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Abstract. In this paper, a novel semi-supervised dictionary learning
and sparse representation (SS-DLSR) is proposed. The proposed method
benefits from the supervisory information by learning the dictionary in
a space where the dependency between the data and class labels is max-
imized. This maximization is performed using Hilbert-Schmidt indepen-
dence criterion (HSIC). On the other hand, the global distribution of
the underlying manifolds were learned from the unlabeled data by mini-
mizing the distances between the unlabeled data and the corresponding
nearest labeled data in the space of the dictionary learned. The pro-
posed SS-DLSR algorithm has closed-form solutions for both the dictio-
nary and sparse coefficients, and therefore does not have to learn the
two iteratively and alternately as is common in the literature of the
DLSR. This makes the solution for the proposed algorithm very fast.
The experiments confirm the improvement in classification performance
on benchmark datasets by including the information from both labeled
and unlabeled data, particularly when there are many unlabeled data.

1 Introduction

Dictionary learning and sparse representation (DLSR) is one of the most suc-
cessful mathematical models, which has led to state-of-the-art results in various
applications such as face recognition [1,2,3], image denoising [4], texture classifi-
cation [5], and emotion recognition [6]. DLSR, however, was originally proposed
in an unsupervised setting [7]. The main objective function in the optimiza-
tion problem related to DLSR is to minimize the reconstruction error between
the original signal and the reconstructed one in the space of learned dictionary
without including the information on class labels into the learning process. To
formally describe the original DLSR formulation, we suppose that there is a
finite set of data samples denoted as X = [x1, ...,xn] ∈ R

d×n, where d is the
dimensionality of the data and n is the number of data samples. In original
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DLSR, the data is decomposed using a few dictionary atoms by optimizing the
empirical cost function

L(X,D,α) =
n
∑

i=1

l(xi,D,α), (1)

where D ∈ R
d×k is a dictionary of k atoms, α ∈ R

k×n are the sparse coefficients
and L, l are loss functions. In the literature of the DLSR, the reconstruction
error, in mean-squared sense, between the original signal and the reconstructed
signal is the most common loss function, which is usually regularized by the ℓ1
norm to induce sparsity into the coefficients. Thus, the formulation in (1) can
be written as

L(X,D,α) = min
D,α

n
∑

i=1

(

1

2
‖xi −Dαi‖

2
2 + λ‖αi‖1

)

, (2)

where αi is the ith column of α. In order to avoid arbitrarily large values for D
and consequently, arbitrarily small values for α, we need an additional constraint
on the dictionary atoms to limit their ℓ2 norm to be smaller than or equal to
one. The complete optimization problem in (2) after adding this constraint is as
follows:

L(X,D,α) =min
D,α

n
∑

i=1

(

1

2
‖xi −Dαi‖

2
2 + λ‖αi‖1

)

,

s.t. ‖dj‖
2
2 ≤ 1 ∀j = 1, .., , k.

(3)

The original DLSR formulation given in (3) is unsupervised as the category
information has not been taken into consideration in the optimization prob-
lem. However, in a supervised learning paradigm, where the ultimate goal is
the classification of the data, this setting may not lead to an optimal discrim-
inative dictionary nor coefficients. A more recent attempt in the literature was
to incorporate the class labels into the learning of the dictionary and/or coeffi-
cients (refer to [8] for a review). This modification resulted in a new category of
DLSR, namely called supervised dictionary learning and sparse representation
(S-DLSR). Improvements (some significant) over unsupervised DLSR have been
reported in the literature for the classification tasks [3,9,10,11].

Although S-DLSR benefits from the side information available from category
information to learn a more discriminative dictionary, unfortunately, gathering
labeled data is often very expensive and time consuming. Most data available is
unlabeled and the sample size of the labeled data is often very small, which has
a hindering effect on the discriminative quality of the learned dictionary. Semi-
supervised learning (SSL) methods can potentially boost the performance of a
machine learning system by utilizing both supervisory information and global
data distribution. Using a large amount of unlabeled data, which is usually
easily accessible, can improve revealing the manifold global distribution [12],
and compensate for the small sample size of labeled data [13].

In this paper, a semi-supervised dictionary learning and sparse represen-
tation (SS-DLSR) based on Hilbert-Schmidt independence criterion (HSIC) is



proposed. The proposed SS-DLSR approach finds a dictionary based on two
criteria: first, the maximization of the dependency between the labeled data
and the corresponding category information, and second, minimization of the
distances between the unlabeled data and their nearest labeled data. The first
criterion guarantees finding the space of maximum discrimination based on the
information in the category information and labeled data, whereas the second
criterion, guarantees that the unlabeled data remain as close as possible to their
nearest-neighbor labeled data. Therefore, the learned dictionary (the projection
directions computed by using the aforementioned criteria) benefits from the dis-
criminative power of the category information in the labeled data and proximity
information of the unlabeled data as an indication of global manifold distribu-
tion. the sparse coefficients are subsequently computed in the space of learned
dictionary using the formulation given in (3).

2 Semi-supervised Dictionary Learning and Sparse

Representation

2.1 Problem Statement

Let X = [x1, ...,xn] ∈ R
d×n be n data samples with the dimensionality of

d. There are nl labeled and nu unlabeled data samples, where n = nl + nu.
Let {(x1,y1), ..., (xnl

,ynl
)} be the pair of labeled data (Xl ∈ R

d×nl) and the
corresponding labels (Y ∈ {0, 1}c×nl, where c is the number of classes), and
Xu = [xnl+1, ...,xn] ∈ R

d×nu be the unlabeled data samples. We would like to
find a dictionary, which can be considered as a transformation, based on two cri-
teria (1) maximizing the dependency between the labeled data Xl and the labels
Y, and (2) minimizing the distance between each unlabeled data with the nearest
label data. The first criterion is to guarantee finding a discriminative dictionary
using the labeled data, and the second criterion is to ensure the unlabeled data
samples are mapped close to their neighboring labeled data and therefore, the
global connectivity of data is maintained in the space of the learned dictionary.

The first criterion is implemented using the Hilbert-Schmidt independence
criterion (HSIC), which will be explained in the next subsection followed by the
design of the dictionary and sparse coefficients for the proposed semi-supervised
method.

2.2 Hilbert-Schmidt Independence Criterion

HSIC is a kernel-based measure of independence between two random variables
X and Y proposed first by Gretton et al. [14,15]. It is computed based on the
Hilbert-Schmidt norm of cross covariance operators in reproducing kernel Hilbert
spaces (RKHSs) [15].

Our focus here is the empirical HSIC, which is computed using a finite set of
data samples. To this end, considering Z := {(x1,y1, ), ..., (xnl

,ynl
)} ⊆ X × Y



as nl independent observations drawn from joint probability distribution PX×Y ,
the empirical HSIC is computed using

HSIC(Z) =
1

(nl − 1)2
tr(KHBH), (4)

where tr is the trace operator, and K, B, H ∈ R
nl×nl . K and B are kernels

on the data and labels, respectively. H = I − n−1

l ee⊤, where I is an identity
matrix, e is a vector of all ones and therefore, H is a centering matrix. Since the
empirical HSIC given in (4) is a measure of dependency between X and Y, in
order to maximize this dependency, tr(KHBH) should be maximized.

2.3 Dictionary Learning

As mentioned in the problem statement (Subsection 2.1), the dictionary is learned
based on two criteria. In order to maximize the dependency between the labeled
data and the corresponding labels, as shown in [11], the following optimization
problem has to be solved:

max
D

tr(D⊤XlHBHX⊤
l D),

s.t. D⊤D = I
(5)

where H is the centering matrix, B is a kernel on labels, and D is the dictionary
to be learned. By a few manipulations on the objective function given in (5), it
can be demonstrated that it is another form of empirical HSIC:

max
D

tr(D⊤XlHBHX⊤
l D)

= max
D

tr(X⊤
l DD⊤XlHBH)

= max
D

tr

([

(D⊤Xl)
⊤D⊤Xl

]

HBH

)

= max
D

tr(KHBH), (6)

where K = (D⊤Xl)
⊤D⊤Xl is a linear kernel on the projected labeled data

into the space of learned dictionary D. As can be clearly observed from the last
statement in (6), the objective function in (5) has the form of the empirical HSIC
and thus, the dictionary D projects the labeled data to the space of maximum
dependency with the corresponding labels.

The second criterion is to minimize the distances between the unlabeled data
and the nearest neighbor labeled data in the space of the dictionary learned. In
other words, considering z = D⊤x as a projected data sample to the space of
the learned dictionary, we would like to:

min
D

1

2

nl
∑

i=1

nu
∑

j=1

wi,j(zi − zj)
2, (7)



where wi,j are the weights that define the proximity (neighborhood) of the un-
labeled to labeled data. One way to define it is based one nearest neighbor, i.e.,
wi,j = 1 if the jth unlabeled data is the nearest to the ith labeled data and
wi,j = 0 otherwise.

It can be shown [16] that the objective function given in (7) can be written
in matrix form as follows:

min
D

1

2

nl
∑

i=1

nu
∑

j=1

wi,j(zi − zj)
2 = min

D

tr(ZLZ⊤) = min
D

tr(D⊤XLX⊤D), (8)

where L is the Laplacian of the graph made by the projected data points Z =
[z1, ..., zn] in the space of learned dictionary, and is defined as L = Q−W, where
W(i, j) = wi,j and Q is a diagonal matrix, where qi,i =

∑

j wi,j .
Combining the two objective functions given in (5) and 8, the overall op-

timization problem for the computation of the dictionary can be written as
follows:

max
D

tr
[

D⊤
(

(1− η)XlHBHX⊤
l − η XLX⊤

)

D
]

,

s.t. D⊤D = I
(9)

where 0 ≤ η ≤ 1 is a constant that determines the relative contributions of the
two terms in the objective function. According to the Rayleigh-Ritz theorem [17],
the solution for the optimization problem given in (9) is the corresponding eigen-
vectors of the largest eigenvalues of Φ = (1 − η)XlHBHX⊤

l − η XLX⊤.

2.4 Sparse Coefficients

After the computation of the dictionary using (9), the sparse coefficients can
be computed using the formulation provided in (2), which is called lasso if the
dictionary is known [18]. Although (2) can be solved using fast iterative methods,
since the dictionary is orthogonal, as shown in [19,20], the sparse coefficients can
be computed using soft-thresholding with the soft-thresholding operator Sλ(.):

αij = Sλ

(

[D⊤xi]j
)

, (10)

where αi,j is the (i, j)th element of α and Sλ(t) is defined as follows:

Sλ(t) =







t− 0.5λ if t > 0.5λ
t+ 0.5λ if t < −0.5λ
0 otherwise

(11)

3 Experiments and Results

To validate the proposed semi-supervised dictionary learning and sparse repre-
sentation method (SS-DLSR), two benchmark datasets publicly available from



UCI machine learning repository1 were used. The two datasets were the Sonar
(n = 208, d = 60, and c = 2) and the Parkinsons (n = 297, d = 13, and c = 2)
datasets.

The performance of the proposed SS-DLSR was evaluated for a fixed dic-
tionary size (k = 8) and varying relative ratio of the labeled to unlabeled
data nl/(nl + nu). To this end, 70% of the data was randomly selected as
the training set and 30% as the test set. The training data was further di-
vided to different ratios of labeled and unlabeled data as shown in Table 1
(nl/(nl+nu) = {0.05, 0.1, 0.3, 0.5}). One nearest neighbor was used as the prox-
imity measure between the unlabeled and labeled data to determine the matrix
of weights in (7). The value of η for the computation of the dictionary in (9)
was set to three different values, i.e., 0 (ignoring unlabeled data), 1 (ignoring
labeled data), and η∗ (the most discriminative dictionary corresponding to best
classification performance). The sparse coefficients were computed for the la-
beled portion of the training data as well as for the test data. A support vector
machine (SVM) with radial basis function (RBF) kernel was used for the clas-
sification of the data by submission of the sparse coefficients to the classifier as
suggested in [21]. The SVM was tuned using 5-fold cross validation on the la-
beled portion of training data to find the optimal kernel width (γ∗) and optimal
trade-off parameter (C∗). Subsequently, the SVM was trained on whole labeled
data in the training set using the optimal γ∗ and C∗ values and tested on the
test set. The experiments were repeated 10 times for different random split of the
data to training and test sets. The performance is reported in terms of classifier
accuracy (averaged over 10 runs) in Table 1.

From the results provided in Table 1, there are several immediate observa-
tions. First, by adding unlabeled data to the learning of the dictionary (the
columns in Table 1 corresponding with η∗), the classification performance is in-
creased, which means that the learned dictionary is more discriminative. This
reveals that the proposed algorithm can effectively incorporate the information
from both labeled and unlabeled data into the learning of the dictionary. Second,
by decreasing the rate of labeled to unlabeled data (nl/(nl + nu)), the gain in
performance from adding unlabeled data is increased. In realistic settings, there
usually exist many unlabeled data and only a small number of labeled data.
The proposed SS-DLSR algorithm benefits more from the information provided
by the unlabeled data in these situations as can be observed by comparing the
column corresponding with η∗ (including both the labeled and unlabeled data
into the dictionary learning) and the column with η = 0 (including only labeled
data into the dictionary learning).

4 Discussion and Conclusion

In this paper, a novel semi-supervised dictionary learning and sparse represen-
tation method was proposed. A discriminative dictionary was learned in the

1 http://archive.ics.uci.edu/ml/



Table 1: The classification rate (%) of the proposed SS-DLSR algorithm on
two benchmark datasets. The results were compared for various settings in the
proposed algorithm including different relative contributions of the labeled and
unlabeled data on dictionary learning (varying η), and different ratios of labeled
to unlabeled data (varying nl/(nl + nu)).

nl

nl+nu
Sonar Ionosphere

η = 0 η = 1 η
∗

η = 0 η = 1 η
∗

0.5 69.03 51.29 70.97 88.45 76.90 86.72
±5.78 ±6.62 ±3.95 ±2.82 ±5.15 ±3.90

0.3 66.45 51.94 68.71 85.34 74.83 85.69
±7.40 ±4.01 ±8.54 ±3.92 ±4.16 ±3.99

0.1 57.74 49.19 61.45 78.94 73.45 80.34
±4.97 ±5.55 ±8.13 ±5.50 ±5.28 ±6.81

0.05 53.55 50.97 55.65 72.07 68.45 74.66
±5.98 ±5.44 ±8.20 ±13.52 ±13.28 ±6.56

space of maximum dependency between the labeled data and class labels, where
the connectivity of the data was maintained by minimizing the distances be-
tween the unlabeled data and the corresponding nearest labeled data. As can
be seen from (9), the dictionary has a closed form solution. Also, by using soft-
thresholding, the sparse coefficients can be computed using a closed-form solu-
tion as given in (10). The proposed SS-DLSR approach is, therefore, very fast.
The effectiveness of the proposed method in learning from both supervisory in-
formation (based on labeled data) and graph connectivity information (based on
unlabeled data) was demonstrated by experiments on two benchmark datasets
from UCI machine learning repository.
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