, . . . , zn ∈ Q with z0 = q0
– C0, C1, . . . , Cn, D0, D1, . . . , Dn ⊆ S with D0 = ∅
– (zi, Ci, zi+1) ∈ R, for every i ∈ {0, . . . , n− 1}
– Di = resA(Di−1 ∪ Ci−1), for every i ∈ {1, . . . , n}.

Then the state sequence of π is τ = (W0, . . . ,Wn) = (C0 ∪D0, . . . , Cn ∪Dn).
Intuitively, the state sequence of π captures the observed behaviour of crrs

by recording the successive states of the evolution of the reaction system rs in
the environment represented by the context automaton ca.

3 Reaction Systems with Discrete Concentrations

The enabling of some of biochemical reactions encountered in practical appli-
cations depends not only on the availability of the necessary reactants and the
absence of inhibitors, but also on their concentration levels. To address this as-
pect in biochemical modelling, we will now introduce an extension of the basic
reaction systems supporting an explicit representation of the discrete concentra-
tion levels of entities. The resulting model uses bags of entities, but otherwise it
retains key features of the original framework. The main new idea that the k-th
level of concentration of an entity x is represented by a bag containing k copies
of x.

In what follows, a bag over a set X is any mapping b : X → {0, 1, . . . }, and
the empty bag ∅X is one which always returns 0. We denote this by b ∈ B(X),
where B(X) is the set of all bags over X. For a set B of bags over X, !(B) is the
bag over X such that !(B)(x) = max({0} ∪ {b(x) | b ∈ B}), for every x ∈ X.
For two bags, b and b′, we denote b ≤ b′ if b(x) ≤ b′(x), for every x ∈ X. The
carrier of a bag b is the set carr(b) = {x ∈ X | b(x) > 0}.
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A reaction system with discrete concentrations is a pair rsc = (S,A), where
S is a finite background set and A is a nonempty finite set of c-reactions over
the background set. Each c-reaction in A is a triple a = (r, i,p) such that r,
i, p are bags over S with r(e) < i(e), for every e ∈ carr(i). The sets r, i, and
p are respectively denoted by ra, ia, and pa and called the reactant, inhibitor,
and product concentration levels of c-reaction a. We would like to stress that an
entity e is an inhibitor of a whenever e ∈ carr(ia).

A c-reaction a ∈ A is enabled by t ∈ B(S), denoted ena(t), if ra ≤ t and
t(e) < ia(e), for every e ∈ carr(ia). The result of a on t is given by resa(t) = pa

if ena(t), and by resa(t) = ∅S otherwise. Then the result of A on t is resA(t) =
!{resa(t) | a ∈ A} = !{pa | a ∈ A and ena(t)}.

In the above, t is a state of a biochemical system being modelled such that,
for each entity e ∈ S, t(e) is the concentration level of e (e.g., t(e) = 0 indicates
that e is not present in the current state, and t(e) = 1 indicates that e is present
at its lowest concentration level). A c-reaction a is enabled by t and can take
place if the current concentration levels of all its reactants are at least as high
as those specified by ra, and the current concentration levels of all its inhibitors
(i.e., entities in the carrier of ia) are below the thresholds specified by ia.

A context restricted reaction system with discrete concentrations is a pair
crrsc = (rsc, ca) such that rsc = (S,A) is a reaction system with discrete con-
centrations, and ca = (Q, q0, R) is a context automaton over B(S). The dynamic
behaviour of crrsc is then captured by the state sequences of its interactive
processes. An interactive process in crrsc is π = (ζ, γ, δ), where:

– ζ = (z0, z1, . . . , zn), γ = (c0, c1, . . . , cn), and δ = (d0,d1, . . . ,dn)
– z0, z1, . . . , zn ∈ Q with z0 = q0
– c0, c1, . . . , cn,d0,d1, . . . ,dn ∈ B(S) with d0 = ∅B(S)

– (zi, ci, zi+1) ∈ R, for every i ∈ {0, . . . , n− 1}
– di = resA(!{di−1, ci−1}), for every i ∈ {1, . . . , n}.

Then the state sequence of π is τ = (w0, . . . ,wn) = (!{c0,d0}, . . . ,!{cn,dn}).
A context restricted reaction system with discrete concentrations crrsc =

(rsc, ca) is a finite state system since it comprises finitely many c-reactions and
finitely many bags labelling the arcs of its context automaton. More precisely,
let #crrsc(e) be the maximum integer assigned to e ∈ S in all the bags of
entities occurring in both rsc and ca. Then, w(e) ≤ #crrsc(e), for all e ∈ S and
all states occurring in the state sequences of the interactive processes in crrsc.
(Note that this bound can be improved by ignoring the reactant and inhibitor
bags in c-reactions.) Moreover, the behaviour of crrsc can be simulated by a
suitable context restricted reaction system.

To construct such a system, for every t ∈ B(S), we define two sets of entities,
Γ (t) = {e.i | e ∈ S ∧ t(e) = i > 0} and Γall(t) = {e.i | e ∈ S ∧ 1 ≤ i ≤ t(e)}.
The e.i’s will be entities of the system we are going to construct. Note that
Γall(t) is a downward-closed set in the sense that if e.i ∈ Γall(t) and i > 1,
then e.1, . . . , e.(i − 1) ∈ Γall(t). In fact, Γall is a bijection from B(S) to all the
downward-closed sets, and its inverse Γ−1all is given by Γ−1all (Z)(e) = max{{0} ∪
{i | e.i ∈ Z}, for every e ∈ S. In what follows, Γall and Γ−1all will be applied
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component-wise to sequences of respectively bags and downward-closed sets.
For such crrsc, we define the corresponding context restricted reaction system as
Θ(crrsc) = (rs, ca) = ((S′, A′), (Q, q0, R

′)), where: S′ = {e.i | e ∈ S and 1 ≤ i ≤
#crrsc(e)}, A′ = {(Γ (r), Γ (i), Γall(p)) | (r, i,p) ∈ A}, and R′ = {(z, Γall(c), z′) |
(z, c, z′) ∈ R}. It is straightforward to see that Θ(crrsc) is well-defined.

As to the complexity of the translation, the number of reactions, states
and arrows remains the same. Moreover, the representations of reaction and
inhibitors are of the same order. What changes is the size of the background set,
in the worst case by the factor max{#crrsc(e) | e ∈ S} as well as the represen-
tations of products and contexts (again by the same factor).

We will now investigate a very close correspondence between Θ(crrsc) and
crrsc. First, we observe that, by the definitions of A′ and R′, all sets of entities
occurring in the interactive processes of Θ(crrsc) are downward-closed. Then we
obtain that all interactive processes of crrsc can be simulated by Θ(crrsc).

Theorem 1. If π = (ζ, γ, δ) is an interactive process in crrsc, then π′ =
(ζ, Γall(γ), Γall(δ)) is an interactive process in Θ(crrsc).

Proof. It suffices to show for w in the state sequence of π, Γall(resA(w)) =
resA′(Γall(w)). Suppose a = (r, i,p) ∈ A and a′ = (Γ (r), Γ (i), Γall(p)) ∈ A′.
We first observe that a is enabled in w (i.e., r ≤ w and w(e) < i(e), for all e ∈
carr(i)) iff a′ is enabled in Γall(w) (i.e., Γ (r) ⊆ Γall(w) and Γ (i)∩Γall(w) = ∅).
Moreover, it is easy to check that Γall(resa(w)) = resa′(Γall(w)). ut

Moreover, all interactive processes of Θ(crrsc) simulate those of crrsc.

Theorem 2. If π = (ζ, γ, δ) is an interactive process in Θ(crrsc), then π′ =
(ζ, Γ−1all (γ), Γ−1all (δ)) is an interactive process in crrsc.

Proof. Similar to the proof of Theorem 1. ut

We have therefore obtained a one-to-one correspondence between the inter-
active processes of Θ(crrsc) and crrsc.

Remark 1. From the point of view of enabling c-reactions, not all concentration
levels are important and, consequently, they do not need to be represented in the
states of Θ(crrsc). To achieve the desired effect, all one needs to do is re-define
Γall, in the following way: Γ ′all(t) = Γ (t) ∪ (Γall(t) ∩

⋃
a∈A Γ (ra) ∪ Γ (ia)).

Note that syntactically crrs are a subclass of crrsc, such that all the con-
centration levels in crrsc are limited to the value of at most one, that is, for
any t ∈ B(S) and for any e ∈ carr(t) we have t(e) = 1. Therefore, in the re-
mainder of this paper we use crrs and crrsc interchangeably, depending on the
concentration levels required.
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4 Reachability testing

In this section we define the reachability problem for crrsc and provide its trans-
lation into a satisfiability modulo theory (smt) with integer arithmetic.

Let n ≥ 0 be an integer. A result d ∈ B(S) is n-reachable in crrsc if there
exists an interactive process π = (ζ, γ, δ) in crrsc such that δ = (d0,d1, . . . ,dn)
and dn = d. We say that d is reachable in crrsc if there is n ≥ 0 such that d is
n-reachable in crrsc.

Theorem 3. The reachability problem for crrsc (crrs) is np-hard.

Proof. We show a reduction of 3-sat to reachability in crrs. The proof is similar
to that in [15] for rsctl model checking. Let PV = {x1, x2, . . . , xn} be a set
of propositional variables and β(x1, x2, . . . , xn) be a boolean formula in 3-cnf.
We define the set of the negated propositional variables PV = {x̄ | x ∈ PV } and
assume β = c1 ∧ c2 ∧ · · · ∧ cm, where ci = (li,1 ∨ li,2 ∨ li,3) with li,j ∈ (PV ∪PV ),
for 1 ≤ i ≤ m and 1 ≤ j ≤ 3. Moreover, for a clause c we define the set
vars(c) = {1 ≤ k ≤ n | xk ∈ PV is in c} and the set vars(c) = {1 ≤ k ≤ n |
x̄k ∈ PV is in c}. Next, we define the crrs which we use for the translation.

Let V = {p1, p̄1, . . . , pn, p̄n} be the set of entities representing the proposi-
tional variables and their negations, and C = {ĉ1, ĉ2, . . . , ĉm} be the set of the
entities that correspond to the clauses. The entity t is used to indicate that un-
der the considered valuation the formula β is true. The entity h is used as the
inhibitor of the reactions where no inhibitors are needed for the translation to
work. This guarantees that the inhibitor set is non-empty. The background set
is S = V ∪ C ∪ {t, h}, and we define the following sets of reactions:

– Pi = {({pi}, {h}, {pi}), ({p̄i}, {h}, {p̄i})} for 1 ≤ i ≤ n
– Li = {({pk}, {p̄k}, {ĉi}) | k ∈ vars(i)} ∪ {({p̄k}, {pk}, {ĉi}) | k ∈ vars(i)}

for 1 ≤ i ≤ m
– F = {({ĉi}, {h}, {ĉi} | 1 ≤ i ≤ m} ∪ {({ĉ1, ĉ2, . . . , ĉm}, {h}, {t})}.

The set Pi contains the reactions responsible for preserving the valuations of
the variables along the execution sequences. The reactions of Li produce entities
that indicate whether a single clause is satisfied, whereas the reactions of F that
the entity t indicating that all the clauses are satisfied is produced. The set of all
the reactions of the crrs is defined as A =

⋃n
i=1 Pi∪

⋃n
i=1 Li∪F . Next, we define

the context automaton ca = (Q, q0, R) where Q = {1, . . . , n + 2}, q0 = 1, and
R = {(i, {pi}, i+ 1) | 1 ≤ i ≤ n}∪{(i, {p̄i}, i+ 1) | 1 ≤ i ≤ n}∪{(i+ 1, ∅, i+ 2)}.
Then, rs = (S,A) and crrs = (rs, ca). Any path from 1 to n+1 in ca corresponds
to a valuation of the variables, where a choice of an edge from i to i+ 1 (for 1 ≤
i ≤ n) represents a choice of the valuation of xi (true for pi, false for p̄i). When
a chosen valuation satisfies a clause cj (for 1 ≤ j ≤ m), then ĉj is produced, and
when ĉj for all 1 ≤ j ≤ m are produced, then t is produced (in ca this is allowed
by the step from n+ 1 to n+ 2). Finally, β is satisfiable if D such that t ∈ D is
reachable in crrs. ut
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In this paper we focus on the approach of bounded model checking [4], i.e.,
we test the reachability for all the interactive processes of a given length, and
increase the length until the reachability is proved. In what follows we show how
n-reachability problem can be encoded by an smt formula. Due to lack of space,
our presentation is quite dense, but it contains the complete encoding.

Let crrsc = ((S,A), (Q, q0, R)) and π = (ζ, γ, δ) be an interactive process in
crrsc, where ζ = (z0, z1, . . . , zn), γ = (c0, c1, . . . , cn), and δ = (d0,d1, . . . ,dn).
Then, the i-th step of π is defined as πi = (zi, ci, di), where 0 ≤ i ≤ n. To encode
all the steps of π we introduce the following sets of positive integer variables
used in the encoding: P =

⋃n
i=0{pi,1, . . . , pi,n}, PE =

⋃n
i=0{pEi,1, . . . , pEi,n}, and

Q = {q0, . . . , qn}. Then, πi is encoded as si = (qi,p
E
i ,pi), where qi encodes

the state zi of the context automaton, pEi = (pEi,1, . . . , p
E
i,n) encodes the context

set ci, and pi = (pi,1, . . . , pi,n) encodes the result di. With pEi [j] and pi[j] we
denote, respectively, pi,j and pEi,j .

The entities of S are denoted by e1, . . . , ek, where k = |S|. For πi we define
the following functions that map background set entities to the corresponding
variables of the encoding: for all 0 ≤ i ≤ n we define ti : S → Pi and tEi : S →
PEi such that ti(ej) = pi,j , tEi (ej) = pEi,j for all 1 ≤ j ≤ k. The function e :
Q→ {0, . . . , |Q|−1} maps states of the context automaton to the corresponding
natural values used in the encoding. The set of the reactions that produce e ∈ S
is defined as Prod(e) = {a ∈ A | pa(e) > 0}.

To define the smt encoding of the reachability problem for crrsc we need
auxiliary functions that correspond to elements of the encoding.

Result: Resdi
(pi) =

∧
e∈S(ti(e) = di(e)) encodes a result di ∈ B(S) as the

conjunction of the variables with the corresponding concentration levels.
Context: Ctci(p

E
i ) =

∧
e∈S(tEi (e) = ci(e)) encodes a bag ci ∈ B(S) of

context entities.
Enabledness: Ena

(
pi,p

E
i

)
=
∧

e∈S(ti(e) ≥ ra(e) ∨ tEi (e) ≥ ra(e)) ∧∧
e∈S(ti(e) < ia(e) ∧ tEi (e) < i(e)) encodes the enabledness of a reaction a.
Entity concentration: Let f1, f2, f3 be expressions over P ∪ PE , then we

introduce the if-then-else operator: f1 → f2 | f3 = (f1 ∧ f2) ∨ (¬f1 ∧ f3).
Let e ∈ S, then Prodsorted(e) = (a1, a2, . . . , am) is an ordered list of the reactions
producing e, where m = |Prod(e)| and paj ≤ paj+1 for all 1 ≤ j < m. The
produced concentration level for entity e and reaction aj , 1 ≤ j ≤ m, is encoded
as: Cj

e

(
pi,p

E
i ,pi+1

)
= Enaj

(
pi,p

E
i

)
→ ti+1(e) = paj

| Cj+1
e

(
pi,p

E
i ,pi+1

)
if

j < m, and Enaj

(
pi,p

E
i

)
∧ ti+1(e) = paj

if j = m. Finally, we define the
complete entity concentration encoding for all the reactions. If m = 0, then
Ce

(
pi,p

E
i ,pi+1

)
= (ti+1(e) = 0), otherwise Ce(pi,p

E
i ,pi+1) = C1

e(pi,p
E
i ,pi+1)∨

((
∧

a∈Prod(e) ¬Ena(pi,p
E
i )) ∧ ti+1(e) = 0).

Transitions of context automaton: The encoding of the transition rela-
tion of the context automaton is a disjunction of the encodings for each transi-
tion: Trca(qi,p

E
i , qi+1) =

∨
(q,c,q′)∈R(q = e(q) ∧ Ctc(pEi ) ∧ qi+1 = ei+1(q′)).

Step of interactive process: We build a conjunction of the produced con-
centration levels for all entities and the transition relation for the context au-
tomaton: St(pi,p

E
i ,pi+1, qi, qi+1) = (

∧
e∈S Ce(pi,p

E
i ,pi+1))∧Trca(qi,p

E
i , qi+1).
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Interactive process: To encode n steps of π we define the following formula:
JπKn = Res∅S (p0) ∧ e(z0) ∧

∧n−1
i=0 St(pi,p

E
i ,pi+1, qi, qi+1).

To perform the n-reachability test of d ∈ B(S) in π we test the satisfiability
of the formula JπKn ∧

∨n
i=0 Resd(pi). Note that the n-reachability can also be

defined for a pair ρ = (x,y) where x,y ∈ B(S). Then, ρ is n-reachable if there
exists an interactive process π = (ζ, γ, δ) in crrsc such that δ = (d0,d1, . . . ,dn),
and x ≤ dn, dn(e) < y(e), for every e ∈ carr(y). In this case, the reachability
test for ρ is encoded as JπKn ∧

∨n
i=0

∧
e∈S(ti(e) ≥ x(e) ∧ ti(e) < y(e)).

5 Experimental results

In this section we present the results of an experimental evaluation of the trans-
lation presented in Section 4. We compare the implementation for crrsc with
an implementation for crrs by verifying the properties of the crrs obtained by
applying the translation defined in Section 3 to crrsc.

To provide a fair comparison, both the verification tools were implemented
in Python using similar techniques and use Z3 [16] for smt solving. The imple-
mentation for crrs is based on the encoding from Section 4 which is optimised
for crrs by using boolean variables instead of integer variables. The translation
into smt for crrs corresponds to the translation for crrsc – it is assumed that
all concentration levels are equal to 1 when an entity is present, and equal to 0
otherwise. We also implement an incremental approach to smt-solving, i.e., in a
single smt instance we increase the length of the encoded interactive processes
by unrolling their encoding until the reachability is proved, instead of creating
separate instances for each length tested.

When dealing with concentration levels we often need to perform incrementa-
tion and decrementation operations. For this we need additional notation (below
we use the notation e 7→ i to indicate the multiplicity of an entity e in a bag of
entities, e.g., {e 7→ 1, f 7→ 2} is a bag with one copy of e, two copies of f , and
nothing else).

Incrementation and decrementation operations: With ↑ge and ↓ge we
denote the set of reactions encoding the operation of, respectively, incremen-
tation and decrementation of concentration levels of e ∈ S when g ∈ S is
present with a non-zero concentration. With Me we denote the maximal al-
lowed value of e. Then ↑ge= {({e 7→ i, g 7→ 1}, ∅S , {e 7→ i+ 1}) | 1 ≤ i < Me}
and ↓ge= {({e 7→ i, g 7→ 1}, ∅S , {e 7→ i− 1}) | 2 < i ≤Me}.

Permanency: ♦i
e = {({e 7→ i}, i, {e 7→ i}) | 1 ≤ i ≤Me} is a set of reactions

ensuring permanency of e ∈ S which can be inhibited by i ∈ B(S).
We exploit the notation to use ↑ge , ↓ge , and ♦i

e in place of regular reactions
ignoring that they are in fact sets of reactions. In the implementation for crrsc we
introduce an optimisation where these reactions are encoded as macro-reactions,
that is, as simple operations on integer variables that increment, decrement, or
retain the value of the variable encoding concentration of e. Moreover, those
macro-reactions are allowed only when no ordinary reaction is enabled.
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5.1 Eukaryotic heat shock response

entity description entity description
hsp heat shock protein hsf3:hse hsf3 bound with hse
hsf heat shock factor hsp:mfp hsp bound with mfp
hsf2 dimerised heat shock factor hsp:hsf complex consisting of hsp and hsf
hsf3 trimerised heat shock factor temp temperature value
hse heat shock element cool decreases the temperature
mfp misfolded protein heat increases the temperature
prot protein

Table 1. Entities used in the heat shock response model.

Firstly, we test our implementation using the qualitative model of the eu-
karyotic heat shock response (hsr) introduced in [3]. hsr is an internal repair
mechanism triggered when a cell is subjected to an environmental stressor –
increased temperature that is not ideal for its functioning. A temperature ex-
ceeding the ideal temperature causes the proteins (prot) of a cell to misfold
(mfp), which in turn may cause its malfunctioning. To facilitate refolding of the
proteins, heat shock response proteins (hsp) are produced, which are molecu-
lar chaperones for the misfolded proteins. The production of hsp is initiated by
heat shock factors (hsf) which are, dimerised (hsf2), and then trimerised (hsf3).
Next, hsf3 activates hsp production by binding to the heat shock element (hse)
which is the promoter-site of the gene encoding the heat shock proteins.

The original model of [3] used stress and nostress entities to distinguish
between the presence and absence of the heat shock. We assume here that the
heat shock appears at (and above) the temperature of 42 ◦C, and this is modelled
using the temp entity. All the entities except temp remain at the concentration
level of 1. We assume that the maximal value of the temperature modelled using
the entity temp is 50.

The background set S for the rsc modelling hsr consists of the entities in
Table 1. The set Aord comprises the reactions in Table 2. We also define the set
of reactions dealing with temperature Atemp =↑heattemp ∪ ↓cooltemp ∪ �itemp, where i =
{heat 7→ 1, cool 7→ 1}. The rsc for hsr is defined as rschsr = (S,Aord ∪Atemp).

To define a crrrs for rschsr we use the context automaton cahsr = (Q, q0, R)
where Q = {0, 1}, q0 = 0 and R = {(0, {hsf 7→ 1, prot 7→ 1, hse 7→ 1, temp 7→
35}, 1), (1, {cool 7→ 1}, 1), (1, {heat 7→ 1}, 1), (1, ∅S , 1)}. Then, the crrsc for rschsr
is defined as crrschsr = (rschsr, cahsr). The context set specified in cahsr for the
transition from 0 (the initial state) corresponds to the initial context set used
in [3] as the minimal set of entities needed in hsr, together with the temp entity
indicating a temperature that does not cause the heat shock.

We test the efficiency of our implementation by verifying the reachability of
the following results of crrschsr: ρ1 = (x1,y1) where x1 = {hsp:hsf 7→ 1, hse 7→
1, prot 7→ 1}, y1 = {temp 7→ 42}. and ρ2 = (x2,y2) where x2 = {mfp 7→ 1},
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reactants inhibitors products
hsf 7→ 1 hsp 7→ 1 hsf3 7→ 1

hsf 7→ 1, hsp 7→ 1,mfp 7→ 1 ∅S hsf3 7→ 1

hsf3 7→ 1 hsp 7→ 1, hse 7→ 1 hsf 7→ 1

hsp 7→ 1, hsf3 7→ 1,mfp 7→ 1 hse 7→ 1 hsf 7→ 1

hsf3 7→ 1, hse 7→ 1 hsp 7→ 1 hsf3:hse 7→ 1

hsp 7→ 1, hsf3 7→ 1,mfp 7→ 1, hse 7→ 1 ∅S hsf3:hse 7→ 1

hse 7→ 1 hsf3 7→ 1 hse 7→ 1

hsp 7→ 1, hsf3 7→ 1, hse 7→ 1 mfp 7→ 1 hse 7→ 1

hsf3:hse 7→ 1 hsp 7→ 1 hsp 7→ 1, hsf3:hse 7→ 1

hsp,mfp, hsf3:hse 7→ 1 ∅S hsp 7→ 1, hsf3:hse 7→ 1

hsf 7→ 1, hsp 7→ 1 mfp 7→ 1 hsp:hsf 7→ 1

hsp:hsf 7→ 1, temp 7→ 42 ∅S hsf 7→ 1, hsp 7→ 1

hsp:hsf 7→ 1 temp 7→ 42 hsp:hsf 7→ 1

hsp 7→ 1, hsf3 7→ 1 mfp 7→ 1 hsp:hsf 7→ 1

hsp 7→ 1, hsf3:hse 7→ 1 mfp 7→ 1 hse 7→ 1, hsp:hsf 7→ 1

temp 7→ 42, prot 7→ 1 ∅S mfp 7→ 1, prot 7→ 1

prot 7→ 1 temp 7→ 42 prot 7→ 1

hsp 7→ 1,mfp 7→ 1 ∅S hsp:mfp 7→ 1

mfp 7→ 1 hsp 7→ 1 mfp 7→ 1

hsp:mfp 7→ 1 ∅S hsp 7→ 1, prot 7→ 1

Table 2. Reactions of the heat shock response model (curly brackets are omitted).

ρ1 ρ2
time [s] memory [MB] time [s] memory [MB]

crrs 17.32 25.08 38.78 28.38
crrsc 0.35 24.87 0.93 24.99

improvement 49.48× 1.01× 41.69× 1.13×

Table 3. Results for the heat shock response model.

y2 = ∅S . Reachability of ρ1 proves that it is possible to enter the state where
hsr may become stable, while reachability of ρ2 proves that it is possible for
the proteins to eventually misfold. The verification results4 are summarised in
Table 3. In terms of n-reachability, ρ1 is proved for n = 4, while ρ2 for n = 9.
There is no noticeable improvement in memory consumption for the verification
of crrsc over crrs. However, there is a significant difference in the execution times
in favour of crrsc, e.g., for ρ1 the verification for crrsc is 49.48 times faster.

4 The experimental results were obtained using a system equipped with 3.7GHz Intel
Xeon E5 processor and 12GB of memory, running Mac OS X 10.11.3.
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5.2 Scalable chain

Here we introduce an abstract system that executes reactions incrementing con-
centration levels of m molecules up to a maximal concentration level k. The
background set is defined as the set of the molecules combined with entities used
in the context sets: S = {e1, e2, . . . , em, inc, dec}. The inc and dec entities cause,
respectively, incrementation or decrementation of concentration levels. We define
the following sets of reactions: P =

{
({ei 7→ k}, ∅S , {ei+1 7→ 1)}) | 1 ≤ i < m

}
,

O =
{
↑incei , ↓

dec
ei | 1 ≤ i ≤ m

}
, F =

{
({em 7→ k}, {dec 7→ 1}, {em 7→ k})

}
. The

reactions of P take care of the production of the subsequent molecules, while
their concentration levels are changed by the reactions of O. The reaction of F
ensures persistency of the “final” molecule em when it reaches the concentration
of k, unless dec is present. The rsc for the scalable chain system is defined as
rscsc = (S,P ∪O∪F). Next, we define the context automaton casc = (Q, q0, R)
where Q = {0, 1}, q0 = 0, and the set R consists of the following transitions:
(0, {e1 7→ 1, inc 7→ 1}, 1), (1, {inc 7→ 1}, 1), (1, {dec 7→ 1}, 1). Finally, we define
crrscsc = (rscsc, casc). Time and memory consumption results are presented
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in Fig. 1–2. The verified reachability property is proved for n = m · k − 1.
In most cases there is an observable advantage of the implementation for crrsc
when the value of k is relatively large compared to m, e.g., for m = 8 and k = 20
the results for crrsc are 5.6 times better. For m = 10 and k = 14 the verification
of crrs proved to be 1.6 times more efficient as it only consumed 1334 seconds,
compared to 2155 seconds for crrsc. However, for m = 20 and k = 16 crrs was
only 1.2 times better. We attribute this inconsequence to the heuristics of the
smt-solver used. The crrsc implementation appears to be more memory-efficient
when dealing with larger concentration level values. It appears that when the
verified system is highly-dependent on a large domain of concentration levels,
then the crrsc will most likely be more suitable.
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6 Concluding remarks

In this paper, we introduced reaction systems with discrete concentrations which
support quantitative modelling. Although the formalism is not more expres-
sive than the standard reaction systems, the experimental results we obtained
demonstrate that expressing concentration levels in an explicit way allows for
some improvements in the efficiency of verification, and opens up possibilities
for introducing different optimisations.

In our future work we plan to extend this approach to provide a comprehen-
sive framework for verifying quantitative properties of reaction systems.
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