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Abstract. Many severe security vulnerabilities in web applications
can be attributed to string manipulation mistakes, which can often
be avoided through formal string analysis. String analysis tools are
indispensable and under active development. Prior string analysis
methods are primarily automata-based or satisfiability-based. The two
approaches exhibit distinct strengths and weaknesses. Specifically, exist-
ing automata-based methods have difficulty in generating counterexam-
ples at system inputs to witness vulnerability, whereas satisfiability-based
methods are inadequate to produce filters amenable for firmware or hard-
ware implementation for real-time screening of malicious inputs to a sys-
tem under protection. In this paper, we propose a new string analysis
method based on a scalable logic circuit representation for (nondetermin-
istic) finite automata to support various string and automata manipu-
lation operations. It enables both counterexample generation and filter
synthesis in string constraint solving. By using the new data structure,
automata with large state spaces and/or alphabet sizes can be efficiently
represented. Empirical studies on a large set of open source web appli-
cations and well-known attack patterns demonstrate the unique benefits
of our method compared to prior string analysis tools.

1 Introduction

Analyzing string manipulating code is of great importance because string manip-
ulation is ubiquitous in modern software systems, such as web applications and
database services. String analysis aims to determine the set of assignments to
the string variables in string expressions that may arise from program execution
or other sources. It can be applied, e.g., to identify security vulnerabilities by
checking if a security sensitive function can receive an input string that contains
an exploit [24,29,32], to identify behaviors of JavaScript code that use the eval
function by computing the string values that can reach the eval function [15],
to identify html generation errors by computing the html code generated by web
applications [20], to identify the set of queries that are sent to back-end database
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by analyzing the code that generates the SQL queries [12], and to patch input
validation and sanitization functions by automatically synthesizing repairs [31].

Prior string analysis methods are mainly automata-based or satisfiability-
based. For automata-based approaches, explicit state-graph represented finite
automata [8,13], MTBDD represented finite automata [2,32], and Boolean alge-
bra represented symbolic finite automata [10,27,28] have been proposed. By
characterizing a set of strings as a language, these methods are not restricted to
particular bounds on string lengths. They can be used to synthesize filters or san-
itizers [31] to screen out malicious string inputs to systems under protection, but
have difficulty in generating counterexamples at system inputs to witness vul-
nerability. For satisfiability-based approaches, bit-vector based bounded checking
[4,18,19,23] and satisfiability modulo theories (SMT) based constraint solving
[1,3,26,34] have been proposed. They may answer a certain set of string queries
with length constraints not doable for automata-based methods. By searching
a solution to a given set of string constraints, they can generate counterexam-
ples to witness vulnerability, but cannot support the synthesis of string filters
amenable for firmware or hardware implementation for real-time screening of
malicious inputs to a system under protection.

In this paper, we intend to support string analysis of acyclic constraints with
both counterexample generation and filter synthesis capabilities. To achieve this
goal, we develop a nondeterministic finite automata (NFA) manipulation engine
with logic circuit representation. In particular, we adopt the and-inverter graph
(AIG) [21], which have been widely adopted in logic synthesis for industrial appli-
cations in electronic design automation (EDA) in recent years, as the underly-
ing data structure. Thereby automata manipulations can be performed implic-
itly using logic circuits while determinization is largely avoided. Our method
is scalable to automata with large alphabet sizes in contrast to BDD-based
automata representation. We further extend our method to represent symbolic
finite automata [10], which may have infinite (or very large) alphabets [25].
Our method enables the generation of counterexamples for backtracking attack
input strings to a vulnerable application and the synthesis of filters amenable for
firmware or hardware implementation to avoid exploits of vulnerabilities in real
time. The proposed method is implemented as a new string analysis tool, named
SLOG. We conduct comprehensive experimental study on over 20000 string con-
straints generated from real web applications to compare state-of-the-art tools,
including JSA [8], Stranger [30], Z3-str2 [34], CVC4 [3], and Norn [1]. Exper-
iments suggest the performance advantage of SLOG in contrast to other string
solvers with counterexample generation capabilities. Moreover, the scalability of
SLOG is shown for automata with large alphabets in contrast to BDD-based
methods of automata representation.

2 Preliminaries

A finite automaton A is a five-tuple (Q,Σ, I, T,O), where Q is a finite state
set, Σ is an alphabet, I ⊆ Q is a set of initial states, T ⊆ Σ × Q × Q is a
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state transition relation, and O ⊆ Q is a set of accepting states. In the sequel,
we shall instead represent the initial states, transition relation, and accepting
states in terms of characteristic functions I : Q → B, T : Σ × Q × Q → B,
and O : Q → B, respectively. (A characteristic function χ represents a (Boolean
encoded) set S by having χ(e) = 1 (True) if e ∈ S and χ(e) = 0 (False) if
e �∈ S.) A finite automaton can be either a deterministic finite automaton (DFA)
or a nondeterministic finite automaton (NFA) depending on the determinicity
of its state transition. In the sequel, we refer x , s and s ′ to the input, current-
state and next-state variables in the Boolean domain, and relate the valuations
of variables x , denoted [[x ]], and the valuations of variables s, denoted [[s]], to
the alphabet Σ and state set Q, respectively. A trace of an automaton is a state-
input alternating sequence q1, σ1, q2, σ2, . . . , q�, which satisfies T (σi, qi, qi+1)
for i = 1, . . . , � − 1.

A (finite) string σ1, . . . , σn, for n ≥ 0 (an empty string, denoted ε, when
n = 0), over alphabet Σ is accepted by an automaton if there exist states
q1, . . . , qn+1 such that I(q1) = 1 (for q1 being an initial state), O(qn+1) = 1 (for
qn+1 being an accepting state), and the sequence q1, σ1, q2, σ2, . . . , qn+1 forms
a trace. The set of strings accepted by an automaton A is called the (regular)
language accepted by A, denoted as L(A).

Because a finite automaton A = (Q,Σ, I, T,O) can be fully described by the
characteristic functions of I, T , and O, with Boolean encoding on Q and Σ the
automaton A can be represented as a logic circuit, denoted C(A), that realizes
these characteristic functions. In the sequel, we shall not distinguish between
characteristic functions I, T,O and their circuit representations. In this work, we
show how various string and automata manipulations can be achieved under the
logic circuit representation of (nondeterministic) finite automata. For practical
implementation, we exploit the and-inverter graph (AIG) [21] as the underlying
data structure for scalable logic circuit representation and manipulation. An AIG
is a directed acyclic graph G(V,E), where each vertex v ∈ V is either a primary
input node without any fanin or a function node representing a two-input and

gate, and each edge (u, v) ∈ E denotes a complemented or uncomplemented
connection from vertex u to v. Due to its simplicity, the AIG has been efficiently
implemented as a Boolean reasoning engine widely used in various logic synthesis
and formal verification tasks in industrial very-large-scale integration (VLSI)
designs.

In the sequel, we assume a finite automaton can be nondeterministic and may
even take ε-transitions. To represent an ε-transition under the circuit represen-
tation, we reserve a symbol “ε” as an addendum to Σ with a special handling.
Given a state transition relation T , we denote its equivalent variant with an
ε self-transition inserted for each state as T ε. That is, T ε(x , s, s ′) represents
T (x , s, s ′) ∨ ((s = s ′) ∧ (x = ε)).

Given a web application and an attack pattern (specified as a regular expres-
sion) we can first extract dependency graphs for security sensitive functions,
called the sinks, from the web application using static program analysis tech-
niques [14,17]. Each extracted dependency graph shows how the input values
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flow to a sink, including all the string operations performed on the input val-
ues before they reach the sink. A dependency graph is vulnerable if its sink
node accepts an attack string (with respect to a given attack pattern). From
the dependency graph, we can generate string constraint formulas and check
whether the intersection of the sink node’s language and the attack pattern is
empty. If it is empty, then the web application is not vulnerable. Otherwise, a
counterexample witnessing the vulnerability is to be computed.

3 String and Automata Operations

We show that string/language operations, including intersection, union, concate-
nation, deletion, replacement, and emptiness checking, can be achieved under
logic circuit representation. We omit other less used operations, including rever-
sion, prefix, suffix, and substring, due to space limitation.

In the following exposition we assume an automaton A (or Ai) is repre-
sented as a circuit of its characteristic functions T (x , s, s ′), I(s), and O(s) (or
Ti(x , si, s

′
i), Ii(si), and Oi(si) for i = 1, 2, 3). Also we assume without loss of

generality that |s1| = m and |s2| = n for automata A1 and A2, respectively,
with m ≤ n in our following discussion unless otherwise said.

3.1 Intersection

Given two automata A1 and A2, the automaton AInt = Int(A1, A2) that accepts
language L(AInt) = L(A1)∩L(A2) is the product machine with the characteristic
functions TInt, IInt, OInt constructed by first augmenting the transition relations
T1 and T2 to T ε

1 and T ε
2 , respectively, by inserting an ε self-transition for each

state, and second conjuncting the resultant characteristic functions of A1 and
A2. Accordingly, we have

(T1, I1, O1) (T2, I2, O2)
Int

(TInt, IInt, OInt)

with

TInt(x , s, s ′) = T ε
1 (x , s1, s

′
1) ∧ T ε

2 (x , s2, s
′
2),

IInt(s) = I1(s1) ∧ I2(s2),
OInt(s) = O1(s1) ∧ O2(s2),

for s = (s1, s2). The corresponding circuit construction is illustrated in Fig. 1(a).
The constructed circuit is of size O(|C(A1)|+ |C(A2)|) and has (|s1|+ |s2|) state
variables.
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Fig. 1. Circuit construction of (a) Int, (b) Uni, (c) Cat, (d) Delξ, and (e) IsEmp

operations.

3.2 Union

Given two automata A1 and A2, the automaton AUni = Uni(A1, A2) that accepts
language L(AUni) = L(A1) ∪ L(A2) can be constructed by disjointly unioning
the two with state variables being merged and states being distinguished by an
auxiliary variable α, similar to the multiplexed machine in [16], as follows.

(T1, I1, O1) (T2, I2, O2)
Uni

(TUni, IUni, OUni)

with

TUni(x , s, s ′) = (¬α ∧ ¬α′ ∧ T1(x , 〈s2〉m, 〈s ′
2〉m)) ∨ (α ∧ α′ ∧ T2(x , s2, s

′
2)),

IUni(s) = (¬α ∧ I1(〈s2〉m)) ∨ (α ∧ I2(s2)),
OUni(s) = (¬α ∧ O1(〈s2〉m)) ∨ (α ∧ O2(s2)),
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where s = (s2, α) and the bracket “〈s2〉m” indicates taking a subset of the
first m variables of s2. Essentially the state variables s of A1 is merged into s2

so that the first m variables of s2 are shared by both A1 and A2. Moreover,
the α bit signifies the states of A1 by α = 0, and signifies the states of A2

by α = 1. That is, a state q ∈ [[s]] belongs to A1 if its variable α valuates
to 0, and to A2 if α valuates to 1. The corresponding circuit construction is
illustrated in Fig. 1(b). The constructed circuit is of size O(|C(A1)| + |C(A2)|)
and has (max{|s1|, |s2|} + 1) state variables.

3.3 Concatenation

Given two automata A1 and A2, the automaton ACat = Cat(A1, A2) that
accepts language L(ACat) = (L(A1).L(A2)), which contains the set of concate-
nated strings σ1.σ2 for σ1 ∈ L(A1) and σ2 ∈ L(A2), can be constructed, in a
way similar to Uni, as follows.

(T1, I1, O1) (T2, I2, O2)
Cat

(TCat, ICat, OCat)

with

TCat(x , s, s ′) = (¬α ∧ ¬α′ ∧ T1(x , 〈s2〉m, 〈s ′
2〉m)) ∨ (α ∧ α′ ∧ T2(x , s2, s

′
2)) ∨

((x = ε) ∧ ¬α ∧ α′ ∧ O1(〈s2〉m) ∧ I2(s ′
2)),

ICat(s) = ¬α ∧ I1(〈s2〉m),
OCat(s) = α ∧ O2(s2),

for s = (s2, α). The corresponding circuit construction is illustrated in Fig. 1(c).
The constructed circuit is of size O(|C(A1)| + |C(A2)|) and has (max{|s1|,
|s2|} + 1) state variables.

3.4 Deletion

Given an automaton A, the automaton ADelξ
= Del(A, ξ) for ξ ∈ Σ that

accepts the strings of σ ∈ L(A) but with each appearance of symbol “ξ” in σ
being removed can be constructed as follows.

(T, I,O)
Delξ

(TDelξ
, IDelξ

, ODelξ
)

with

TDelξ
(x , s, s ′) = (T (x , s, s ′) ∨ ((x = ε) ∧ T (ξ, s, s ′))) ∧ (x �= ξ),
IDelξ

(s) = I(s),
ODelξ

(s) = O(s),

(The deletion operation is a special case of the replacement operation by replac-
ing an alphabet symbol with ε.) The corresponding circuit construction is illus-
trated in Fig. 1(d). The constructed circuit is of size O(|C(A)|) and has |s| state
variables.
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3.5 Replacement

Given three automata A1, A2, A3, we study how to construct the automata
ARep = Rep(A1, A2, A3) that accepts the language {(σ1.τ 1.σ2.τ 2 . . .) ∈
Σ∗ | (σ1.ρ1.σ2.ρ2 . . .) ∈ L(A1), σi �∈ (Σ∗.L(A2).Σ∗), ρi ∈ L(A2) and τ i ∈
L(A3) for all i}, that is, replacing L(A2) with L(A3) in L(A1). Based upon [32],
we construct the automata ARep as follows.

(T1, I1, O1) (T2, I2, O2) (T3, I3, O3)
Rep

(TRep, IRep, ORep)

First, we build automaton A��
1 , which parenthesizes any substrings of a string

in L(A1) by two fresh new symbols “�” and “�”. It yields from A1 the automa-
ton A��

1 with

T ��
1 = ((α = α′) ∧ (x �= �) ∧ (x �= �) ∧ T1(x , s1, s

′
1)) ∨

((s1 = s ′
1) ∧ ((¬α ∧ α′ ∧ (x = �)) ∨ (α ∧ ¬α′ ∧ (x = �)))),

I��
1 = ¬α ∧ I1(s1),

O��
1 = ¬α ∧ O1(s1).

The above construction makes two copies of the state space distinguished by
variable α. When the input symbol is not equal to � or �, the state transition
is the same as A1. When the input symbol equals � (resp. �), the state in the
α = 0 (resp. α = 1) space transitions to its counterpart in the α = 1 (resp.
α = 0) space.

Second, we build automaton A4, which is the automaton that accepts the
strings {(σ1. � .ρ1. � .σ2. � .ρ2. � . . .) ∈ Σ∗ | σi ∈ Σ∗.L(A2).Σ∗ and ρi ∈
L(A2)}. Let Ah be the automaton that accepts the language Σ∗.L(A2).Σ∗ with
characteristic functions Th(x , sh, s ′

h), Ih(sh), Oh(sh). Notice that constructing
the automaton Ah requires complementing an NFA and is of exponential cost.
Fortunately in most applications the automaton A2 is known a priori and thus
can be precomputed. Given A2 and Ah, assuming without loss of generality
|sh| = n ≥ |s2| = m, automata A4 can be derived as follows.

T4 = (¬β ∧ ¬β′ ∧ (x �= �) ∧ (x �= �) ∧ Th(x , sh, s ′
h)) ∨

(β ∧ β′ ∧ (x �= �) ∧ (x �= �) ∧ T2(x , 〈sh〉m, 〈s ′
h〉m)) ∨

(¬β ∧ β′ ∧ (x = �) ∧ Oh(sh) ∧ I2(〈s ′
h〉m)) ∨

(β ∧ ¬β′ ∧ (x = �) ∧ O2(〈sh〉m) ∧ Ih(s ′
h)),

I4 = ¬β ∧ Ih(sh),
O4 = ¬β ∧ (Oh(sh) ∨ Ih(sh)).

Third, let A5 = Int(A��
1 , A4) with characteristic functions T5(x , s5, s

′
5),

I5(s5), O5(s5), where s5 = (s1, α, s4) with s4 = (sh, β). Hence A5 accepts
the strings in L(A1) with all the substrings in L(A2) being marked. Then, in
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L(A5) instead of replacing substrings �L(A2)� with strings in L(A3), we replace
� with L(A3), � with ε, and L(A2) with ε. We obtain

TRep(x , s, s ′) = (¬α ∧ ¬α′ ∧ T5(x , s5, s
′
5) ∧ ¬γ ∧ ¬γ′ ∧ I3(s3) ∧ I3(s

′
3)) ∨

(¬α ∧ ¬α′ ∧ (s5 = s ′
5) ∧ (x = ε) ∧ ¬γ ∧ γ′ ∧ I3(s3) ∧ I3(s

′
3)) ∨

(¬α ∧ ¬α′ ∧ (s5 = s ′
5) ∧ γ ∧ γ′ ∧ T3(x , s3, s

′
3)) ∨

(¬α ∧ α′ ∧ T5(�, s5, s
′
5) ∧ (x = ε) ∧ γ ∧ ¬γ′ ∧ I3(s

′
3) ∧ O3(s3)) ∨

(α ∧ α′ ∧ ∃y .[T5(y , s5, s
′
5)] ∧ (x = ε) ∧ ¬γ ∧ ¬γ′ ∧ I3(s3) ∧ I3(s

′
3)) ∨

(α ∧ ¬α′ ∧ T5(�, s5, s
′
5) ∧ (x = ε) ∧ ¬γ ∧ ¬γ′ ∧ I3(s3) ∧ I3(s

′
3)),

IRep(s) = ¬γ ∧ I5(s5) ∧ I3(s3),

ORep(s) = ¬γ ∧ O5(s5) ∧ I3(s3),

for s = (s5, s3, γ).
The constructed circuit is of size O(|C(A1)| + |C(A2)| + |C(Ah)| + |C(A3)|)

and has |x | quantified internal variables.

3.6 Emptiness Checking

One important query, IsEmp(A), about an automaton A is asking whether the
language L(A) is empty. We employ property directed reachability (PDR) [11],
an implementation of the state-of-the-art model checking algorithm IC3 [5] in the
Berkeley ABC system [6], to test whether an accepting state is reachable from
an initial state in A. Note that PDR only accepts a sequential circuit specified in
transition functions, rather than a transition relation, as input; furthermore, it
assumes the given circuit shall have a single initial state. Unfortunately because
our automata are nondeterministic in general, their nondeterministic transitions
can only be specified using transition relations and they may have multiple initial
states.

To overcome the above mismatch between transition relation and transition
function, we devise a mechanism converting (T (x , s, s ′), I(s), O(s)) representa-
tion of NFA A into a form acceptable by PDR as follows. To handle the single
initial state restriction, let Aε be the automaton accepting only the ε string,
which is composed of a single initial accepting state without any transition. We
modify A by Cat(Aε, A) to enforce a single initial state. Moreover, to convert
a transition relation to a set of transition functions, we introduce n new input
variables y for n = |s| and a new state variable z with initial value 1, and
construct a new sequential circuit with

– the output function: OIsEmp = (O(s) ∧ z), and
– the next-state functions: δi = (yi) for state variables si, i = 1, . . . , n, and

δn+1 = (T (x , s,y) ∧ z) for the state variable z.

Fig. 1(e) shows the corresponding circuit construction, where the rectangu-
lar boxes denote state-holding elements. With these conversions, PDR can be
directly applied on the constructed new circuit. The constructed circuit is of size
O(C(A)) and has (|s| + 1) state variables and (|x | + |y |) input variables. The
complexity of checking language emptiness is PSPACE-complete in the circuit
size of the underlying automaton.
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4 Counterexample Generation

The automata manipulation flow specified in a dependency graph often ends
with an IsEmp query asking whether a vulnerability exists for the application
under verification. If the answer to IsEmp is negative, it is desirable to generate
a counterexample witnessing the vulnerability. Such a counterexample should
be expressed in terms of the inputs to the application. However since the coun-
terexample to the IsEmp query is a trace demonstrating the reachability from
an initial state to an accepting state in the final automaton, it does not directly
correspond to the counterexample at the inputs. By counterexample genera-
tion, we compute counterexample traces at the inputs of a dependency graph
that together induce a specific counterexample trace at the sink node. Prior
automata-based methods cannot easily generate such counterexamples because
the output automaton resulted from an automata operation does not contain
information about its input automata whereas our circuit construction preserves
such information through the introduced auxiliary variables.

Below we show how to backtrack from the negative answer to IsEmp to
extract the input counterexamples. The backtrack process traverses the depen-
dency graph in a reverse topological order and deduces the upstream counterex-
amples according to the corresponding operations in the following. Notice that an
automata circuit iteratively constructed by our method may contain internally
quantified variables. These variables are treated as free variables in PDR com-
putation without explicit quantifier elimination, and their corresponding assign-
ments are determined by PDR and returned along with the trace information.

Intersection. Let (p1, q1), (σ1, ρ1, 
1), (p2, q2), (σ2, ρ2, 
2), . . . , (p�, q�) be the
counterexample trace of automaton AInt = Int(A1, A2), where pi ∈ [[s1]], qi ∈
[[s2]], σi ∈ Σ, ρi ∈ Σk, 
i ∈ Σl, for some k, l ≥ 0 and (s1, s2) being the state
variables of AInt as constructed in Sect. 3.1. Let the values ρi ∈ Σk and 
i ∈ Σl

correspond to the assignments to the internally quantified variables of A1 and
A2, respectively. Then the counterexample traces of A1 and A2 can be extracted
backward by the following rule.

A1: (p1, (σ1, ρ1), . . . , p�) A2: (q1, (σ1, 
1), . . . , q�)
IntCex

AInt: ((p1, q1), (σ1, ρ1, 
1), . . . , (p�, q�))

Union. Let (q1, c), (σ1, ρ1), (q2, c), (σ2, ρ2), . . . , (q�, c) be the counterexample
trace of automaton AUni = Uni(A1, A2), where qi ∈ [[s2]], c ∈ [[α]], σi ∈ Σ,
and ρi ∈ Σk, for some k ≥ 0 and s2 being the state variables of AUni as con-
structed in Sect. 3.2. Let the values ρi ∈ Σk correspond to the assignments to
the internally quantified variables of A1 or A2. The the counterexample traces
of A1 and A2 can be extracted backward by the following rules.
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A1: (q1, (σ1, ρ1), . . . , q�) A2: (⊥)
UniCex, c = 0

AUni: ((q1, c), (σ1, ρ1), . . . , (q�, c))

A1: (⊥) A2: (q1, (σ1, ρ1), . . . , q�)
UniCex, c = 1

AUni: ((q1, c), (σ1, ρ1), . . . , (q�, c))

Concatenation. Let (q1, c1), (σ1, ρ1), (q2, c2), (σ2, ρ2), . . . , (q�, c�) be the coun-
terexample trace of automaton ACat = Cat(A1, A2), where qi ∈ [[s2]], ci ∈ [[α]],
σi ∈ Σ, and ρi ∈ Σki , for some ki ≥ 0 and (s2, α) being the state variables
of ACat as constructed in Sect. 3.3. Let the values ρi ∈ Σki correspond to the
assignments to the internally quantified variables of A1 or A2. Then the coun-
terexample traces of A1 and A2 can be extracted backward by the following
rule.

A1: (q1, z1, . . . , qi) A2: (qi+1, zi+1, . . . , qn)
CatCex

ACat: (p1, z1 . . . , pi, zi, pi+1, zi+1, . . . , p�)

where each pj = (qj , 0) for all j ≤ i, pj = (qj , 1) for all j ≥ i+1, and zj = (σj , ρj)
for all j �= i, and zi = (ε, ρi).

Replacement. Let (p1, c1, q1, r1, d1), (σ1, ρ1, 
1), . . ., (pn1 , cn1 , qn1 ,
rn1 , dn1), (σn1 , ρn1 , 
n1), (pn1+1, cn1+1, qn1+1, rn1+1, dn1+1), (σn1+1, ρn1+1,

n1+1), . . ., (pn2 , cn2 , qn2 , rn2 , dn2), (σn2 , ρn2 , 
n2), (pn2+1, cn2+1, qn2+1,
rn2+1, dn2+1), (σn2+1, ρn2+1, 
n2+1), . . ., (p�, c�, q�, r�, d�) be the coun-
terexample trace of automaton ARep = Rep(A1, A2, A3), where pi ∈ [[s1]],
ci ∈ [[α]], qi ∈ [[s4]], ri ∈ [[s3]], di ∈ [[γ]], σi, 
i ∈ Σ, and ρi ∈ Σk,
for some k ≥ 0 and (s1, α, s4, s3, γ) being the state variables of ARep as
constructed in Sect. 3.5. The trace must have the following form: Consider
(pni+1, cni+1, qni+1, rni+1, dni+1), (σni+1, ρni+1, 
ni+1), . . . , (pni+1 , cni+1 , qni+1 ,
rni+1 , dni+1). (Notice the subtle subscript difference between ni + 1 and ni+1.)
For i = 3m, we have cj = 0, dj = 0 for ni + 1 ≤ j ≤ ni+1, and
σni+1σni+2 . . . σni+1−1 /∈ Σ∗.L(A2).Σ∗. For i = 3m+1, we have cj = 0, dj = 1 for
ni +1 ≤ j ≤ ni+1, and σni+1σni+2 . . . σni+1−1 ∈ L(A3). For i = 3m+2, we have
cj = 1, dj = 0, σj = ε for ni +1 ≤ j ≤ ni+1, and 
ni+1
ni+2 . . . 
ni+1−1 ∈ L(A2).
Also σni

= ε for all i.
Let the values ρi ∈ Σk and 
i ∈ Σ correspond to the assignments to the

internally quantified variables of A1 and to the assignments to the internally
quantified variables added in the construction of ARep, respectively. Then the
counterexample trace of A1 can be extracted backward by the following rule.

A1:((ω
†
1)

−, (ω‡
3)

−, (ω†
4)

−, (ω‡
6)

−, . . . , (ω†
� ))

RepCex
ARep:(ω1, z1, ω2, z2, ω3, z3, ω4, z4, ω5, z5, ω6, z6, . . . , ω�)

where each ωi denote the trace (pni−1+1, cni−1+1, qni−1+1, rni−1+1, dni−1+1),
(σni−1+1, ρni−1+1, 
ni−1+1), . . ., (pni

, cni
, qni

, rni
, dni

), each zi denote
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(ε, ρni
, 
ni

), each ωi† denote the trace pni−1+1, (σni−1+1, ρni−1+1), pni−1+2,
(σni−1+2, ρni−1+2), . . ., pni

, and each ω‡
i denote the trace pni−1+1, (
ni−1+1,

ρni−1+1), pni−1+2, (
ni−1+2, ρni−1+2), . . ., pni
. Also, for a trace ω =

p1, σ1, . . . , pi, σi, pi+1, we denote its tail-removed subtrace p1, σ1, . . . , pi, σi as ω−.

5 Filter Generation

In addition to counterexample generation, one may further generate filters (also
called vulnerability signatures in [31]) to block malicious input strings from the
considered web application. By computing filters backward in the dependency
graph, the filters for the input strings to an application can be obtained. The
derived filters in our circuit representations are amenable for further hardware or
firmware implementation to support a high-speed and low-power way of filtering
malicious inputs from a web application. Notice that our circuit representa-
tion characterizes NFA in general, and further determinization may be needed
for firmware or hardware implementation of filters. Although automata deter-
minization can be costly, it is doable. Below we study how filter generation can
be done under the proposed circuit representation.

First of all, the filter for the sink node of the dependency graph is available,
assuming that sensitive strings to the underlying string manipulating program
are known a priori. Moreover, consider an operator Op on a given set of input
automata A1, . . . , Ak yielding A = Op(A1, . . . , Ak). Let B be an automaton with
its language L(B) ⊆ L(A) containing all illegal strings in L(A). We intend to con-
struct the filter automaton Bi for some i = 1, . . . , k of concern such that L(Bi) ⊆
L(Ai) and any σ ∈ L(Ai) satisfies (L(Op(A1, . . . , Ai−1, Aσ, Ai+1, . . . , Ak)) ∩
L(B)) = ∅ if and only if σ /∈ L(Bi), where Aσ denotes the automaton that
accepts exactly the string σ. Note that L(Bi) satisfying the above condition is
a minimal filter provided that the relation among the inputs of an automata
operation is ignored. Since the above condition guarantees that for each string
in Bi, there exists a set of strings in other Aj ’s, j �= i, such that some string in
B is generated after apply Op on this set of strings of Bi and Aj ’s. Under the
ignorance of the relation among the inputs of Op, a string should be kept in the
language of filter automaton Bi as long as it may possibly result in a string in
B through Op. The different Op cases are detailed in the following.

Intersection. Given the filter automaton B for the automaton A =
Int(A1, A2), the filter B can be directly applied as a filter for A1 as well as A2.

Union. Given the filter automaton B for A = Uni(A1, A2), observe that every
string in L(B) is in L(A1) or in L(A2). Hence automata B1 = Int(A1, B) and
B2 = Int(A2, B) form legitimate filters for A1 and A2, respectively.
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Concatenation. Given the filter automaton B for A = Cat(A1, A2), to gener-
ate the corresponding filters B1 and B2 for A1 and A2, respectively, we first con-
struct B† = Int(A,B). Clearly, L(B†) equals L(B) because L(B) ⊆ L(A). By
the circuit construction of A, the auxiliary state variable α distinguishes between
the substrings from L(A1) and the substrings from L(A2). As this information
may not be seen in B, the purpose of this intersection is to identify the separa-
tion points between the two substring sources. Let B1 be a copy of B† but with
the input symbol on every transition between states of α = 1 being replaced
with ε. Consider a trace (q1, c1), σ1, . . ., (qi, ci), ε, (qi+1, ci+1), ε, . . ., (q�, c�)
accepted by B1, where (qj , cj) ∈ [[s]] for s being the state variables of B1, and
cj ∈ [[α]] with cj = 0 for j ≤ i and cj = 1 for j ≥ i+1. By the construction of B1,
there should be a trace (q1, c1), σ1, . . ., (qi, ci), ε, (qi+1, ci+1), σi+1, . . ., (q�, c�)
accepted by B†. The existence of such a trace ensures σ1σ2 . . . σi−1 ∈ L(A1),
σi+1σi+2 . . . σ�−1 ∈ L(A2), and σ1σ2 . . . σ�−1 ∈ L(B). The above trace accepted
by B† also ensures for each string, σ ∈ L(B1) if and only if there exists another
string ρ in A2 such that σ.ρ ∈ L(B). So B1 forms a legitimate filter for A1.
Similarly, let B2 be a copy of B† but with the input symbol on every transition
between states of α = 0 being replaced with ε. Then B2 forms a legitimate filter
for A2.

Replacement. Given the filter automaton B for A = Rep(A1, A2, A3), to
generate the filter B1 for automaton A1, each string in L(B) has the form
σ1τ 1σ2τ 2 . . . σ�, where σi ∈ Σ∗.L(A2).Σ∗ and τ i ∈ L(A3) for i = 1, . . . , �.
We recognize each τ i and replace it with some string ρi ∈ L(A2). We then
remove from the resultant language those strings not in A1 by intersecting it
with A1. Therefore, B1 can be constructed as follows.

First, similar to the construction of A��
1 in Sect. 3.5, we build automaton B��,

which parenthesizes any substrings of a string in L(A1). Second, similar to the
construction of A4 in Sect. 3.5, we build automaton B4, which accepts the strings
{(σ1. � .τ 1. � .σ2. � .τ 2. � . . .) ∈ Σ∗ | σi ∈ Σ∗.L(A2).Σ∗ and τ i ∈ L(A3)}.
Third, let B5 = Int(B��, B4). Hence L(B5) = {(σ1. � .τ 1. � .σ2. � .τ 2. � . . .) ∈
Σ∗ | (σ1.τ 1.σ2.τ 2 . . .) ∈ L(B) and σi ∈ Σ∗.L(A2).Σ∗ and τ i ∈ L(A3)}. Then,
in L(B5) instead of replacing substrings �L(A3)� with strings in L(A2), we
replace � with L(A2), � with ε, and L(A3) with ε. Let the resultant automaton
be B†

1. Finally, B1 = Int(B†
1, A1) forms a legitimate filter for A1.

The fact that B1 is a legitimate filter for A1 can be shown as follows.
Consider a string σ = σ1.ρ1.σ2.ρ2 . . . /∈ L(B1), where σi /∈ Σ∗.L(A2).Σ∗

and ρi ∈ L(A2). Also consider another string σ1.τ 1.σ2.τ 2 . . . obtained from
replacing each ρi with τ i ∈ L(A3). If σ1.τ 1.σ2.τ 2 . . . ∈ L(B), then we have
σ1. � .τ 1. � .σ2. � .τ 2. � . . . ∈ L(B��). It is easy to see that σ1. � .τ 1. �
.σ2. � .τ 2. � . . . ∈ L(B5). Finally, for each �.τ i.�, replacing � with ρi,
replacing τ i with ε, and replacing � with ε yield σ1.ρ1.σ2.ρ2 . . . ∈ L(B1),
which contradicts to the assumption σ1.ρ1.σ2.ρ2 . . . /∈ L(B1). So we have
L(Rep(Aσ, A2, A3)) ∩ L(B) = ∅ for any string σ /∈ L(B1). Similarly, con-
sider string σ = σ1.ρ1.σ2.ρ2 . . . ∈ L(B1), where σi /∈ Σ∗.L(A2).Σ∗ and



String Analysis via Automata Manipulation 253

ρi ∈ L(A2). Then it is in L(B†
1). By the construction of B†

1, there should be
another string σ1.� .τ 1.� .σ2.� .τ 2.� . . . ∈ L(B5), where τ i ∈ L(A3). We have
σ1. � .τ 1. � .σ2. � .τ 2. � . . . ∈ L(B��), and hence σ1.τ 1.σ2.τ 2 . . . ∈ L(B).
It is easy to see that σ1.τ 1.σ2.τ 2 . . . ∈ L(Rep(Aσ, A2, A3)), which means
L(Rep(Aσ, A2, A3))∩L(B) �= ∅. Consequently B1 characterizes the desired lan-
guage.

6 Extension to Symbolic Finite Automata

Symbolic finite automata (SFA) [26] extend conventional finite automata by
allowing transition conditions to be specified in terms of predicates over a
Boolean algebra with a potentially infinite domain. Formally, an SFA A is a
5-tuple (Q,D, I,Δ,O), where Q is a finite set of states, D is the designated
domain, I ⊆ Q is the set of initial states (here we allow multiple initial states in
contrast to the standard single-initial-state assumption of SFA), Δ : Q×Ψ ×Q is
the move relation for Ψ being the set of all quantifier-free formulas with at most
one free variable, say χ, over a Boolean algebra of domain D, O ⊆ Q is the set of
accepting states. We assume ε transitions are allowed and properly encoded in Δ
in an SFA. Since D may not be bounded, a predicate logic formula over variable
χ cannot be represented with logic circuits. We separate predicates from the
logic circuit representation of SFA by abstracting each formula ψ appearing in
Δ with its designated propositional variable xψ. Let [[ψ]] be extended to denote
the set of solution values of χ satisfying ψ. Then the move relation of an SFA
can be expressed with a transition relation

T (x , s, s ′) =
∨

(p,ψ,q)∈Δ

(xψ ∧ (s = p) ∧ (s ′ = q))

and a predicate relation

P (x , χ) =
∧

(p,ψ,q)∈Δ

(xψ ↔ (χ ∈ [[ψ]])).

Therefore we can represent an SFA A with four characteristic functions I, O, T ,
and P .

With the above construction, our circuit constructions of Sect. 3 naturally
extend to SFA except that the predicate relation has to be additionally handled
as follows. For SFA AInt = Int(A1, A2), the predicate relation

PInt(x , χ) = P1(x 1, χ) ∧ P2(x 2, χ) ∧ (xχ=ε ↔ χ = ε),

for x = (x 1,x 2, xχ=ε).
For SFA AUni = Uni(A1, A2), the predicate relation

PUni(x , χ) = P1(x 1, χ) ∧ P2(x 2, χ),

for x = (x 1,x 2).
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For SFA ACat = Cat(A1, A2), the predicate relation

PCat(x , χ) = P1(x 1, χ) ∧ P2(x 2, χ) ∧ (xχ=ε ↔ χ = ε),

for x = (x 1,x 2, xχ=ε).
For SFA ARep = Rep(A1, A2, A3), we construct the predicate relation for

ARep as follows. The predicate relation of SFA A��
1 is first obtained from A1 by

P ��
1 (x ��

1 , χ) = P1(x 1) ∧ (xχ=� ↔ (χ = �)) ∧ (xχ=� ↔ (χ = �)) ∧
(xχ�=� ↔ (χ �= �)) ∧ (xχ�=� ↔ (χ �= �)),

for x ��
1 = (x 1, xχ=�, xχ=�, xχ�=�, xχ�=�). Then the predicate relation of A4 is

constructed from those of A2 and Ah by

P4(x 4, χ) = P2(x 2, χ) ∧ Ph(xh, χ) ∧ (xχ=� ↔ χ = �) ∧ (xχ=� ↔ χ = �) ∧
(xχ�=� ↔ χ �= �) ∧ (xχ�=� ↔ χ �= �),

for x 4 = (x 2,xh, xχ=�, xχ=�, xχ�=�, xχ�=�). Then the predicate relation of A5

is obtained by

P5(x 5, χ) = P ��
1 (x ��

1 , χ) ∧ P4(x 4, χ) ∧ (xχ=ε ↔ χ = ε),

for x 5 = (x ��
1 ,x 4, xχ=ε). Finally, the transition and predicate relations of SFA

ARep can be obtained by

TRep(x , s, s′) = (¬α ∧ ¬α′ ∧ T5(x5, s5, s′
5) ∧ ¬γ ∧ ¬γ′ ∧ I3(s3) ∧ I3(s

′
3)) ∨

(¬α ∧ ¬α′ ∧ (s5 = s′
5) ∧ (xχ=ε) ∧ ¬γ ∧ γ′ ∧ I3(s3) ∧ I3(s

′
3)) ∨

(¬α ∧ ¬α′ ∧ (s5 = s′
5) ∧ γ ∧ γ′ ∧ T3(x3, s3, s′

3)) ∨
(¬α ∧ α′ ∧ T5(x5, s5, s′

5)|Δ[χ/�] ∧ γ ∧ ¬γ′ ∧ O3(s3) ∧ I3(s
′
3) ∧ (xχ=ε)) ∨

(α ∧ α′ ∧ T5(y , s5, s′
5) ∧ (xχ=ε) ∧ ¬γ ∧ ¬γ′ ∧ I3(s3) ∧ I3(s

′
3)) ∨

(α ∧ ¬α′ ∧ T5(x5, s5, s′
5)|Δ[χ/�] ∧ ¬γ ∧ ¬γ′ ∧ I3(s3) ∧ I3(s

′
3) ∧ (xχ=ε)),

PRep(x , χ,y , χ†) = P5(x 5, χ) ∧ P3(x 3, χ) ∧ P5(y , χ†),

where x = (x 5,x 3), y is a set of newly introduced propositional variables for
|x |, χ† is a newly introduced variable for χ serving for existential quantifications,
and T |Δ[χ/a] denotes transition relation T is obtained under the modified move
relation Δ in which variable χ is substituted with symbol a. (Here we avoid
existentially quantifying out y and χ† by treating them as free variables.)

For emptiness checking of an SFA, we can treat the SFA as an infinite state
transition system by considering (χ,x , s) as the state variables. Let the transi-
tion relation be the conjunction of T and P , and let I and O be the initial and
accepting state conditions, respectively, of the infinite state transition system.
Then the model checking method [9], effectively PDR modulo theories, can be
applied for reachability analysis.
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7 Experimental Evaluation

Our tool, named SLOG, was implemented in the C language under the Berkeley
logic synthesis and verification system ABC [6]. The experiments were conducted
on a machine with Intel Xeon(R) 8-core CPU and 16 GB memory under the
Ubuntu 12.04 LCS operating system.

We compared SLOG against other modern constraint solvers: CVC4 [3],
Norn [1], Z3-str2 [34], and string analysis tools: JSA [8] and Stranger [30].
For the experiments, 20386 string analysis instances were generated from real
web applications via Stranger [30]. The web applications includes Moodle,
PHP-Fusion, etc., and these instances are tested for vulnerabilities such as
SQL-injection, cross-site scripting (XSS), etc. Each instance corresponds to an
acyclic dependency graph of a sink node in the program that consists of union,
concatenation, and replacement operations. For each instance, we generated the
string constraint that checks whether the dependency graph is vulnerable with
respect to an attack pattern. String constraints were generated in the SMT-lib
format for CVC4, Norn, and Z3-str2, and in the Java-program format for JSA.

The statistics of the benchmark instances are as follows. There are 85919 con-
catenation operations in total distributed in 18898 instances, 510 string replace-
ment operations in 255 instances, and 25160 union operations in 5109 instances.
All of these 20386 instances have membership checking at the end to determine
whether an attack string can reach the sink node. All the solvers except for
Norn, which does not support the replacement operation, provide full support
on these string operations. Timeout limits 300 and 9000 s were set for small and
large instances, respectively. An instance with fewer (resp. no fewer) than 100
concatenation operations is classified as small (resp. large).

The results of the solvers on the total 20386 instances are shown in Table 1,
where #SAT, #UNS, #TO, #FL, and #Run denote the numbers of solved
SAT, solved UNSAT, timeout, failed (with unexpected termination), and checked
instances, respectively. The total runtimes for SAT and UNSAT instances are
also shown in the table. Solvers SLOG, Stranger, CVC4, JSA and Z3-str2

checked all 20386 instances (runs) with successful rate 100 %, 100 %, 93.12 %,
99.98 %, 77.60 %, respectively; Norn checked 20131 instances with the successful
rate 82.17 % without running the 255 instances with replacement operations.

Table 1. Statistics of solver performance

Solver #SAT (time (s)) #UNS (time (s)) #TO #FL #Run

SLOG 8684 (65915) 11663 (72195) 39 0 20386

Stranger 8723 (10309) 11663 (1069) 0 0 20386

CVC4 7503 (8217) 11480 (1139) 1136 267 20386

JSA 8719 (7141) 11663 (8708) 0 4 20386

Z3-str2 4285 (249437) 11535 (921325) 2728 1838 20386

Norn 6306 (16586) 10236 (17383) 3344 245 20131
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To evaluate solver performance on instances of different sizes, we classify the
20386 instances into three groups: the replacement-free small ones (with fewer
than 100 concatenations and without replacement operations), the replacement-
free large ones (with no fewer than 100 concatenations and without replace-
ment operations), and the ones with replacement operations. By the classifi-
cation, there are 20091 replacement-free small instances, 40 replacement-free
large instances, and 255 instances with replacement operations. Note that the
replacement-free large instances also have a large number of union operations.

(a) (b) (c)

Fig. 2. Accumulated solving time for (a) replacement-free small instances, (b)
replacement-free large instances, and (c) instances with replacement operations.

For the replacement-free small instances (under a 300-s timeout limit), the
performances of solvers are shown in Fig. 2(a), where the x-axis is indexed by the
number of solved instances, which are sorted by their runtimes in an ascending
order for each solver, and the y-axis is indexed by the accumulated runtime in sec-
onds. As shown in Fig. 2(a), SLOG successfully solves 20054 cases in 137670 sec-
onds (with 37 timeout cases), outperforming Z3-str2 (13943 cases in 1399712 s),
CVC4 (18829 cases in 5555 s) and Norn (16542 cases in 33969 s). In contrast,
Stranger (20091 cases in 10590 s) and JSA (20087 cases in 15336 s) outperform
SLOG on almost all the cases. For the replacement-free large instances (under a
9000-s timeout limit), both Z3-str2 and Norn failed to solve any due to time-
out. As seen from Fig. 2(b), SLOG solved most of the large cases (with an average
of 1750 s per case), while CVC4 solved fewer than half of the instances (19 out
of 40) but took less time on solvable instances. Stranger and JSA outperform
SLOG and other SMT-based solvers, being able to solve all the 40 cases with
less time. For the instances with replacement operations (under a 300-s timeout
limit), all solvers are applicable except for Norn. Figure 2(c) shows that the rel-
ative performances of the solvers are similar to those in the other two instance
groups. The reason that Stranger outperforms SLOG might be explained by
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the fact that the emptiness checking of a sink automaton in Stranger is of
constant time complexity (due to the canonicity of state-minimized DFA), while
that in SLOG requires reachability analysis. Therefore as long as Stranger

succeeds in building the sink automaton, it is likely to outperform SLOG.
With the auxiliary variables and other information embedded in the circuit

construction, SLOG can generate counterexamples. We applied SLOG to find
witnesses of all 8684 vulnerable instances. It took 524 s in total to generate
counterexamples for all 8684 instances, only a small fraction of the total con-
straint solving time 65915 s. The high efficiency of counterexample generation
in SLOG can be attributed to the fact that the assignments to the internally
quantified variables in our circuit construction are already computed by PDR.
There is no need to re-derive them in generating counterexample traces by the
rules of Sect. 4 (Table 2).

Table 2. SLOG performance on counterexample generation

Group #SAT SolveTime (s) CexGenTime (s)

Small 8426 60664 481

Large 22 4236 18

Replacement 236 1015 25

In summary, SLOG performed the best among the solvers with counterex-
ample generation capability, including CVC4, Z3-str2 and Norn. In fact, a
significant portion of runtime spent by SLOG is on running PDR for language
emptiness checking. Although Stranger and JSA performed better than SLOG
in runtime, both are incapable of finding as a witness the values of input nodes
to a specific attack string in the sink node.

To justify that our circuit-based method can be more scalable than BDD-
based methods for representing automata with large alphabets, consider the
automata over alphabet Σ × Σ with |Σ| = 2n accepting the language (a, a)∗ for
a ∈ Σ. The automata have a linear O(n) AIG representation (4n+1 gates), but
have an exponential O(2n) BDD representation (e.g., 46 BDD nodes for n = 4,
766 nodes for n = 8, and 196606 nodes for n = 16) in MONA [7], which is used
by Stranger. Although a good BDD variable ordering exists to reduce the
BDD growth rate to linear in this example, a good BDD variable ordering can
be hard to find and even may not exist in general. In addition, because SLOG
represents NFA instead of DFA, it may avoid costly subset construction and can
be more compact than (DFA-based) Stranger.

8 Discussions

While SLOG demonstrates its ability on string constraint solving and coun-
terexample generation by taking advantage of circuit-based NFA representation,
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it should be noted that the compared string analysis tools have varied focuses
and expressiveness of specifying (non)string constraints. CVC4 [3] is a SMT-
based solver that supports many-sorted first-order logic. Norn [1] is another
SMT-based string constraint solver that employs Craig interpolation to handle
word equations over (unbounded length) string variables, constraints of string
length, and regular language membership constraints. Z3-str2 [34] is a string
theory plug-in built upon SMT solver Z3 [22]. These string solvers address string
constraints with lengths and can generate witness for satisfying constraints. In
the experimental evaluation, we did not consider length constraints when gener-
ating dependency graphs. String constraints with lengths are not currently sup-
ported by SLOG. The circuit-based representation could be extended to model
arithmetic automata for automata-based string-length constraint solving [2,33].
JSA is an explicit automata tool for analyzing the flow of strings and string
operations in Java programs. Stranger is an MTBDD-based automata library
for symbolic string analysis, which can be used to solve string constraints and
compute pre- and post-images of string manipulation operations. JSA employes
grammatical string analysis with regular language approximation and incorpo-
rates finite state transducers to support language-based replacement operations,
while Stranger can conduct forward and backward reachability analysis of
string manipulation programs along with DFA constructions for language opera-
tions. In the evaluation, we did not conduct analysis on cyclic dependency graphs
that can be analyzed with JSA and Stranger. Conducting fixpoint computa-
tion on cyclic dependency graphs may require efficient complement operation in
our circuit-based NFA representation that is not currently supported by SLOG.

9 Conclusions

We have presented a circuit-based NFA manipulation package for string analysis.
Compared to BDD-based methods of automata representation, our circuit-based
representation is scalable to automata with large alphabets. Our method avoids
costly determinization whenever possible. It supports both counterexample gen-
eration and filter synthesis. In addition, extension to symbolic finite automata
has been shown. Experiments have shown the unique benefits of our method.
For future work, it would be interesting to explore the usage of SLOG as a string
analysis engine in SMT solvers.
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