
Symbolic Optimal Reachability in
Weighted Timed Automata

Patricia Bouyer, Maximilien Colange, and Nicolas Markey

LSV – CNRS – ENS Cachan

Abstract. Weighted timed automata have been defined in the early
2000’s for modelling resource-consumption or -allocation problems in
real-time systems. Optimal reachability is decidable in weighted timed
automata, and a symbolic forward algorithm has been developed to solve
that problem. This algorithm uses so-called priced zones, an extension of
standard zones with cost functions. In order to ensure termination, the
algorithm requires clocks to be bounded. For unpriced timed automata,
much work has been done to develop sound abstractions adapted to
the forward exploration of timed automata, ensuring termination of the
model-checking algorithm without bounding the clocks. In this paper,
we take advantage of recent developments on abstractions for timed
automata, and propose an algorithm allowing for symbolic analysis of all
weighted timed automata, without requiring bounded clocks.

1 Introduction

Timed automata [AD94] have been introduced in the early 1990’s as a powerful
model to reason about (the correctness of) real-time computerized systems. Timed
automata extend finite-state automata with several clocks, which can be used to
enforce timing constraints between various events in the system. They provide a
convenient formalism and enjoy reasonably-efficient algorithms (e.g. reachability
can be decided using polynomial space), which explains the enormous interest
that they raised in the community of formal verification.

Hybrid automata [ACHH93] can be viewed as an extension of timed automata,
involving hybrid variables: those variables can be used to measure other quantities
than time (e.g. temperature, energy consumption, ...). Their evolution may follow
differential equations, depending on the state of the system. Those variables
unfortunately make the reachability problem undecidable [HKPV98], even in the
restricted case of stopwatches (i.e., clocks that can be stopped and restarted).

Weighted (or priced) timed automata [ALP01,BFH+01] have been proposed
in the early 2000’s as an intermediary model for modelling resource-consumption
or -allocation problems in real-time systems (e.g. optimal scheduling [BLR05]).
Figure 1 displays an example of a weighted timed automaton, modelling air-
crafts (left) that have to land on runways (right). In (single-variable) weighted
timed automata, each location carries an integer, which is the rate by which
the hybrid variable (called cost variable hereafter) increases when time elapses
in that location. Edges may also carry a value, indicating how much the cost

ar
X

iv
:1

60
2.

00
48

1v
1

 [
cs

.L
O

]
 1

 F
eb

 2
01

6

2

land?

c := 0

c > delayt 6 Tarr

+ke

t 6 Tarr

+kl

t 6 Tlate

t > Tearly

land!

t = Tarr

+Pl

Tarr

land!

Fig. 1. A (simplified) model of the Aircraft Landing System [LBB+01]: aircrafts (left)
have an optimal landing time Tarr within a possible landing interval [Tearly, Tlate]. The
aircraft can speed up (which incurs some extra cost, modelled by ke) to land earlier
than Tarr, or can delay landing (which also entails some penalties, modelled by Pl and kl).
Some delay has to occur between consecutive landings on the same runway, because of
wake turbulence; this is taken into account by the model of the runways (right).

increases when crossing this edge. Notice that, as opposed to (linear) hybrid
systems, the constraints on edges (a.k.a. guards) only involve clock variables:
the extra quantitative information measured by the cost is just an observer of
the system, and it does not interfere with the behaviors of the system.

Optimal cost for reaching a target, and associated almost-optimal sched-
ules, can be computed in weighted timed automata [ALP01,BFH+01,BBBR07].
The proofs of these results rely on region-based algorithms (either priced re-
gions [BFH+01], or corner-point refinements [ALP01,BBBR07]). Similarly to
standard regions for timed automaton [AD94], such refinements of regions are not
adapted to a real implementation. A symbolic approach based on priced zones has
been proposed in [LBB+01], and later improved in [RLS06]. Zones are a standard
symbolic representation for the analysis of timed-automata [BY03,Bou04], and
priced zones extend zones with cost functions recording, for each state of the
zone, the optimal cost to reach that state. A forward computation in a weighted
timed automaton can be performed using priced zones [LBB+01]: it is based on
a single-step Post-operation on priced zones, and on a basic inclusion test be-
tween priced zones (inclusion of zones, and point-to-point comparison of the cost
function on the smallest zone). The algorithmics has been improved in [RLS06],
and termination and correctness of the forward computation is obtained for
weighted timed automata in which all clocks are bounded. Bounding clocks of a
weighted timed automaton can always be achieved (while preserving the cost),
but it may increase the size of the model. We believe that a better solution
is possible: for timed automata and zones, a lot of efforts have been put into
the development of sound abstractions adapted to the forward exploration of
timed automata, ensuring termination of the model-checking algorithms without
bounding clocks [BY03,BBFL03,BBLP06,HKSW11,HSW12].

In this paper, we build on [LBB+01,RLS06], and extend the symbolic algo-
rithm to general weighted timed automata, without artificially bounding the
clocks of the model. The keypoint of our algorithm is an inclusion test between
abstractions of priced zones, computable from the (non abstracted) priced zones

3

themselves. It can be seen as a priced counterpart of a recently-developed inclu-
sion test over standard zones [HSW12]: it compares abstractions of zones without
explicitly computing them, which has shown its efficiency for the analysis of
timed automata. We prove that the forward-exploration algorithm using priced
zones with this inclusion test indeed computes the optimal cost, and that it
terminates. We also propose an algorithm to effectively decide inclusion of priced
zones. We implemented our algorithm, and we compare it with that of [RLS06].

Related work. The approach of [LBB+01,RLS06] is the closest related work. Our
algorithm applies to a more general class of systems (unbounded clocks), and
always computes fewer symbolic states on bounded models (see Remark 1); also,
while the inclusion test of [RLS06] reduces to a mincost flow problem, for which
efficient algorithms exist, we had to develop specific algorithms for checking
our new inclusion relation. We develop this comparison with [RLS06] further
in Section 6, including experimental results.

Our algorithm can be used in particular to compute best- and worst-case
execution times. Several tools propose WCET analysis based on timed automata:
TIMES [AFM+03] uses binary-search to evaluate WCET, while Uppaal [GELP10]
and METAMOC [DOT+10] rely on the algorithm of [RLS06] mentioned above;
in particular they require bounded clocks to ensure termination. A tentative
workaround to this problem has been proposed in [ARF14], but we are uncertain
about its correctness (as we explain with a counter-example in Appendix A).

By lack of space, all proofs are given in a separate appendix.

2 Weighted timed automata

In this section we define the weighted (or priced) timed automaton model, that
has been proposed in 2001 for representing resource consumption in real-time
systems [ALP01,BFH+01]

We consider as time domain the set R>0 of non-negative reals. We let X be
a finite set of variables, called clocks. A (clock) valuation over X is a mapping
v : X → R>0 that assigns to each clock a time value. The set of all valuations
over X is denoted RX>0. Let t ∈ R>0, the valuation v + t is defined by (v +
t)(x) = v(x) + t for every x ∈ X. For Y ⊆ X, we denote by [Y ← 0]v the
valuation assigning 0 (respectively v(x)) to every x ∈ Y (respectively x ∈ X \ Y).
We write 0X for the valuation which assigns 0 to every clock x ∈ X.

The set of clock constraints over X, denoted C(X), is defined by the grammar
g ::= x ∼ c | g ∧ g, where x ∈ X is a clock, c ∈ N, and ∼ ∈ {<,6,=,>, >}.

Clock constraints are evaluated over clock valuations, and the satisfaction
relation, denoted v |= g, is defined inductively by v |= (x ∼ c) whenever v(x) ∼ c,
and v |= g1 ∧ g2 whenever v |= g1 and v |= g2.

Definition 1. A weighted timed automaton is a tuple A = (X,L, `0,Goal,
E,weight) where X is a finite set of clocks, L is a finite set of locations, `0 ∈ L
is the initial location, Goal ⊆ L is a set of goal (or final) locations, E ⊆ L ×

4

C(X)× 2X ×L is a finite set of edges (or transitions), and weight : L∪E → Z is
a weight function which assigns a value to each location and to each transition.

In the above definition, if we omit the weight function, we obtain the well-known
model of timed automata [AD90,AD94]. The semantics of a weighted timed
automaton is that of the underlying timed automaton, and the weight function
provides quantitative information about the moves and executions of the system.

The semantics of a timed automaton A = (X,L, `0,Goal, E) is given as
a timed transition system TA = (S, s0,→) where S = L × RX>0 is the set of
configurations (or states) of A, s0 = (`0,0X) is the initial configuration, and →
contains two types of moves:

– delay moves: (`, v)
t−→ (`, v + t) if t ∈ R>0;

– discrete moves: (`, v)
e−→ (`′, v′) if there exists an edge e = (`, g, Y, `′) in E

such that v |= g, v′ = [Y ← 0]v.

A run % in A is a finite sequence of moves in the transition system TA, with
a strict alternation of delay moves (though possibly 0-delay moves) and discrete

moves. In the following, we may write a run % = s
t1−→ s′1

e1−→ s1
t2−→ s′2

e2−→ s2 . . .

more compactly as % = s
t1,e1−−−→ s1

t2,e2−−−→ s2 · · · . If % ends in some s = (`, v)
with ` ∈ Goal, we say that % is accepting. For a configuration s ∈ S, we write
Runs(A, s) the set of accepting runs that start in s.

In the following we will assume timed automata are non-blocking, that is,
from every reachable configuration s, there exist some delay t, some edge e and

some configuration s′ such that s
t,e−−→ s′ in A.

We can now give the semantics of a weighted timed automaton A = (X,L, `0,
Goal, E,weight). The value weight(`) given to location ` represents a cost rate,
and delaying t time units in a location ` will then cost t · weight(`). The value
weight(e) given to edge e represents the cost of taking that edge. Formally, the
cost of the two types of moves is defined as follows: cost

(
(`, v)

t−→ (`, v + t)
)

= t · weight(`)

cost
(

(`, v)
e−→ (`′, v′)

)
= weight(e)

A run % of a weighted timed automaton is a run of the underlying timed
automaton. The cost of %, denoted cost(%), is the sum of the costs of all the
simple moves along %.

Example 1. We consider the weighted timed automaton A depicted in Fig-
ure 2 (left). When a weight is non-null, we add a corresponding decoration
to the location or to the transition. A possible run in A is:

% = (`0, 0)
0.1−−→ (`0, 0.1)

e1−→ (`1, 0.1)
e3−→ (`3, 0.1)

1.9−−→ (`3, 2)
e5−→ (,, 2)

The cost of % is cost(%) = 5 · 0.1 + 1 · 1.9 + 7 = 9.4 (the cost per time unit is 5
in `0, 1 in `3, and the cost of transition e5 is 7).

5

5

`0

0

`1

10

`2

1

`3

,

x>2
y:=0

e1

y=0

e2

y=0
e3

x=2

+1
e4

x=2
+7e5

0

`0

,

x=1
x:=0

y≥10∧x=1

+1

Fig. 2. Examples of weighted timed automata

The optimal-reachability problem

For this model we are interested in the optimal-reachability problem, and in
the synthesis of almost-optimal schedules. Given a weighted timed automaton
A = (X,L, `0,Goal, E,weight), the optimal cost from s = (`, v) is defined as:

OptcostA(s) = inf
%∈Runs(A,s)

cost(%)

If ε > 0, a run % ∈ Runs(A, s) is ε-optimal whenever cost(%) ≤ OptcostA(s) + ε.
We are interested in OptcostA(s0), simply written as OptcostA, when s0 is

the initial configuration of A. It is known that OptcostA can be computed in
polynomial space [ALP01,BFH+01,BBBR07], and that almost-optimal schedules
(that is, for every ε > 0, ε-optimal schedules) can also be computed.

The solutions developed in the aforementioned papers are based on refinements
of regions, and a symbolic approach has been proposed in [LBB+01,RLS06],
which extends standard zones with cost functions: this algorithm computes the
optimal cost in weighted timed automata with nonnegative weights, assuming
the underlying timed automata are bounded, that is, there is a constant M such
that no clock can go above M . This is without loss of generality w.r.t. optimal
cost, since any weighted timed automaton can be transformed into a bounded
weighted timed automaton with the same optimal cost; it may nevertheless
increase the size of the model, and more importantly of the state-space which
needs to be explored (it can be exponentially larger). We believe that a better
solution is possible: for timed automata and zones, a lot of efforts have been put
into the development of sound abstractions adapted to the forward exploration of
timed automata, ensuring termination of the model-checking algorithm without
bounding clocks [BY03,BBFL03,BBLP06,HKSW11,HSW12].

Building on [LBB+01,RLS06], we extend the symbolic algorithm to general
weighted timed automata, without assuming bounded clocks. The keypoint of our
algorithm is an inclusion test between abstractions of priced zones, computable
from the (non abstracted) priced zones themselves. It can be seen as a priced
counterpart of a recently-developed inclusion test over standard zones [HSW12],
which compares their abstractions without explicitly computing them, and has
shown its efficiency for the analysis of timed automata. We prove that the
symbolic algorithm using priced zones and this inclusion test indeed computes
the optimal cost, and that it terminates.

6

3 Symbolic algorithm

In this section we briefly recall the approach of [LBB+01,RLS06], and explain
how we extend it to the general model, explaining which extra operation is
required. The rest of the paper is devoted to proving correctness, effectiveness
and termination of our algorithm.

3.1 The symbolic representation: priced zones

Let X be a finite set of clocks. A zone is a set of valuations defined by a generalized
constraint over clocks, given by the grammar γ ::= x ∼ c | x− y ∼ c | γ ∧ γ,
where x, y ∈ X are clocks, c ∈ Z, and ∼ ∈ {<,6,=,>, >}. Zones and their
representation using Difference Bound Matrices (DBMs in short) are the standard
symbolic data structure used in tools implementing timed systems [BY03,Bou04].

To deal with weighted timed automata, zones have been extended to priced
zones in [LBB+01]. A priced zone is a pair Z = (Z, ζ) where Z is a zone, and
ζ : RX>0 → R is an affine function. In a symbolic state (`,Z), the cost function ζ
is meant to represent the optimal cost so far (that is, ζ(v) is the optimal cost
so far for reaching configuration (`, v)). In [LBB+01], it is shown how one can
simply represent priced zones, and how these can be used in a forward-exploration
algorithm. The algorithm is shown as Algorithm 1, and we parametrize it by an
inclusion test � between priced zones.

Let A = (X,L, `0,Goal, E,weight) be a weighted timed automaton. The
algorithm makes a forward exploration of A from (`0,Z0) with Z0 = (Z0, ζ0),
where Z0 is the initial zone defined by

∧
x∈X x = 0 and ζ0 is identically 0

everywhere. Then, symbolic successors are iteratively computed, and when the
target location is reached, the minimal cost given by the priced zone is computed
(for a priced zone Z = (Z, ζ), we note infCost(Z) = infv∈Z ζ(v)), and compared
to the current optimal value (variable Cost). An inclusion test between priced
zones is performed, which allows to stop the exploration from (`,Z) when Z � Z ′

Algorithm 1: Symbolic algorithm for optimal cost, with inclusion test �
1 Cost←∞
2 Passed← ∅
3 Waiting← {(`0,Z0)}
4 while Waiting 6= ∅ do
5 select (`,Z) from Waiting
6 if ` ∈ Goal and infCost(Z) < Cost then
7 Cost← infCost(Z)

8 if for all (`,Z ′) ∈ Passed, Z 6� Z ′ then
9 add (`,Z) to Passed

10 add Post(`,Z) to Waiting

11 return Cost

7

and (`,Z ′) already appears in the set of symbolic states that have already been
explored. In [RLS06], the algorithm uses the following inclusion test b, which
refines the inclusion test of [LBB+01]: inclusion Z b Z ′ holds whenever Z ⊆ Z ′
and ζ(v) ≥ ζ ′(v′) for every v ∈ Z. As shown in [RLS06], this algorithm computes
the optimal cost in A, provided it terminates, and this always happens when the
weights in A are nonnegative, and when all clocks in A are bounded.

In the present paper, we define a refined inclusion test v between priced
zones, which will enforce termination of Algorithm 1 even when clocks are not
upper-bounded, and, to some extent, when costs are negative.

We now give some definitions which will allow to state the correctness of the
algorithm. Given a timed automaton A, a location ` and a priced zone Z = (Z, ζ),
we say that (`,Z) is realized in A whenever for every valuation v ∈ Z, and for
every ε > 0, there exists a run % from the initial state (`0,0X) to (`, v), such that
ζ(v) 6 cost(%) 6 ζ(v) + ε. For a location `, a priced zone Z = (Z, ζ) and a run %
starting in a configuration s, we say that % ends in (`,Z) if % leads from s to a
configuration (`, v) with v ∈ Z and cost(%) > ζ(v). The post operation Post on
priced zones used in Algorithm 1 is described in [LBB+01]. Its computation is
effective (see [LBB+01]), and is such that (see [RLS06]):

– every (`,Z) ∈ Post∗(`0,Z0) is realized in A;
– for every run % from a configuration s to a configuration s′, and every mixed

move τ from s′, if % ends in (`,Z), then %τ ends in an element of Post(`,Z).
– for every run % from (`0,0X), there exists (`,Z) ∈ Post∗(`0,Z0) such that %

ends in (`,Z) (this is a consequence of the previous property).

The purpose of this work is to propose an inclusion test v such that the
following three properties are satisfied:

1. (Termination) Algorithm 1 with inclusion test v terminates;
2. (Soudness w.r.t. optimal reachability) Algorithm 1 with inclusion test v

computes the optimal cost for reaching Goal;
3. (Effectiveness) There is an algorithm deciding v on priced zones.

We now present our inclusion test, and show its soundness for optimal reachability.
We then turn to effectiveness (Sect. 4), and then to termination (Sect. 5).

3.2 The inclusion test

Our inclusion test is inspired by the inclusion test on (pure) zones proposed
in [HSW12].1 We start by recalling an equivalence relation on valuations. We
assume a function M : X 7→ N∪{−∞} such that M(x) is larger than any constant
against which clock x is compared to in the (weighted) timed automata under
consideration. Let v and v′ be two valuations in RX≥0. Then, v ≡M v′ iff for every
clock x ∈ X, either v(x) = v′(x), or v(x) > M(x) and v′(x) > M(x). We note
[v]M the equivalence class of v under ≡M .

1 Contrary to pure reachability, we cannot use the preorder �LU (which distinguishes
between lower-bounded constraints and upper-bounded constraints) [BBLP06], since
it does not preserve optimal cost (not even optimal time).

8

Lemma 2. If v ≡M v′, then, for any ` ∈ L, OptcostA(`, v) = OptcostA(`, v′).

We now define our inclusion test for two priced zones Z = (Z, ζ) and Z ′ =
(Z ′, ζ ′); it is parameterized by M , which gives upper bounds on clocks:

Z vM Z ′ iff ∀v ∈ Z, ∀ε > 0, ∃v′ ∈ Z ′ s.t. v ≡M v′ and ζ ′(v′) ≤ ζ(v) + ε.

Theorem 3. When using vM , provided Algorithm 1 terminates, it is sound
w.r.t. optimal reachability (the returned cost is the optimal one).

Remark 1. Remember that the inclusion test b of [RLS06] requires Z ⊆ Z ′ and,
for every v ∈ Z, ζ(v) ≥ ζ ′(v). It is easily seen that Z b Z ′ implies Z vM Z ′ for
any M ; hence the branches are always stopped earlier in our algorithm (which
uses vM) than in the original algorithm of [RLS06] (which uses b). Moreover,
b does not ensure termination of the forward exploration when clocks are not
bounded: on the automaton of Figure 2 (right), where the optimal time to
reach the right state is 10, the forward algorithm successively computes zones
x ≤ 1 ∧ n ≤ y − x ≤ n+ 1, for every integer n. Any two such zones are always
incomparable (for b).

4 Effective inclusion check

In this section we show that we can effectively check the inclusion test vM of
priced zones. For the rest of this section, we fix two priced zones Z = (Z, ζ) and
Z ′ = (Z ′, ζ ′), and a function M . To improve readability, we write ≡ and v in
place of ≡M and vM .

4.1 Formulation of the optimization problem

We first express the inclusion of the two priced zones as an optimization problem.

Lemma 4. Z v Z ′ ⇐⇒ supv∈Z infv′∈Z′
v′≡v

ζ ′(v′)− ζ(v) 6 0.

Note that Z v Z ′ already requires some relation between zones Z and Z ′:
indeed, for the above inclusion to hold, it should be the case that for every v ∈ Z,
there exists some v′ ∈ Z ′ such that v ≡ v′. Interestingly, this corresponds to the
test on (unpriced) zones developed in [HSW12] (with L = U = M); this can
be done efficiently (in time quadratic in the number of clocks) as a preliminary
test [HSW12, Theorem 34].

Remark 2. The constraint v ≡ v′ is not convex, and we have a bi-level optimiza-
tion problem to solve. Hence common techniques for convex optimization, such as
dualization [BV04], do not directly apply to the above problem. Still, it is possible
to transform it into finitely many so-called generalized semi-infinite optimization
problems (GSIPs) [RS01] (using ZY ’s as defined later in this section). As far as
we know, such problems do not have dedicated efficient algorithmic solutions.
We thus propose a more direct solution, that benefits from the specific structure
of our problem (see for instance Section 4.3); it provides a feasible way to solve
our optimization problems, hence to decide v on priced zones.

9

x

y

M(x)

M(y)

Z

Z′
πY (Z′Y)

πY (ZY)

Z′Y

ZY

Fig. 3. Two-dimensional zones Z and Z′,
and sub-zones ZY and Z′Y for Y = {x}.

M(x)

M(y)

upper facets
of Z′Y w.r.t. y

upper facet of ZY w.r.t. y

lower facets of ZY and Z′Y w.r.t. y

Fig. 4. Simple facets of ZY and Z′Y
w.r.t. clock y.

In order to compute the above optima, we transform our problem into a
finite number of optimization problems that are easier to solve. Let Y ⊆ X.
A zone Z is M -bounded on Y if, for every v ∈ Z, {x | v(x) 6 M(x)} = Y .
We note ZY the restriction of Z to its M -bounded-on-Y component: ZY =
Z ∩

⋂
x∈Y (x 6 M(x)) ∩

⋂
x/∈Y (x > M(x)). Note that ZY may be empty, and

that the family (ZY)Y⊆X forms a partition of Z. We also define ZY as the priced
zone (ZY , ζ). We define the natural projection πY : RX≥0 → RY≥0, which associates

with v ∈ RX≥0 the valuation v′ ∈ RY≥0 that coincides with v on Y .

Lemma 5. The following two properties are equivalent:

(i) for every v ∈ Z, there is v′ ∈ Z ′ such that v′ ≡ v
(ii) for every Y ⊆ X, πY (ZY) ⊆ πY (Z ′Y).

This allows to transform the initial optimization problem into finitely many
optimization problems.

Lemma 6. sup
v∈Z

inf
v′∈Z′
v′≡v

ζ ′(v′)− ζ(v) = max
Y⊆X

sup
v∈ZY

inf
v′∈Z′Y
v′≡v

ζ ′(v′)− ζ(v).

Corollary 7. Z v Z ′ iff for every Y ⊆ X, ZY v Z ′Y

In the sequel, we write

S(Z,Z ′, Y) = sup
v∈ZY

inf
v′∈Z′Y
v′≡v

ζ ′(v′)− ζ(v)

Lemma 4 and Corollary 7 suggest an algorithm for deciding whether Z v Z ′:
enumerate the subsets Y of X, and prove that S(Z,Z ′, Y) ≤ 0. We now show
how to solve the latter optimization problem (for a fixed Y), and then show how
we can drive the choice of Y so that not all subsets of X have to be analyzed.

10

4.2 Computing S(Z,Z′, Y)

We show the following main result to compute S(Z,Z ′, Y), which produces a
simpler optimization problem, allowing to decide the inclusion of two priced
zones, on parts where cost functions are lower-bounded.

Theorem 8. Let Z = (Z, ζ) and Z ′ = (Z ′, ζ ′) be two non-empty priced zones,
and let Y ⊆ X be such that πY (ZY) ⊆ πY (Z ′Y) and ζ and ζ ′ are lower-bounded
on ZY and Z ′Y respectively. Then we can compute finite sets KY and K′Y of zones
over Y , and affine functions ζF and ζ ′F ′ for every F ∈ KY and F ′ ∈ K′Y s.t.:

S(Z,Z ′, Y) = max
F∈KY

max
F ′∈K′Y

sup
u∈F∩F ′

ζ ′F ′(u)− ζF (u). (1)

The details of the proof of this theorem is given in Appendix C.2. The idea
behind this result is to first rewrite S(Z,Z ′, Y) into:

S(Z,Z ′, Y) = sup
u∈πY (ZY)

[(
inf

v′∈Z′Y
πY (v′)=u

ζ ′(v′)
)
−
(

inf
v∈ZY

πY (v)=u

ζ(v)
)]

which decouples the dependency of v′ on v. The algorithm then uses the notion
of facets (introduced in [LBB+01]), which corresponds to the boundary of the
zone w.r.t. a clock (if W is the zone, a facet of W w.r.t. x is W ∩ (x = n) or
W ∩ (x−y = m) whenever x ./ n or x−y ./ m is a constraint defining W). Given
a clock x ∈ X \ Y , we consider the facets of ZY w.r.t. x that minimize, for any
w ∈ πX\{x}(ZY), the function v 7→ ζ(v) when πX\{x}(v) = w. The restriction
of ζ on such a facet is a new affine function, which we can compute. We then
iterate the process for all clocks in X \ Y . We do the same for ζ ′. This yields the
result claimed above: sets KY and K′Y are sets of projections of facets over Y .

Facets are zones, and so are their projections on Y and intersections thereof.
Additionally, all functions ζF and ζ ′F ′ are affine; hence the supremum in Eq. (1) is
reached at some vertex u0 of zone F∩F ′, for some facets F and F ′. By construction
of ζF and ζ ′F ′ , we get

S(Z,Z ′, Y) = inf
v′∈Z′Y
π(v′)=u0

ζ ′(v′)− inf
v∈ZY

π(v)=u0

ζ(v)

In particular, u0 has integral coordinates. We end up with the following result,
which will be useful for proving the termination of Algorithm 1:

Corollary 9. Let Z = (Z, ζ) and Z ′ = (Z ′, ζ ′) be two non-empty priced zones,
and let Y ⊆ X be such that πY (ZY) ⊆ πY (Z ′Y) and ζ and ζ ′ are lower-bounded
on ZY and Z ′Y respectively. Then the following holds:

S(Z,Z ′, Y) = max
u0∈πY (ZY)

u0∈NY

[
min
v′∈Z′Y
v′≡u0

ζ ′(v′)− min
v∈ZY

v≡u0

ζ(v)
]

11

The requirement for lower-bounded priced zones in Theorem 8 is crucial in
the proof. But the case when this requirement is not met can easily be handled
separately, so that v can always be effectively decided:

Lemma 10. Let Z = (Z, ζ) and Z ′ = (Z ′, ζ ′) be two non-empty priced zones.

– If ζ is not lower-bounded on Z but ζ ′ is lower-bounded on Z ′, then Z 6v Z ′.
– Let Y ⊆ X such that πY (ZY) ⊆ πY (Z ′Y). If ζ ′ is not lower-bounded on Z ′Y ,

then ZY v Z ′Y .

Corollary 11. Let Z = (Z, ζ) and Z ′ = (Z ′, ζ ′) be two priced zones. Then we
can effectively decide whether Z v Z ′.

4.3 Finding the right Y

Applying Lemma 6, the main obstacle to efficiently decide vM is to find the
appropriate ZY in which the sought supremum is reached. Unless good arguments
can be found to guide the search towards the best choice for Y , an exhaustive
enumeration of all the Y ’s will be required.

Example 2. We consider the zone Z defined by the constraints x > 0, y > 1, x 6 y
and y 6 x+ 2. We fix M(x) = 2 and M(y) = 3. We then consider Z ′ = Z. The
zone Z is equipped with a constant cost function ζ. In Figure 5(a), Z ′ is attached
ζ ′(x, y) = x+ y, and the expression of the function f(v) = infv′∈Z′, v′≡Mv ζ

′(v′)
is given in each ZY , for Y ⊆ X. It is then easy to see that the supremum of f is
reached at the point (2, 3), in the middle of the zone. In Figure 5(b), we take
ζ ′(x, y) = 2x− y, and the expression of the function f(v) = infv′∈Z′. v′≡Mv ζ

′(v′)
is given in each ZY . The supremum of f is then reached at the point (2, 2), on
the border, but not at a corner of the zone. The latter example also shows that
f is not continuous on the whole zone Z.

Nevertheless, in many cases, we will be able to guide the search of the ZY
where the sought optimal is to be found. The following development focuses on
the zone, not on the cost function. Given a zone Z, we define a preorder � on
the clocks, such that if ZY 6= ∅, then Y is downward-closed for �. In other words,
whenever x � y, y ∈ Y and ZY 6= ∅, then x ∈ Y . The knowledge of � can be a
precious help to guide the enumeration of non-empty ZY ’s. Indeed, if ZY 6= ∅,
Y is downward-closed for �, and candidates for Y are thus found by enumerating
the antichains of �. In particular, if � is total, then there are at most |X|+ 1
sets Y such that ZY 6= ∅.

To be concrete, let X≤M and X>M be the (disjoint) sets of clocks x such that
Z ⊆ (x ≤M(x)) and Z ⊆ (x > M(x)), respectively. We define the relation �Z
as the least relation satisfying the following conditions:

– for each x ∈ X≤M , for each y ∈ X, x �Z y;
– for each y ∈ X>M , for each x ∈ X, x �Z y;
– for each y ∈ X>M , for each x ∈ X \X>M , y 6�Z x;
– for all x, y ∈ X \X>M , Z ⊆ (x− y ≤M(x)−M(y)) implies x �Z y.

12

ζ′

M(y) = 3

M(x) = 2

x+y

x+3

y+2

5

5

Y = ∅ Y = {x}

Y = {y} Y = {x, y}

(a) The sought supremum is
reached in the middle of the zone.

ζ′

M(y) = 3

M(x) = 2

2x−y

x−2

4−y

0

2

Y = ∅ Y = {x}

Y = {y} Y = {x, y}

(b) The sought supremum is
reached on the border of the zone.

Fig. 5. The supremum may lie in the middle of zones or facets

It is not difficult to show that �Z is a preorder such that: y ∈ X≤M and x �Z y
implies x ∈ X≤M , and x ∈ X>M and x �Z y implies y ∈ X>M .

Lemma 12. Let Y ⊆ X such that ZY 6= ∅. Then Y is downward-closed for �Z .

The preorder �Z can be computed in polynomial time, since it only requires
to check emptiness of zones, which can be done in time polynomial in |X| (cubic
in |X| with DBMs for instance).

We recall that, if Z is a zone generated in a timed automaton where only
resets of clocks to 0 are allowed, for any pair of clocks x, y, it cannot be the case
that Z crosses the diagonal hyperplane of equation x = y.

Proposition 13. If Z is generated by a timed automaton, and all clocks have
the same bound M , then �Z is total.

Proof. Let x and y be two clocks. Since Z is generated by a timed automaton,
it is contained either in the half-space of equation [x 6 y], or in the one of
equation [x > y]. By definition of �Z , and since M(x) = M(y), the former entails
x �Z y, and the latter y �Z x. Any two clocks are thus always comparable, and
�Z is therefore total. ut

Under the assumptions of Proposition 13, there are polynomially many subsets
Y ⊆ X to try. Note that these assumptions are easily realized by taking M̃ =
maxx∈XM(x) as the unique maximal constant for all the clocks. Formally,
v
M̃

is an under-approximation of the exact version of vM . This approximation
does not hinder correctness, and illustrate the trade-off between the complexity
of the inclusion procedure and the number of priced zones that will be explored.

13

5 Termination of the computation

In this section we prove termination of our algorithm, by exhibiting an appropriate
well-quasi-order. We fix a timed automaton A and a maximal-constant function M
(for every clock x ∈ X, the integer M(x) is larger than any constant with which
clock x is compared in A).

Proposition 14. v is a preorder (or quasi-ordering).

We now consider the “converse” preorder w, defined over priced zones by
Z ′ w Z iff Z v Z ′. We show that w is a well quasi-ordering (wqo). Thus the
relation w has no infinite antichain, which entails termination of Algorithm 1.

We now gather the results to exhibit a sufficient condition for w to be a wqo.

Theorem 15. For every µ ∈ Z, w is a well-quasi-order on (non-empty) priced
zones whose cost functions are either not lower-bounded, or lower-bounded by µ.

Corollary 16. Algorithm 1 terminates on weighted timed automata, which gen-
erate priced zones with a uniform lower bound on the cost functions,

We can argue (see Appendix D.1) that infinite antichains for w generated
by a forward exploration of A actually corresponds to infinite paths in A
with cost −∞. While this condition can be decided (using the corner-point
abstraction of [BBL08]), we do not want to check this as a preliminary step,
since this is as complex as computing the optimal cost. Furthermore, symbol-
ically, this would amount to finding a cycle of symbolic states which is both
ω-iterable [JR11,DHS+14] and cost-divergent; this is a non-trivial problem. We
can nevertheless give simple syntactic conditions for the condition to hold: this is
the case of weighted timed automata with non-negative weights (this is the class
considered in [LBB+01,RLS06]); let T` be the minimum (resp. maximum) delay
that can be delayed in ` if location ` has positive (resp. negative) cost: if along
any cycle of the weighted timed automaton, the sum of the discrete weights and
of each T`.weight(`) is nonnegative, then the above condition will be satisfied;
this last condition encompasses all the acyclic weighted timed automata, like all
scheduling problems [BLR05].

6 Experimental Results

We have implemented a prototype, TiAMo, to test our new inclusion test. It is
based on the DBM library of Uppaal (in C++),2 which features the inclusion test
of [RLS06]. We added our inclusion test (also in C++). This core is then wrapped
in OCaml code, in which the main algorithm is written. Note that TiAMo relies
on the representation of priced zones from the DBM library of Uppaal, which
assumes that all cost functions are always non-negative. For this reason, TiAMo
does currently not support models with negative costs.

2 http://people.cs.aau.dk/~adavid/UDBM/

http://people.cs.aau.dk/~adavid/UDBM/

14

ALS ETS Figure 2 (right)

SBFS+P SBFS SBFS+P SBFS+P SBFS

v b v b v b v b v b

added to Waiting 12,016 26,549 73,487 908,838 107 664 14 NT 14 NT

added to Passed 4,914 9,687 63,914 908,612 84 606 13 NT 14 NT

max. # stored 9,705 21,407 40,297 599,721 83 590 14 NT 14 NT

tests 351,198 1,598,135 14,508,440 > 9 · 109 174 17,684 135 NT 135 NT

successful tests 11,796 27,885 354,126 3,627,958 66 455 3 NT 3 NT

time < 2 s < 2 s 12 s 41 min < 1 s < 1 s < 1 s NT < 1 s NT

Table 1. Experimental results

TiAMo is able to prune the state space using the best cost so far. Concretely,
it would not explore states whose cost exceeds the current optimal cost. This can
dramatically reduce the state space to explore, but is sound only when all costs
in the model are non-negative. On such models, the user can provide a hint, a
known cost to TiAMo (obtained for example by a reachability analysis, or by
other independent techniques) to be used to prune the model. Moreover, TiAMo
reports, during the computation, the best known cost so far. Such values are
upper bounds on the sought optimum, and may be interesting to get during long
computations.

A direct comparison between TiAMo and Uppaal3 (or Uppaal-CORA4) is
difficult: the source code of Uppaal (and Uppaal-CORA) is not open, and it is
often hard to know what is precisely implemented. For instance, on the unbounded
automaton of Figure 2, the algorithm described in [LBB+01,RLS06] does not
terminate. Depending on the way it is queried (asking for the fastest trace, or
with an inf query), Uppaal terminates or runs forever on this model.

In order to measure the impact of the inclusion test on the algorithm, we
decided to compare the performance of TiAMo running one or the other inclusion
test (b or v). Our primary concern is to compare the number of (symbolic)
states explored, and the number of inclusion tests performed.

We run our experiments with and without pruning activated. Deactivated
pruning allows to measure the impact of the choice of the inclusion test itself.
It is also more representative of the behavior that can be expected on models
with negative costs, for which pruning is not sound.

The models. We briefly describe the models used in our experiments. The first
two are case studies described on the web page of Uppaal-CORA.

The Aircraft Landing System (ALS) problem has been described in Figure 1:
it consists in scheduling landings of aircrafts arriving to an airport with several
runways. In our model, we had two runways and 7 aircrafts. The model has 5
clocks (one global clock, plus two per runway) and 48, 000 discrete states.

In the Energy-optimal Task-graph Scheduling (ETS) problem, several proces-
sors having different speeds and powers are to be used to perform interdependent

3 http://www.uppaal.org/
4 http://people.cs.aau.dk/~adavid/cora/

http://www.uppaal.org/
http://people.cs.aau.dk/~adavid/cora/

15

tasks. The aim is to optimize energy consumption for performing the given set
of tasks within a certain delay. The model we used for our experiments is the
one described in [BFLM11, Example 3]. It has 2 clocks (one per CPU) and 55
discrete states.

Finally, we also ran TiAMo on the model Figure 2, to illustrate that v handles
unbounded models. This model has two clocks and two discrete states.

Exploration strategies. TiAMo implements several strategies to explore the
symbolic state space. We retain here only the one called SBFS, a modification
of BFS based on the observation that, if s subsumes s′, the successors of s′

are subsumed by successors of s. Successors of s are thus explored first, until
all successors of s′ in the Waiting list are subsumed. This is a very naive
implementation of a strategy proposed in [HT15]. The strategy has two variants,
depending on whether pruning is activated (SBFS+P) or not (SBFS). For the
ETS problem, both strategies yield very similar results, so we chose to only
present SBFS+P.

Experimental results. The results are summed up in Table 1. For each model, and
for different combinations of inclusion test and exploration strategy, we indicate
the number of symbolic states explored, as well as the number of tests (successful
or not) that have been performed. We also indicate the maximal size of the list
Passed; although not detailed in Algorithm 1, the tool ensures that Passed
remains an antichain. This minimizes the number of inclusion tests. When a new
element is added to the Passed list, all elements of Passed subsumed by the
new one are removed, so that the size of Passed does not necessarily increase.

The mention “NT” means that the computation does not terminate. We ob-
serve that v always explores fewer states than b, for any given exploration
strategy. Though this was expected (recall Remark 1), we believe the reduction
is impressive. It is significant even for small models (such as ETS). The case
of ALS with no pruning shows that the higher complexity of v can be largely
compensated by the reduction in the size of the state space to explore. On the
model of Figure 2, our inclusion v ensures termination, while b does not.

7 Conclusion

In this paper we have built over a symbolic approach to the computation of optimal
cost in weighted timed automata [LBB+01,RLS06], by proposing an inclusion test
between priced zones. Using that inclusion test, the forward symbolic exploration
terminates and computes the optimal cost for all weighted timed automata,
regardless whether clocks are bounded or not. The idea of this approach is based
on recent works on pure timed automata [HSW12], where a clever inclusion test
“replaces” any abstraction computation during the exploration.

We will pursue our work with extensive experimentations using our tool
TiAMo. We will also look for more dedicated methods for specific application
domains, like planning problems.

16

References

ACHH93. Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho.
Hybrid automata: an algorithmic approach to specification and verification
of hybrid systems. In Proc. Workshop on Hybrid Systems (1991 & 1992),
volume 736 of Lecture Notes in Computer Science, pages 209–229. Springer,
1993.

AD90. Rajeev Alur and David L. Dill. Automata for modeling real-time systems.
In Proc. 17th International Colloquium on Automata, Languages and Pro-
gramming (ICALP’90), volume 443 of Lecture Notes in Computer Science,
pages 322–335. Springer, 1990.

AD94. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

AFM+03. Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and
Wang Yi. TIMES: A tool for schedulability analysis and code generation of
real-time systems. In Proc. 1st International Workshop on Formal Modeling
and Analysis of Timed Systems (FORMATS’03), volume 2791 of Lecture
Notes in Computer Science, pages 60–72. Springer, 2003.

ALP01. Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in
weighted timed automata. In Proc. 4th International Workshop on Hybrid
Systems: Computation and Control (HSCC’01), volume 2034 of Lecture
Notes in Computer Science, pages 49–62. Springer, 2001.

ARF14. Omar Al-Bataineh, Mark Reynolds, and Tim French. Finding best and
worst case execution times of systems using Difference-Bound Matrices. In
Proc. 12th International Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS’14), volume 8711 of Lecture Notes in Computer
Science, pages 38–52. Springer, 2014.

BBBR07. Patricia Bouyer, Thomas Brihaye, Véronique Bruyère, and Jean-François
Raskin. On the optimal reachability problem. Formal Methods in System
Design, 31(2):135–175, 2007.

BBFL03. Gerd Behrmann, Patricia Bouyer, Emmanuel Fleury, and Kim G. Larsen.
Static guard analysis in timed automata verification. In Proc. 9th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’03), volume 2619 of Lecture Notes in Computer Science,
pages 254–277. Springer, 2003.

BBL08. Patricia Bouyer, Ed Brinksma, and Kim G. Larsen. Optimal infinite schedul-
ing for multi-priced timed automata. Formal Methods in System Design,
32(1):2–23, 2008.

BBLP06. Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelànek.
Zone based abstractions for timed automata exploiting lower and upper
bounds. International Journal on Software Tools for Technology Transfer,
8(3):204–215, 2006.

BFH+01. Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul
Pettersson, Judi Romijn, and Frits Vaandrager. Minimum-cost reachability
for priced timed automata. In Proc. 4th International Workshop on Hybrid
Systems: Computation and Control (HSCC’01), volume 2034 of Lecture
Notes in Computer Science, pages 147–161. Springer, 2001.

BFLM11. Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, and Nicolas Markey. Quan-
titative analysis of real-time systems using priced timed automata. Commu-
nication of the ACM, 54(9):78–87, 2011.

17

BLR05. Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Optimal schedul-
ing using priced timed automata. ACM Sigmetrics Performancs Evaluation
Review, 32(4):34–40, 2005.

Bou04. Patricia Bouyer. Forward analysis of updatable timed automata. Formal
Methods in System Design, 24(3):281–320, 2004.

BV04. Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
University Press, 2004.

BY03. Johan Bengtsson and Wang Yi. On clock difference constraints and termina-
tion in reachability analysis of timed automata. In Proc. 5th International
Conference on Formal Engineering Methods (ICFEM’03), volume 2885 of
Lecture Notes in Computer Science, pages 491–503. Springer, 2003.

DHS+14. Aakash Deshpande, Frédéric Herbreteau, B. Srivathsan, Thanh-Tung Tran,
and Igor Walukiewicz. Fast detection of cycles in timed automata. Technical
Report abs/1410.4509, CoRR, 2014.

DOT+10. Andreas E. Dalsgaard, Mads Chr. Olesen, Martin Toft, René Rydhof Hansen,
and Kim Guldstrand Larsen. METAMOC: Modular execution time analysis
using model checking. In Proc. 10th International Workshop on Worst-Case
Execution Time Analysis (WCET’10), volume 15 of OpenAccess Series in
Informatics (OASIcs), pages 113–123. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2010.

GELP10. Andreas Gustavsson, Andreas Ermedahl, Björn Lisper, and Paul Pettersson.
Towards WCET analysis of multicore architectures using UPPAAL. In
Proc. 10th International Workshop on Worst-Case Execution Time Analysis
(WCET’10), volume 15 of OpenAccess Series in Informatics (OASIcs), pages
101–112. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2010.

HKPV98. Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? Journal of Computer and System
Sciences, 57(1):94–124, 1998.

HKSW11. Frédéric Herbreteau, Dileep Kini, B. Srivathsan, and Igor Walukiewicz. Using
non-convex approximations for efficient analysis of timed automata. In Proc.
30th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’11), volume 13 of LIPIcs, pages 78–89. Leibniz-
Zentrum für Informatik, 2011.

HSW12. Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better abstrac-
tions for timed automata. In Proc. 27th Annual Symposium on Logic in
Computer Science (LICS’12), pages 375–384. IEEE Computer Society Press,
2012.

HT15. Frédéric Herbreteau and Thanh-Tung Tran. Improving search order for
reachability testing in timed automata. In Proc. 13th International Confer-
ence on Formal Modeling and Analysis of Timed Systems (FORMATS’15),
pages 124–139. Springer, 2015.

JR11. Rémi Jaubert and Pierre-Alain Reynier. Quantitative robustness analysis of
flat timed automata. In Proc. 14th International Conference on Foundations
of Software Science and Computation Structures (FoSSaCS’11), volume 6604
of Lecture Notes in Computer Science, pages 229–244. Springer, 2011.

LBB+01. Kim G. Larsen, Gerd Behrmann, Ed Brinksma, Angskar Fehnker, Thomas
Hune, Paul Pettersson, and Judi Romijn. As cheap as possible: Efficient cost-
optimal reachability for priced timed automata. In Proc. 13th International
Conference on Computer Aided Verification (CAV’01), volume 2102 of
Lecture Notes in Computer Science, pages 493–505. Springer, 2001.

18

RLS06. Jacob I. Rasmussen, Kim G. Larsen, and K. Subramani. On using priced
timed automata to achieve optimal scheduling. Formal Methods in System
Design, 29(1):97–114, 2006.

RS01. Jan-J Rückmann and Oliver Stein. On linear and linearized generalized
semi-infinite optimization problem. Annals of Operations Research, 101(1-
4):191–208, 2001.

19

A A counter-example to the algorithm of [ARF14]

Algorithm 2 is the algorithm proposed in [ARF14] to compute optimal-time reach-
ability in timed automata. Briefly, the approach considers a global clock, denoted
by xi, to measure the duration of the current run. The algorithm explores the
state space in a forward manner. Newly encountered zones are compared against
those already explored using the abstract inclusion test described in [HSW12],
with the particularity that the global clock xi is not considered in this test.
The clock xi keeps track of the time elapsed so far, and plays no role in the
transition relation, and this is why it does not need to be used in the comparison
of zones.

The abstract test between Z and Z ′ is noted Z ⊆ closureα(Z ′). Zones are
represented as sets of clock constraints, UC denotes the set of constraints involving
the global clock xi. Thus, Z \ UC denotes the zone Z where constraints on xi
are ignored (though this is not formally defined in [ARF14]).

Algorithm 2: Algorithm for optimal time reachability from [ARF14]

1 BCET←∞
2 Passed← ∅
3 Waiting← {(`0, Z0)}
4 while Waiting 6= ∅ do
5 select (`, Z) from Waiting

// In [ARF14], Goal is the set of final states, i.e. states with

no successors

6 if (`, Z) ∈ Goal and lowerBound(Z, xi) < BCET then
7 BCET← lowerBound(Z, xi)

8 add (`, Z) to Passed
9 forall the (`′, Z′) ∈ Post(`, Z) do

// check if lower bound of xi in the new zone is less than the

best known BCET

10 if lowerBound(Z′, xi) < BCET then
11 if (Z′ \UC) 6⊆ closureα(Z′′ \UC) for all (`′, Z′′) ∈ Passed then
12 add (`′, Z′) to Waiting

13 return BCET

We claim that the algorithm fails to find the BCET of the automaton shown
in Figure 6. We show this by describing the run of Algorithm 2 on this automaton.

Assume that the state space is explored depth-first. The initial state is
s0 = (`0, (x = xi = 0)). Initially, BCET =∞, Passed = ∅ and Waiting = {s0}.
State s0 has two successors s1 = (`1, (x = xi∧x > 1)) and s2 = (`2, (x = xi∧x 6
1)). It holds lowerBound(s1, xi) = 1 < BCET and lowerBound(s2, xi) = 2 < BCET,
so both states are added to Waiting, while s0 is added to Passed.

20

`0 `1

`2

`3 ,
x>1

e1

e2

x61

e3

x:=0

e5

x>2,x:=0

e4

Fig. 6. Counter-example to Algorithm 2

If s2 is the next state being picked out of Waiting, it is easy to see that its
successors s3 = (`1, (xi > 2 ∧ x = 0)) and s4 = (`3, (xi > 2 ∧ x = 0)) are added
to Passed. At the end of this branch, state s5 = (`f , (xi > x+2)) is final, and its
lower value for xi is used to update the value of BCET. We now have BCET = 2.

Waiting now contains a single state s1. Its single successor is s6 = (`3, (xi >
1 ∧ x = 0)). Its lower value for xi is 1, which is smaller than the current value
for BCET. But ((xi > 1 ∧ x = 0) \ UC) ⊆ closureα((xi > 2 ∧ x = 0) \ UC).
Indeed, “UC represents the set of constraints involving the extra clock xi”, so
((xi > 1∧x = 0)\UC) = (x = 0) = ((xi > 2∧x = 0)\UC). Since Z ⊆ closureα(Z)
for every Z, we obtain the inclusion above. The paper further states that “it is
necessary to check inclusion between zones with respect only to the automaton
clocks”, which confirms our understanding of the operation “\UC”.

Therefore, the state s6 is not added to Waiting, which is now empty, and
the algorithm terminates, returning the value BCET = 2.

It is clear however that the BCET of the given automaton is 1, a value
that would have been discovered by the algorithm if s1 had been picked out
of Waiting before s2. However the paper does not mention any assumptions
regarding the order of exploration that would invalidate our counter-example.
We contacted the authors of [ARF14], asking to get access to the prototype
implementation mentioned in the paper, but did not get an answer.

B Details for Section 3

B.1 Proof of Lemma 2

Lemma 2. If v ≡M v′, then, for any ` ∈ L, OptcostA(`, v) = OptcostA(`, v′).

Proof. Pick a run % starting at s = (`, v), and assume % = s
t1,e1−−−→ s1 . . .

tp,ep−−−→ sp.

Then %′ = s′
t1,e1−−−→ s′1 . . .

tp,ep−−−→ s′p is also a run of A from s′ such that sp ≡M s′p,
and cost(%) = cost(%′). This can be easily shown by induction on p. This reinforces
the property stated in [BBLP06] saying that ≡M is a strong timed bisimulation.

ut

B.2 Proof of Theorem 3 (soundness of Algorithm 1)

Theorem 3. When using vM , provided Algorithm 1 terminates, it is sound
w.r.t. optimal reachability (the returned cost is the optimal one).

21

Proof. We assume Algorithm 1 terminates. Remark that all elements added
to the sets Waiting or Passed are obtained through the Post operation from
elements of Waiting. Initially, Waiting contains the initial priced zone (`0,Z0),
hence Waiting only contains elements from Post∗(`0,Z0). Such elements are
necessarily realized in A, hence the computed Cost is not smaller than the
actual optimal cost C = OptcostA(s0): Cost ≥ C.

– Assume that C is finite. Let ε > 0 and ρ = (`0, v0)
t1,e1−−−→ (`1, v1) . . .

tp,ep−−−→
(`p, vp) be an ε/3-optimal run (`p is a target location): cost(ρ) ≤ C + ε/3.
Unless it is already the case for ρ, we will build a run ρ̂ such that all symbolic
states along ρ̂ are added to Passed, and cost(ρ̂) ≤ C + ε. In particular, if

(̂̀, Ẑ) is the last symbolic state obtained along ρ̂, and v̂ is the last valuation

along ρ̂, infCost(Ẑ) ≤ ζ̂(v̂) ≤ cost(ρ̂) ≤ C + ε. Hence the computed cost
Cost is bounded by C + ε. As ε > 0 was arbitrary, we conclude that the
algorithm really computes the optimal cost.
Assume that not all symbolic states along ρ are added to Passed, and write ρ1
for the longest prefix of ρ along which all symbolic states are added to Passed.
Write τ for the next move along ρ, and ρ2 for the suffix after ρ1τ . Let (`, v) be
the configuration at the end of ρ1τ , and (`,Z) be the corresponding symbolic
state (which we know, by hypothesis, has not been added to Passed). Hence,
at the time when (`,Z) is handled, there exists some (`,Z ′) in Passed, such
that Z vM Z ′. Thus, there is some valuation v′ ∈ Z ′ such that v′ ≡M v and
ζ ′(v′) ≤ ζ(v) + ε/3. Since (`,Z ′) ∈ Passed, there is a run ρ′ from (`0, v0) to
(`, v′) such that (a) all symbolic states along ρ′ have been added to Passed,
and (b) cost(ρ′) ≤ ζ ′(v′) + ε/3 ≤ ζ(v) + 2ε/3. Now, since v′ ≡M v, thanks to
the proof of Lemma 2, there is a run ρ′′ from (`, v′) to the target state, with
the same length as ρ2, such that cost(ρ′′) = cost(ρ2). The new run ρ̃ = ρ′ · ρ′′
reaches the target location and its cost is: cost(ρ̃) = cost(ρ′) + cost(ρ′′) ≤
ζ(v) + 2ε/3 + cost(ρ2) ≤ cost(ρ1τ) + 2ε/3 + cost(ρ2) = cost(ρ) + 2ε/3 ≤ C + ε.
We repeat the argument on ρ2, which is smaller than the initial run ρ, and
inductively we are able to build the expected run ρ̂ that we described earlier.

– Assume that C =∞. This means that the target location is not reachable,
and the algorithm never updates variable Cost; its value is therefore ∞ as
well.

– Assume that C = −∞. A reasoning similar to the first case can be done,
with a slight adaptation: we fix some arbitrary bound K and ε > 0, and we
pick the run ρ such that cost(ρ) ≤ K. The rest is identical: we will build
a run ρ̂ such that all symbolic states along ρ̂ are added to Passed, and
cost(ρ̂) ≤ cost(ρ) + ε. ut

C Details for Section 4

C.1 Formulation of the optimization problem

Lemma 4. Z v Z ′ ⇐⇒ supv∈Z infv′∈Z′
v′≡v

ζ ′(v′)− ζ(v) 6 0.

22

Proof. (⇒) By definition of v, for every ε > 0 and v ∈ Z, there is some v′ ∈ Z ′
such that v ≡ v′ and ζ ′(v′) 6 ζ(v) + ε. The existence of such a v′ guarantees
that the infimum is not taken over an empty set, and hence is not +∞.
Thus, for every v ∈ Z, infv′∈Z′

v′≡v
ζ ′(v′) − ζ(v) 6 0, from which the result is

straightforward. Note that if Z is empty, then the supremum is −∞, and the
result still holds.

(⇐) Let v ∈ Z and ε > 0. infv′∈Z′
v′≡v

ζ ′(v′) − ζ(v) 6 0, which guarantees the

existence of v′ ∈ Z ′ such that v′ ≡ v (otherwise this infimum, and the
above supremum also, would be +∞). Furthermore, v′ can be chosen so that
ζ ′(v′)− ζ(v) 6 ε. ut

Lemma C.1. Let Y ⊆ X, v ∈ ZY and v′ ∈ Z ′. Then v ≡ v′ if, and only if,
v′ ∈ Z ′Y and πY (v) = πY (v′).

Proof. If v ≡ v′, then for all x ∈ X, we have v(x) = v′(x) or both v(x) and v′(x)
are larger than M . As v ∈ ZY , it holds v(x) 6 M for x ∈ Y and v(x) > M
for x /∈ Y . Hence v′(x) = v(x) for x ∈ Y and v′(x) > M for x /∈ Y . It follows
v′ ∈ Z ′Y and πY (v) = πY (v′).

Conversely, if v′ ∈ Z ′Y and πY (v) = πY (v′), then v′(x) > M if x /∈ Y , and
v(x) = v′(x) for x ∈ Y . Hence v ≡ v′. ut

Lemma C.1 entails the following two lemmas:

Lemma 5. The following two properties are equivalent:

(i) for every v ∈ Z, there is v′ ∈ Z ′ such that v′ ≡ v
(ii) for every Y ⊆ X, πY (ZY) ⊆ πY (Z ′Y).

Proof. Assume (i) holds, and pick Y ⊆ X. If ZY is empty, the inclusion πY (ZY) ⊆
πY (Z ′Y) is trivial. Otherwise, pick v ∈ ZY . Applying (i), there exists v′ ∈ Z ′
s.t. v ≡ v′. From Lemma C.1, v′ ∈ Z ′Y and πY (v) = πY (v′). Hence πY (ZY) ⊆
πY (Z ′Y).

Conversely, assuming (ii), pick v ∈ Z. Then for some (unique) Y , we have
v ∈ ZY , so that there exists v′ ∈ Z ′Y for which πY (v) = πY (v′). Applying
Lemma C.1, it also holds v′ ≡ v, which concludes the proof. ut

Lemma 6. sup
v∈Z

inf
v′∈Z′
v′≡v

ζ ′(v′)− ζ(v) = max
Y⊆X

sup
v∈ZY

inf
v′∈Z′Y
v′≡v

ζ ′(v′)− ζ(v).

Proof. It suffices to notice that when v ∈ ZY , the sets {v ∈ Z | v ≡ v′} and
{v ∈ ZY | v ≡ v′} coincide. ut

C.2 Proof of Theorem 8

Theorem 8. Let Z = (Z, ζ) and Z ′ = (Z ′, ζ ′) be two non-empty priced zones,
and let Y ⊆ X be such that πY (ZY) ⊆ πY (Z ′Y) and ζ and ζ ′ are lower-bounded

23

on ZY and Z ′Y respectively. Then we can compute finite sets KY and K′Y of zones
over Y , and affine functions ζF and ζ ′F ′ for every F ∈ KY and F ′ ∈ K′Y s.t.:

S(Z,Z ′, Y) = max
F∈KY

max
F ′∈K′Y

sup
u∈F∩F ′

ζ ′F ′(u)− ζF (u). (1)

For the rest of this section, we fix Y ⊆ X such that ZY 6= ∅ (otherwise
S(Z,Z ′, Y) = −∞, and we can take K = K′ = ∅). We assume that πY (ZY) ⊆
πY (Z ′Y) (otherwise by Lemma 5, for some v ∈ ZY , the set {v′ ∈ Z ′Y | v′ ≡ v}
would be empty, and S(Z,Z ′, Y) = +∞). In this section, we furthermore require
that ζ and ζ ′ are bounded from below over ZY and Z ′Y , respectively. Under these
assumptions, we describe an algorithm to compute S(Z,Z ′, Y).

First remark that, for v ∈ ZY and v′ ∈ Z ′Y , it holds v ≡ v′ if, and only if,
πY (v) = πY (v′). In this subsection, we frequently use this characterization, which
can be extended by continuity to the boundaries of ZY and Z ′Y .

Facets and decomposition using facets. We recall the notion of facets, originally
defined in [LBB+01]. Whenever x ./ n (resp. x − y ./ m) is a tight constraint
defining a closed zone W , the strengthened zone W ∧ (x = n) (resp. W ∧ (x−y =
m)) is called a simple facet (w.r.t. x) of W . A simple facet of a zone is itself a
zone, hence we can look at its simple facets as well, and so on iteratively we call
them the facets of W , and we say that W is a facet of W as well. Facets of a
non-closed zone are those of its closure.

We note LFx(W) (resp. UFx(W)) the set of lower simple facets w.r.t x (resp.
upper simple facets w.r.t. x) of W , i.e. those obtained from a lower bound
x ≥ n or x − y > m (resp. from an upper bound x 6 n or x − y 6 m).
We write ex for the unit vector in the direction of the x-axis. If F is a lower
(resp. upper) simple facet of W w.r.t. x, and vF ∈ F , we note WF (vF) the set
{v ∈W | ∃λ ∈ R>0. v − λ.ex = vF } (resp. {v ∈W | ∃λ ∈ R>0. v + λ.ex = vF }),
the set of points of W that lie above (resp. below) vF in the direction of the
x-axis. Similarly, we note WF =

⋃
vF∈F W

F (vF), the set of points of W that
lie above (resp. below) F in the direction of the x-axis. Note that it holds⋃
F∈LFx(W)W

F = W ; in case W contains no half-line of the form v + R>0.ex for

any v ∈W , then we also have
⋃
F∈UFx(W)W

F = W .

Reduction of one variable in the optimization problem. We recall that ζ and ζ ′

are affine functions over Z and Z ′ respectively. We note ζx = ∂
∂xζ and ζ ′x = ∂

∂xζ
′

for every x ∈ X. We note c the constant term of ζ.

Let x ∈ X \ Y . We define Fx(ZY) as LFx(ZY) if ζx > 0, and as UFx(ZY) if
ζx < 0. In the former case, ZY =

⋃
F∈Fx(ZY) Z

F
Y always holds. In the latter case,

recall that ζ is bounded from below on Z, so Z contains no half-line v + R>0.ex
for any v ∈ Z, otherwise ζ would take arbitrarily low values along this half-line.
This ensures that ZY =

⋃
F∈Fx(ZY) Z

F
Y in both cases.

24

Now, we have:

S(Z,Z ′, Y) = sup
v∈ZY

inf
v′∈Z′Y
v′≡Mv

ζ ′(v′)− ζ(v)

= sup
u∈πY (ZY)

sup
v∈ZY

πY (v)=u

inf
v′∈Z′Y

πY (v′)=u

(ζ ′(v′)− ζ(v))

= sup
u∈πY (ZY)

[(
inf

v′∈Z′Y
πY (v′)=u

ζ ′(v′)
)

+
(

sup
v∈ZY

πY (v)=u

(−ζ(v))
)]

(because the constraint on v′ is now independent of v

and both ζ and ζ ′ are bounded from below)

= sup
u∈πY (ZY)

[(
inf

v′∈Z′Y
πY (v′)=u

ζ ′(v′)
)
−
(

inf
v∈ZY

πY (v)=u

ζ(v)
)]

(2)

= max
F∈Fx(ZY)

sup
u∈πY (ZF

Y)

[(
inf

v′∈Z′Y
πY (v′)=u

ζ ′(v′)
)
−
(

inf
v∈ZY

πY (v)=u

ζ(v)
)]
.

For F ∈ Fx(ZY), write γF for the extra constraint defining F in ZY (of the
form x = n or x− y = m). For v ∈ F , the value of v(x) is entirely determined
by the values (v(y))y 6=x and by the constraint γF : v(x) = n or v(x) = v(y) +m.
Thus, πX\{x} is a bijection between F and πX\{x}(F). For w ∈ πX\{x}(F), we
note ιF (w) the unique point of F such that w = πX\{x}(ιF (w)).

We define a new cost function ζF on πX\{x}(F) by ζF (w) = ζ(ιF (w)). We re-
mark that ζF (w) = ζx · (ιF (w))(x) +

∑
y∈X\{x} ζy ·w(y) + c. Since (ιF (w))(x) is

an affine function of w, so is ζF .
By definition of Fx(ZY), we have ζF (w) = infv∈ZF

Y (ιF (w)) ζ(v). Now, remark

that ZFY (ιF (w)) = {v ∈ ZY | πX\{x}(v) = w}, so that ζF (w) = infv∈ZY , πX\{x}(v)=w ζ(v).

For u ∈ πY (ZFY), we can then write:

inf
v∈ZY

πY (v)=u

ζ(v) = inf
w∈πX\{x}(F)

πY (w)=u

inf
v∈ZY

πX\{x}(v)=w

ζ(v)

= inf
w∈πX\{x}(F)

πY (w)=u

ζF (w)

The above being true for every F ∈ Fx(ZY), we get:

S(Z,Z ′, Y) = max
F∈Fx(ZY)

sup
u∈πY (ZF

Y)

[(
inf

v′∈Z′Y
πY (v′)=u

ζ ′(v′)
)
−
(

inf
w∈πX\{x}(F)

πY (w)=u

ζF (w)
)]
.

Finally, note that πY (F) = πY (πX\{x}(F)) = πY ([πX\{x}(F)]Y) = πY (ZFY)

(because x ∈ X \ Y and F ⊆ ZY), so that we conclude:

S(Z,Z ′, Y) = max
F∈Fx(ZY)

sup
u∈πY ([πX\{x}(F)]Y)

[(
inf

v′∈Z′Y
πY (v′)=u

ζ ′(v′)
)
−
(

inf
w∈πX\{x}(F)

πY (w)=u

ζF (w)
)]
.

25

This can be rewritten as5

S(Z,Z ′, Y) = max
F∈Fx(ZY)

S((πX\{x}(F), ζF),Z ′, Y)

where (πX\{x}(F), ζF) is a new priced zone.

Iteration of the construction. For each sequence (xi)1≤i≤p of distinct elements
of X \ Y , we define Fx1,...,xp

(ZY) inductively as follows:

Fx1,...,xp
(ZY) =

⋃
F∈Fx1,...,xp−1

(ZY)

Fxp
(πX\{x1,...,xp−1}(F)).

Note that F ∈ Fx1,...,xp−1
(ZY) is a zone over X \ {x1, . . . , xp−1} ⊇ Y .

By iteratively applying the above construction, we can compute, for each
F ∈ Fx1,...,xp−1

(ZY), an affine function ζF such that

∀w ∈ πX\{x1,...,xp}(F). ζF (w) = inf
v∈ZY

πX\{x1,...,xp}(v)=w

ζ(v). (3)

The previous analysis also entails:

S(Z,Z ′, Y) = max
F∈Fx1,...,xp (ZY)

sup
u∈πY (F)

inf
v′∈Z′Y

πY (v′)=u

ζ ′(v′)− inf
w∈πX\{x1,...,xp}(F)

πY (w)=u

ζF (w).

Then, when {x1, . . . , xp} = X \ Y , we have X \ {x1, . . . , xp} = Y , so that

∀u ∈ πY (F). inf
w∈πX\{x1,...,xp}(F)

πY (w)=u

ζF (w) = inf
w∈πY (F)
πY (w)=u

ζF (w) = ζF (u).

It follows:

S(Z,Z ′, Y) = max
F∈FX\Y (ZY)

sup
u∈πY (F)

inf
v′∈Z′Y

πY (v′)=u

ζ ′(v′)− ζF (u)

= max
F∈πY (FX\Y (ZY))

sup
u∈F

inf
v′∈Z′Y

πY (v′)=u

ζ ′(v′)− ζF (u)

where we write FX\Y (ZY) for Fx1,...,xp
(ZY). Elements thereof are facets of zones

over Y ∪ {xp}, and elements of πY (FX\Y (ZY)) are thus zones over Y .

A similar construction of facets for Z ′Y can be performed: for x ∈ X \ Y ,
we consider the set F ′x(Z ′Y) of upper or lower (depending on ζ ′x) facets of Z ′Y
w.r.t. x. For each F ′ ∈ F ′x(Z ′Y), we define the affine function ζ ′F ′ over πX\{x}(F

′)
using the “inverse” projection on F ′. By construction of F ′X(Z ′Y), it satisfies

5 Notice that the definition of S(Z,Z ′, Y) requires Z and Z ′ to have the same dimension
(because ≡ does). However, using Eq. (2), we can extend the definition to any zones
involving at least the clocks of Y .

26

ζ ′F ′(w
′) = infv′∈Z′Y , πX\{x}(v′)=w′ ζ

′(v′) for all w′ ∈ πX\{x}(F ′). The situation is
similar as previously, and we end up with

∀u ∈ πY (Z ′F
′

Y). inf
v′∈Z′Y

πY (v′)=u

ζ ′(v′) = inf
w′∈πX\{x}(F

′)

πY (w′)=u

ζ ′F ′(w
′).

It follows:

S(Z,Z ′, Y) = max
F∈πY (FX\Y (ZY))

max
F ′∈Fx(Z′Y)

sup
u∈F∩πY (Z′F

′
Y)

inf
w′∈πX\{x}(F

′)

πY (w′)=u

ζ ′F ′(w
′)− ζF (u).

By iteratively applying the same transformation for all clocks in X \Y , and using
the same notations as above, we finally get

S(Z,Z ′, Y) = max
F∈πY (FX\Y (ZY))

max
F ′∈πY (F ′

X\Y (Z′Y))

sup
u∈F∩F ′

ζ ′F ′(u)− ζF (u). (4)

This concludes the proof of Theorem 8.

C.3 Effectiveness of v

Lemma 10. Let Z = (Z, ζ) and Z ′ = (Z ′, ζ ′) be two non-empty priced zones.

– If ζ is not lower-bounded on Z but ζ ′ is lower-bounded on Z ′, then Z 6v Z ′.
– Let Y ⊆ X such that πY (ZY) ⊆ πY (Z ′Y). If ζ ′ is not lower-bounded on Z ′Y ,

then ZY v Z ′Y .

Proof. Assume ζ is not lower-bounded on Z but ζ ′ is lower-bounded on Z ′, then it
is easy to see that Z 6v Z ′ (picking v ∈ Z such that ζ(v) < infv′∈Z′ ζ

′(v′)−1, it is
easy to see that we cannot find any v′ ∈ Z ′Y , v′ ≡ v, such that ζ ′(v′) ≤ ζ(v) + 1).

Now assume that ζ ′ is not lower-bounded on Z ′. Let Y ⊆ X. If ζ ′ is lower-
bounded on Z ′Y , ZY ⊆ Z ′Y is decided with Theorem 8 or with the result above
(depending on whether ζ is lower-bounded or not on ZY).

Otherwise, there exists a direction d and a valuation v′0 ∈ Z ′Y such that the
half-line v′0+R>0 ·d is included in Z ′Y , and ζ ′ decreases strictly along this half-line.
We have d · ey = 0 for every y ∈ Y (otherwise the whole half-line would not be in
Z ′Y), and d · ex > 0 for every x ∈ X \ Y . Furthermore, as explained below, the
half-lines v′ + R>0 · d are all included in Z ′Y , for and v′ ∈ Z ′Y . For v ∈ ZY , there
exists v′ ∈ Z ′Y such that v ≡M v′. But d is such that the half-line v′ + R>0 · d is
included in [v]M . The affine function ζ ′ takes arbitrarily low values along this
half-line, so we can always find v′ ≡M v with ζ ′(v′) 6 ζ(v). This holds even if ζ
is not lower-bounded on ZY .

We now prove our claim on half-lines: more precisely, we show that for any v
and v′ in some zone Z, and any vector d such that v + R>0 · d ⊆ Z, it holds
v′ + R>0 · d ⊆ Z.

We first characterize the directions in which Z is unbounded. Let C be the set
of clocks that are unbounded in Z, i.e., those clocks x for which the entry (x, 0)

27

of the normalized DBM of Z is +∞. Let D be the set of vectors
∑
x∈C αx · ex,

in which αx > 0 for all x ∈ C, and αx 6 αy in case the entry (x, y) of the
normalized DBM of Z is finite. Now, pick v ∈ Z, and d ∈ D. Then assume that
for some λ > 0, w = v+λ · d is not in Z: in particular, for some λ0 > 0, v+λ0 · d
is on the border of Z, hence it satisfies some constraint x = n or x − y = n,
for which x 6 n or x− y ./ n is a tight constraint defining Z. The former case
(x = n) is impossible, since the fact that the value of x changes in direction d
indicates that x ∈ C, so that x is unbounded. Now, assume that v+λ0 ·d satisfies
x − y = n for some tight constraint x − y ./ n defining Z (x − y 6 n, say).
Necessarily at least one of x and y must be in C (otherwise the value of x− y
would not change in direction d). In case only one of them were in C, since in Z
it holds x 6 y+n, it must be y. But then in the direction of d, the value of x− y
would decrease, so it cannot be the case that x− y 6 n gets violated. Hence both
x and y are in C, and since Z contains constraint x− y 6 n, it holds αx 6 αy.
But then again, x− y would decrease in the direction of d, so it cannot be the
case that x− y 6 n gets violated.

Conversely, if for some direction d =
∑
x∈X αx ·ex it holds v+R>0 ·d ⊆ Z, then

any clock x for which the vector ex has a non-zero coefficient in d is unbounded.
Moreover, if for two clocks x and y the coefficients in d are such that αx > αy,
then the difference x − y cannot be bounded in Z. Hence if x − y is bounded,
we must have αx 6 αy, which entails that d ∈ D. Thus D characterizes all
directions in which Z is infinite.

Now, pick a point v in Z, hence satisfying the constraints in Z, and a
direction d in D. Assume that v + λ · d is outsize Z, which means that there
is some value λ0 > 0 such that v + λ0 · d is outside of Z. Hence there is some
constraint, x ./ n or x − y ./ n, defining Z that holds true of v and false
of v+λ0 · d. Applying the same arguments as above, we can prove that this leads
to a contradiction. ut

C.4 Complements for Section 4.3

Lemma 12. Let Y ⊆ X such that ZY 6= ∅. Then Y is downward-closed for �Z .

Proof. First notice that X≤M ⊆ Y and Y ∩X>M = ∅, since ZY 6= ∅. Towards
a contradiction, assume Y is not downward-closed for �Z . There is y ∈ Y and
x ∈ X \ Y such that x �Z y. Clock y cannot belong to X≤M , as otherwise x
would also be an element of X≤M , thus of Y . Also, y cannot belong to X>M ,
as otherwise it would not be in Y . Hence, Z ∩ (y ≤ M(y)) 6= ∅ and Z ∩
(y > M(y)) 6= ∅. So it must be the case that Z ⊆ (x − y ≤ M(x) −M(y)).
Now ∅ 6= ZY ⊆ (y ≤ M(y)) ∩ (x > M(x)), which yields a contradiction with
ZY ⊆ Z ⊆ (x− y ≤M(x)−M(y)). ut

D Details for Section 5

Proposition 14. v is a preorder (or quasi-ordering).

28

Proof. v is obviously reflexive; we prove transitivity. Assume (Z, ζ) v (Z ′, ζ ′)
and (Z ′, ζ ′) v (Z ′′, ζ ′′). Let v ∈ Z and ε > 0. Since (Z, ζ) v (Z ′, ζ ′), there exists
v′ ∈ Z ′ such that v ≡ v′ and ζ ′(v′) 6 ζ(v) + ε/2. Since (Z ′, ζ ′) v (Z ′′, ζ ′′), there
exists v′′ ∈ Z ′′ such that v′′ ≡ v′ and ζ ′′(v′′) 6 ζ ′(v′) + ε/2. Thus, v′′ ≡ v and
ζ ′′(v′′) 6 ζ(v) + ε. ut

Theorem 15. For every µ ∈ Z, w is a well-quasi-order on (non-empty) priced
zones whose cost functions are either not lower-bounded, or lower-bounded by µ.

Proof. Fix Y ⊆ X; we first show that w is a well-quasi-order on M -bounded-on-Y
priced zones. Pick an infinite sequence of M -bounded-on-Y priced zones (Zi)i≥0,
with Zi = (Zi, ζi). πY (Z) is a zone, whose corners have integer coordinates, and
is included in the bounded space

∏
x∈Y [0,M(y)]. Thus, there are finitely many

possible values for πY (Z). We cant thus assume without loss of generality that
for every i ≥ 0, πY (Zi+1) ⊆ πY (Zi).

From Lemma 10, if there is i ≥ 0 such that ζi is not lower-bounded on Zi,
then for every j ≥ i, Zj v Zi. We now assume that all ζi are lower-bounded
on Zi by µ.

With every i, we can associate the tuple

κi =
(

min
v∈Zi

πY (v)=u

ζi(v)
)

u∈
∏

y∈Y [0,M(y)]

u has integral coord.

Each such coordinate has integral value larger than or equal to µ, or +∞ (in
case the minimum is taken on an empty set). There are finitely many u ∈∏
y∈Y [0,M(y)] with integral coordinates, hence the order on such tuples is a well-

quasi-order (by Higman’s lemma [Hig52]): there exists i < j such that κi ≤ κj
(pointwise order). Now, using Corollary 9, we get that Zj v Zi, which implies
the expected result for M -bounded-on-Y priced zones.

By application of Higman’s lemma again and of Corollary 7, we get that w
is a well-quasi-order over priced zones which are either not lower-bounded or
lower-bounded by µ. ut

D.1 When does a weighted timed automaton generate only priced
zones either non lower-bounded or lower-bounded by some
fixed µ?

We will characterize such weighted timed automata using an extension of the
corner-point abstraction defined in [BBL08] for (clock-)bounded weighted timed
automata.

Let A = (X,L, `0,Goal, E,weight) be a weighted timed automaton. Let R be
the set of regions for A with regards to maximal constants M . Given R ∈ R, it is
M -bounded on Y for a maximal set Y , and a corner of R is a point of NY which
belongs to πY (R): somehow, once a clock is larger than the maximal constant,
then it becomes inactive, hence we forget about those clocks when recording the
corners; this allows to have finitely many reachable corners! We write R? for the
set of pairs (R,α), where R ∈ R and α is a corner of R.

29

We construct corner-point abstraction Acp of A as the following weighted
graph: its set of states is L×R?, and its set of transitions is defined by:

– There are transitions e = (`, (R,α))→ (`, (R,α′)) where α and α′ are distinct
corners of R and α′ is the time successor of α (in which case, α′ = α + 1).
We then set weight(e′) = weight(`) (intuitively the delay between the corner-
points α and α′ is one time unit).

– There are transitions e = (`, (R,α))→ (`, (R,α)) when R is M -bounded on
X (hence R has a single corner), and weight(e) = weight(`)

– There are transitions e = (`, (R,α)) → (`, (R′, α)) where R′ is the time
successor region of R and α is a corner-point associated with both R and
R′. We then set weight(e) = 0(intuitively, there is no delay between the
corner-point of the two distinct regions).

– If e = `
g,Y−−→ `′ is a transition of A, there will be transitions e′ = (`, (R,α))→

(`′, (R′, α′)) in Acp with R ⊆ g, R′ = [Y ← 0]R, α corner-point associated
with R, α′ corner associated with R′ and α′ = [Y ← 0]α. We then set
weight(e′) = weight(e).

The first three types of transitions are delay transitions whereas the last are
discrete transitions. It is just an extension of [BBL08, Prop. 3, Prop. 5] to get
that optimal cost in A coincides with optimal cost in Acp.

We will use this corner-point abstraction to characterize cases where the
cost functions behave safely in the forward exploration of the weighted timed
automaton.

We reuse notations of the previous proof.

Proposition D.1. Let (`,Zi)i≥0 be an infinite sequence of symbolic states com-
puted during the symbolic exploration of A, which are lower-bounded, and such
that there is Y ⊆ X with πY ((Zi+1)Y) ⊆ πY ((Zi)Y), but if

κi =
(

min
v∈(Zi)Y
πY (v)=u

ζi(v)
)

u∈
∏

y∈Y [0,M(y)]

u has integral coord.

then (κi)i≥0 is an infinite antichain. Then there is a reachable cycle in Acp with
negative cost, which is not purely composed of delay transitions.

Proof. We consider the corner-point abstraction Acp.
There is u ∈

∏
y∈Y [0,M(y)] such that u has integral coordinates, and such

that the sequence (κi(u))i≥0 is decreasing. Let vi ≡ u be such that vi ∈ Zi and
ζi(vi) yields the minimum for κi(u). Let ρi be a run (in the closure of A) that
leads to (`, vi) with cost ζi(vi) (notice that we can assume it goes through points
with integral coordinates). If we project ρi onto πi in the corner-point abstraction,
state (`, vi) coincides with u as a corner of some region Ri. Gathering all this
paths into a tree, we get that this tree is infinite, it has finite branching, therefore,
by Koenig’s lemma, there is an infinite branch in the tree, and along that branch,
there is some state (`, (R, u)) which is visited infinitely often. The value of the

30

cost at each occurrence of this state is decreasing, hence there is a reachable
cycle with negative cost. Assume that this cycle is purely made of delay moves:
this means that R is the maximal region (all clocks are above their maximal
constants), and that the transitions correspond to delaying in that maximal
regions, with a negative cost. This means that we would then compute a non
lower-bounded priced zone; which is not possible by assumption. So this cycle is
not purely made of delay transitions. ut

The previous proposition expresses the fact that the cost becomes arbitrarily
small, hence decreases to −∞. If the mentioned cycle is co-reachable, then this
means that the foreseen optimal cost is −∞; on the other hand, if the cycle is
not co-reachable, then the optimal cost might be finite, but this branch of the
exploration will make the algorithm fail to terminate.

Conversely, priced zones generated along such a reachable cycle will form an
antichain, but this does not mean that Algorithm 1 will not terminate, since this
antichain can be dominated by some priced zone previously computed in which
the cost function is not lower-bounded.

References

ARF14. Omar Al-Bataineh, Mark Reynolds, and Tim French. Finding best and worst
case execution times of systems using Difference-Bound Matrices. In Proc.
12th International Conference on Formal Modeling and Analysis of Timed
Systems (FORMATS’14), volume 8711 of Lecture Notes in Computer Science,
pages 38–52. Springer, 2014.

BBL08. Patricia Bouyer, Ed Brinksma, and Kim G. Larsen. Optimal infinite schedul-
ing for multi-priced timed automata. Formal Methods in System Design,
32(1):2–23, 2008.

BBLP06. Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelànek. Zone
based abstractions for timed automata exploiting lower and upper bounds.
International Journal on Software Tools for Technology Transfer, 8(3):204–
215, 2006.

Hig52. Graham Higman. Ordering by divisibility in abstract algebras. In Proc.
London Math. Soc., volume 2, pages 326–336, 1952.

HSW12. Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better abstractions
for timed automata. In Proc. 27th Annual Symposium on Logic in Computer
Science (LICS’12), pages 375–384. IEEE Computer Society Press, 2012.

LBB+01. Kim G. Larsen, Gerd Behrmann, Ed Brinksma, Angskar Fehnker, Thomas
Hune, Paul Pettersson, and Judi Romijn. As cheap as possible: Efficient cost-
optimal reachability for priced timed automata. In Proc. 13th International
Conference on Computer Aided Verification (CAV’01), volume 2102 of Lecture
Notes in Computer Science, pages 493–505. Springer, 2001.

	Symbolic Optimal Reachability in Weighted Timed Automata

