Skip to main content

Total Variation Minimization for Measure-Valued Images with Diffusion Spectrum Imaging as Motivation

  • Conference paper
  • First Online:
Book cover Image Analysis and Recognition (ICIAR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9730))

Included in the following conference series:

Abstract

In this paper, we present a notion of total variation for measure-valued images. Our motivation is Diffusion Spectrum Imaging (DSI) in which the diffusion at each voxel is characterized by a probability density function. We introduce a total variation denoising problem for measure-valued images. In the one-dimensional case, this problem (which involves the Monge-Kantorovich metric for measures) can be solved using cumulative distribution functions. In higher dimensions, more computationally expensive methods must be employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)

    Article  Google Scholar 

  2. Brandt, J., Cabrelli, C., Molter, U.: An algorithm for the computation of the Hutchinson distance. Inform. Process. Lett. 40, 113–117 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bihan, D.L., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet, M.: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurological disorders. Radiology 161, 401–407 (1986)

    Article  Google Scholar 

  4. Cabrelli, C.A., Molter, U.M.: The Kantorovich metric for probability measures on the circle. J. Comput. Appl. Math. 57, 345–361 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goldluecke, B., Strekalovskiy, E., Cremers, D.: The natural vectorial total variation which arises from geometric measure theory. SIAM J. Imaging Sci. 5(2), 537–563 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Johansen-Berg, H., Behrens, T.E.J.: Diffusion MRI: From Quantitative Measurements to In-Vivo Neuroanatomy, 1st edn. Academic, New York (2009)

    Google Scholar 

  7. Malcolm, J.G., Shenton, M.E., Rathi, Y.: Neural tractography using an unscented kalman filter. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 126–138. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Kunze, H., La Torre, D., Mendivil, F., Vrscay, E.R.: Fractal-Based Methods in Analysis. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  9. La Torre, D., Vrscay, E.R., Ebrahimi, A., Barnsley, M.: Measure-valued images, associated fractal transforms, and the affine self-similarity of images. SIAM J. Imaging Sci. 2(2), 470–507 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Michailovich, O., La Torre, D., Vrscay, E.R.: Function-valued mappings, total variation and compressed sensing for diffusion MRI. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012, Part II. LNCS, vol. 7325, pp. 286–295. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Mendivil, F.: Computing the Monge-Kantorovich distance. Comp. Appl. Math. (2016, to appear)

    Google Scholar 

  12. Brion, V., Poupon, C., Ri, O., Aja-Fernandez, S., Tristan-Vega, A., Mangin, J.F., Le Bihan, D., Poupon, F.: Noise correction for HARDI and HYDI data obtained with multi-channel coils and sum of squares reconstruction: An anisotropic extension of the LMMSE. Magn. Reson. Imaging 31, 1360–1371 (2013)

    Article  Google Scholar 

  13. Callahan, P.T.: Principles of Nuclear Magnetic Resonance Microscopy. Clarendon Press, Oxford (1991)

    Google Scholar 

  14. Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Prob. 19, 165–187 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wedeen, V.J., Hagmann, P., Tseng, W.-Y., Reese, T.G., Weisskoff, R.M.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54, 1377–1386 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work has also been supported in part by Discovery Grants from the Natural Sciences and Engineering Research Council of Canada (NSERC): FM (238549-2012) and ERV (Grant No. 106270-2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward R. Vrscay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

La Torre, D., Mendivil, F., Michailovich, O., Vrscay, E.R. (2016). Total Variation Minimization for Measure-Valued Images with Diffusion Spectrum Imaging as Motivation. In: Campilho, A., Karray, F. (eds) Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science(), vol 9730. Springer, Cham. https://doi.org/10.1007/978-3-319-41501-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41501-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41500-0

  • Online ISBN: 978-3-319-41501-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics