Skip to main content

Analysis of Boolean Logic Gates Logical Complexity for Use with Spiking Memristor Gates

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9726))

  • 769 Accesses

Abstract

2-Bit Boolean logical operations have been considered before, however, the focus has always been on the AND, OR, NOT, NAND and NOR gates that are of use in traditional electronics. The memristor tends to require implication and similar logics, which can be considered as sequential logics, especially when used with spiking memristor gates. Here we introduce the concept of logical efficiency based on how many differentiable operations exist in a truth table, and sequence sensitive gates (e.g. IMP) are found to have a higher logical efficiency. We propose an ideal gate which is both functionally complete and maximally logically efficient and demonstrate that it does not exist in 2-bit binary gates, but can exist in trinary. We propose that this novel theoretical approach will aid the building of neuromorphic computers that will be highly efficient, powerful and resilient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An interesting fact about existence gates is that they are useless in standard electronics, in our scheme they allow a method of recording the presence or absence of a logical signal without knowing anything about the content, which has applications in cryptography, monitoring, meta-data tracking and hacking of such systems.

  2. 2.

    Other than the trivial way of using a high voltage for \(\bigcirc \) and a low voltage for \(|\).

  3. 3.

    \(\{\rightarrow ,\bot \}\),\(\{\leftarrow , \bot \}\), \(\{\not \rightarrow , \top \}\), \(\{\not \leftarrow , \top \}\).

References

  1. Gale, E., de Lacy Costello, B., Adamatzky, A.: Boolean logic gates from a single memristor via low-level sequential logic. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 79–89. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Chua, L.O.: Memristor - the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  3. Di Ventra, M., Pershin, Y.V., Chua, L.O.: Putting memory into circuit elements: memristors, memcapacitors, and meminductors [point of view]. Proc. IEEE 97(8), 1371–1372 (2009)

    Article  Google Scholar 

  4. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  5. Chua, L.: Resistance switching memories are memristors. Applied Physics A: Materials Science & Processing, pp. 765–782, 2011

    Google Scholar 

  6. Gale, E.: Memristors and ReRAM: materials, mechanisms and models (a review). Semicond. Sci. Technol. 29, 104004 (2014)

    Article  Google Scholar 

  7. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  8. Gergel-Hackett, N., Hamadani, B., Dunlap, B., Suehle, J., Richer, C., Hacker, C., Gundlach, D.: A flexible solution-processed memrister. IEEE Electr. Device Lett. 30, 706–708 (2009)

    Article  Google Scholar 

  9. Gale, E., Pearson, D., Kitson, S., Adamatzky, A., Costello, B.L.: The effect of changing electrode metal on solution-processed flexibletitanium dioxide memristors. Mater. Chem. Phy. 162, 20–30 (2015)

    Article  Google Scholar 

  10. Gale, E., de Lacy, B., Costello, A.A.: Observation, characterization and modeling of memristor current spikes. Appl. Math. Inf. Sci. 7, 1395–1403 (2013)

    Article  Google Scholar 

  11. Gale, E., de Lacy, B., Costello, A.A.: Is spiking logic the route to memristor-based computers? In: 2013 International Conference on Electronics, Circuits and Systems (ICECS), pp. 297–300, Abu Dhabi, UAE. IEEE, 8–11 December 2013

    Google Scholar 

  12. Gater, D., Iqbal, A., Davey, J., Gale, E.: Connecting spiking neurons to a spiking memristor network changes the memristor dynamics. In: 2013 International Conference on Electronics, Circuits and Systems (ICECS), pp. 534–537, Abu Dhabi, UAE. IEEE, 8–11 December 2013

    Google Scholar 

  13. Gambuzza, L.V., et al.: Int. J. Bifurcation Chaos 25, 1550101 (2015) [9 pages]. http://dx.doi.org/10.1142/S0218127415501011

  14. Gale, E., de Costello, B.L., Adamatzky, A.: Emergent spiking in non-ideal memristor networks. Microelectron. J. 45, 1401–1415 (2014)

    Article  Google Scholar 

  15. Borghetti, J., Snider, G.D., Kuekes, P.J., Joshua Yang, J., Stewart, D.R., Stanley Williams, R.: ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010)

    Article  Google Scholar 

  16. Gale, E., Mayne, R., Adamatzky, A., de Costello, B.L.: Drop-coated titanium dioxide memristors. Mater. Chem. Phy. 143, 524–529 (2014)

    Article  Google Scholar 

  17. Sawa, A.: Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (2008)

    Article  Google Scholar 

  18. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)

    Article  Google Scholar 

  19. Gale, E., de Lacy, B., Costello, V.E., Adamatzky, A.: The short-term memory (d.c. response) of the memristor demonstrates the causes of the memristor frequency effect. In: Proceedings of CASFEST 2014, June 2014

    Google Scholar 

  20. Whitehead, A.N., Russell, B.: Principia Mathematica. In: Marchant Books, vol. 1, pp. 394–508 (1910)

    Google Scholar 

  21. Shannon, C.E.: Trans. AIEE. A symbolic analysis of relay and switching circuits 57, 713–723 (1938)

    Google Scholar 

  22. Comtet, L.: Boolean algebra generated by a system of subsets. In: Reidel, D. (ed.) Advanced Combinatorics: The Art of Finite and Infinite Expansions, pp. 185–189, Dordrecht (1974)

    Google Scholar 

  23. Karnaugh, M.: The map method for synthesis of combinational logic circuits. Trans. Am. Inst. Electr. Eng. part I 72, 593–599 (1953)

    MathSciNet  Google Scholar 

  24. Veitch, E.W.: Chart method for simplifying truth functions. In: Transactions of the 1952 ACM Annual Meeting, ACM Annual Conference/Annual Meeting, pp. 127–133 (1952)

    Google Scholar 

  25. Simpson, R.E.: Introductory Electronics for Scientists and Engineers. Allyn and Bacon, Boston (1987)

    Google Scholar 

  26. Post, E.L.: Introduction to a general theory of elementary propositions. Am. J. Math. 43, 167–168 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pershin, Y.V., Ventra, M.D.: Neuromorphic, digital and quantum computation with memory circuit elements. Proc. IEEE 100, 2071–2081 (2012)

    Article  Google Scholar 

  28. Pino, R.E., Bohl, J.W.: Self-reconfigurable memristor-based analog resonant computer. US Patent, pages US 8,274,312 B2 (2012)

    Google Scholar 

  29. Lehtonen, E., Laiho, M.: Stateful implication logic with memristors. In: IEEE/ACM International Symposium on Nanoscale Architectures, NANOARCH 2009, pp. 33–36, July 2009

    Google Scholar 

  30. Lehtonen, E., Poikonen, J.H., Laiho, M.: Applications and limitations of memristive implication logic. In: 13th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), pp. 1–6, August 2012

    Google Scholar 

  31. Stojmenovi, I.: On sheffer symmetric functions in three-valued logic. Discrete Appl. Math. 22(3), 267–274 (1989)

    Article  MathSciNet  Google Scholar 

  32. Lin, J.-F., Hwang, Y.-T., Sheu, M.-H., Ho, C.-C.: A novel high-speed and energy efficient 10-transistor full adder design. IEEE Trans. Circ. Syst. I Regular Papers 54(5), 1050–1059 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ella Gale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gale, E. (2016). Analysis of Boolean Logic Gates Logical Complexity for Use with Spiking Memristor Gates. In: Amos, M., CONDON, A. (eds) Unconventional Computation and Natural Computation. UCNC 2016. Lecture Notes in Computer Science(), vol 9726. Springer, Cham. https://doi.org/10.1007/978-3-319-41312-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41312-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41311-2

  • Online ISBN: 978-3-319-41312-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics