
Probabilistic Automated Language Learning
for Configuration Files

Mark Santolucito, Ennan Zhai, and Ruzica Piskac(B)

Yale University, New Haven, USA
ruzica.piskac@yale.edu

Abstract. Software failures resulting from configuration errors have
become commonplace as modern software systems grow increasingly
large and more complex. The lack of language constructs in configu-
ration files, such as types and grammars, has directed the focus of a
configuration file verification towards building post-failure error diagno-
sis tools. In addition, the existing tools are generally language specific,
requiring the user to define at least a grammar for the language mod-
els and explicit rules to check. In this paper, we propose a framework
which analyzes datasets of correct configuration files and derives rules
for building a language model from the given dataset. The resulting
language model can be used to verify new configuration files and detect
errors in them. Our proposed framework is highly modular, does not rely
on the system source code, and can be applied to any new configuration
file type with minimal user input. Our tool, named ConfigC, relies on
an abstract representation of language rules to allow for this modular-
ity. ConfigC supports learning of various rules, such as orderings, value
relations, type errors, or user defined rules by using a probabilistic type
inference strategy and defining a small interface for the rule type.

1 Introduction and System Overview

Configuration errors are one of the most important root-causes of modern soft-
ware system failures [10,11]. In practice, misconfiguration problems may result
in security vulnerabilities, application crashes, severe disruptions in software
functionality, and incorrect program executions [9,10,12,13]. Although several
tools have been proposed to automate configuration error diagnosis after failures
occur [3,5–7], these tools rely on a manual approach to understand and detect
the failure symptoms. The main reasons for this are: (1) entries in configuration
files are untyped assignments, (2) there is no explicit structure policy for the
entries in configuration files, and (3) there are surprisingly few rules specifying
the entries’ constraints.

We propose an approach to the verification of configuration files which is based
on learning rules about the language model for configuration files. There is no uni-
versal definition of a “configuration file”. In general, most configuration files tend
c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part II, LNCS 9780, pp. 80–87, 2016.
DOI: 10.1007/978-3-319-41540-6 5



Probabilistic Automated Language Learning for Configuration Files 81

Fig. 1. ConfigC’s workflow. The green boxes represent configuration files, including
both correct general configuration files and users’ input configuration files. The purple
boxes are the components within ConfigC. The yellow boxes are results generated by
ConfigC’s components.

to be a series of assignment to system variables. Configuration files generally do
not have more complicated language constructs, lest they become a setup script.

Figure 1 describes an overview of our system. We start with the assumption
that we are given a number of correct configuration files belonging to the same
category (for instance, MySQL or Apache). Such files follow similar patterns,
which we exploit in a learning algorithm to build rules that describe a language
model for the files. Since the “language” of configuration types is untyped and
unstructured, we first parse the files and translate them into a more structured,
intermediary representation. When running type inference on a configuration file,
the type of a variable cannot always be fully determined from a single value. We
address this problem by introducing so called probabilistic types. Rather than
giving a variable a single type, we assign several types with their probability
distributions. We can then use these more structured files as a training set to
learn the rules. The learning algorithm is template-based to be easily extensible.
We provide an initial set of templates and the learner learns some concrete
instances from the training set. These rules are used for detecting errors violating
the learned constraints in the files given by the user.

As an illustration of a simple rule that we can learn, consider a template
X1 ≤ X2, where X1 and X2 are integer variables. The learner might derive
the rule stating that mysql.max persistent ≤ max connections. There
is a classification and taxonomy of configuration errors in the existing work
on automated configuration troubleshooting [1,11]. We provide templates for
every class that ConfigC can handle: we consider integer constraints, ordering
constraints, typing constraints, and constraints about correlated entries (such
as “if X is present, Y has to appear as well”). Unfortunately, we cannot handle
the class of errors that rely on the analysis of the whole operating system. Our
language-based approach can only learn on sets of text files, not the system
environment.

From a practical perspective ConfigC introduces no additional burden to the
users: they can simply use ConfigC to check for errors in their configuration files.
However, they can also easily extend the framework themselves. The system is
designed to be highly modular. If there is a class of rules that ConfigC is not
currently learning, the user can develop their own templates and learners for
that class. The new learner can be added to ConfigC and this way it can check
additionally a new set of errors.



82 M. Santolucito et al.

Finally, from a systems perspective this is the first approach that proactively
checks the correctness of configuration files. All previous work [3,5–7,10,12,13]
tries to identify the problem after the failure occurred. Our approach isolates
potential errors before the system failure occurs, e.g. before the installation. We
can also see ConfigC as a tool that can run in conjunction with existing tools.
Pre-analyzed configuration files are already free from language-based errors, and
this way the workloads of post-failure forensics at the runtime is significantly
reduced, thus making these tools truly practical.

To summarize, this tool paper makes the following contributions. First, we
designed and implemented a tool, ConfigC, that can learn a language model
from an example set of correct configuration files, and we use the model to
verify new configuration files. Second, we use probabilistic types to assign a
confidence distribution over a set of types to a value. Finally, in ConfigC we
define an interface for describing a verification attribute in a learning context,
making it easy to add new rules to the system.

2 Motivating Examples

When writing configuration files, users usually take already existing files and
modify the files, with little knowledge of the system. The non-expert user can
then easily introduce in errors. Even worse, the original file may already cor-
rupted and the errors are propagated further. Below we show some real worlds
examples of the errors commonly found in configuration files. All these examples
are extracted from real-world reports [8,11]. The deep, domain specific knowl-
edge needed to identify these error manually is strong motivation for a tool such
as ConfigC.

Example 1: Ordering Errors. When configuring PHP to run with the Apache
HTTP Server, the user writes, among others, the following lines:

extension = mysql.so
...
extension = recode.so

This file caused the Apache server to fail to start due to a segmentation
fault error. When using PHP in Apache, the extension “mysql.so” depends on
“recode.so” and the relative ordering of two of them is crucial. ConfigC would
inform the user that “recode.so” should appear before “mysql.so”, and return
the error:

ORDERING ERROR: Expected "extension" recode.so"
BEFORE "extension" "mysql.so"

Example 2: Entry Missing Errors. If the user wants to use OpenLDAP
to enable her directory access protocol, she needs to use the password policy
overlay. This is usually done through the following entries in the OpenLDAP
configuration file:

include schema/ppolicy.schema
overlay ppolicy



Probabilistic Automated Language Learning for Configuration Files 83

When using the password policy overlay in OpenLDAP, we have to first include
the related schema. Leaving out the “include” statement will cause the failure
of this LDAP. Running ConfigC on such a misconfiguration file would return:

MISSING KEYWORD ERROR: Expected "overlay" "ppolicy"
in the same file as:"include" "schema/ppolicy.schema"

Example 3: Type Errors. If the user tries to install MySQL, she first needs
to initiate the path for the log information generated by MySQL. A user may
put the following code in the MySQL configuration file:

general log = /var/log/mysql/mysql.log

However, the entry “general log” should be an integer, not a string. In MySQL,
there is another entry named “general log file” which is used to specify the log
path. After ConfigC analyzes this configuration file, it correctly identifies the
error:

TYPE ERROR: Expected a Int with P=1.0 for
"general log[mysqld]"

Example 4: Value Correlation Errors. When configuring PHP on MySQL,
the user may write the following lines of entries in both the PHP and MySQL
configuration files:

mysql’s config
max connections = 300
...
php’s config
mysql.max persistent = 400

This could cause MySQL to abort with the error information: “too many
connections”. In this case, the “mysql.max persistent” in PHP should be no
larger than the “max connections” in MySQL configuration file. Another rule
we have implemented is learning inequality relations between integers. Running
ConfigC on this combined configuration file would return:

INTEGER RELATION ERROR:
Expected "max connections">="mysql.max persistent"

3 Learning the Rules

To learn rules, we first translate to the intermediate representation where each
line of a configuration file is reduced to a keyword-value pair (k, v). Parsing is
language dependent and users may provide extra help to the translator for their
specific language, such as specifying a comment character. We must assign types
to the keywords to guide the learning modules. With typed keyword-value pairs,
we can run each learning module independent of each other. We learn a set of
rules over every file, then merge them.

Introducing the Types. Based only on a single example value of v we cannot
fully determine the type of k. Consider for instance the following example:



84 M. Santolucito et al.

foo = 300
bar = 300.txt

Most likely foo is an integer and we learn an equality rule, but it could
also be a string. In this case we want to learn the rule foo ∈ substrings(bar).
We therefore assign a distribution of types to a value, an idea closely related
to existentially quantified types [4]. We introduce probabilistic types to address
this issue.

Let T be a set of basic types. In ConfigC set T contains strings, integers,
file paths, sizes and IP addresses. A probabilistic type built from T is a list
of pairs [(τ1, p1), . . . , (τn, pn)] such that τi ∈ T , 0 ≤ pi ≤ 1 and Σpi = 1.
These probabilities are updated each time a new example value for a keyword is
encountered.

When a value has a probabilistic type, we generate rules for all
its types. This means that by assigning foo a probabilistic type (e.g.
(foo, 300, [(Int, 90%), (String, 10%)]) we now generate rules for both strings and
integers. Once the type inference can uniquely determine the type, the proba-
bility of all other types is set to zero, and the associated rules are withdrawn.

Note that typing is also a system module than can be easily extended to sup-
port more types. In that case the user will need to provide rules for type inference
and probability distributions for values where type inference is ambiguous.

Rule Learning. With every type we associate a set of templates, specific to
this type. Once the input files are fully type-annotated, we generate rules that
are instances of these templates. We always learn the largest set of rules that
all correct configuration files satisfy. This way ConfigC can guarantee that, over
the set of rules we consider, there will be no false negatives that could have been
caught with the given learning set. The only case of a false negative can be when
there was no evidence of such a rule in the learning set - we cannot generate
rules from nothing.

4 Implementation and Evaluation

Implementation. ConfigC is implemented in Haskell and takes full advantage
of its polymorphism to make the system more modular. In particular, rules are
represented as a type, where the type must support a particular interface (called
a typeclass in Haskell) to be compatible with our system. By using language
extensions (FlexibleInstances and MultiParamTypeClasses), this typeclass can
be made polymorphic over the data structure as denoted by Foldable t =>.
The user can then choose a data structure that is most natural to the rule
they are implementing. For example, in our implementation, Missing Entries
were easier to manipulate in lists, while Type Errors fit more naturally into a
hashmap. This typeclass defines the three functions that each set of rules must
implement to work with our system. The core learning algorithm is simply a
fold using merge over the derived rules from running learn on each file in the
learning set.



Probabilistic Automated Language Learning for Configuration Files 85

Typeclasses and other features of Haskell means that our system consists of
only 267 lines of code, with another 233 for the rule modules. With an average
size of 58 lines of code for each rule module, this is evidence of how simple it is
to extend ConfigC with new rules.

class Foldable t => RuleSet t a where
learn :: IRConfigFile -> t a
merge :: t a -> t a -> t a
check :: t a -> IRConfigFile -> Error

Since we learn a set of rules on each file in isolation from the other, we have a
pleasingly parallel situation. Haskell allows us to easily take advantage of this by
using the parallel mapping library [2], both for translation to the intermediate
representation, and for learning the rules on each file. The merge stage could
also easily be parallelized, using a divide and conquer approach, but ConfigC
runs fast enough over our learning set (28 files, 961 lines of code) that this has
not been necessary.

The integer relation rule has an unusual implementation that uses function
as first-class objects in Haskell. Rather than associated keywords with SMT for-
mula, we directly associate them with a function of type (Int->Int->Bool).
Since we need to compare rules over equality, we must have a way to com-
pare functions. This limits the types of functions we use to (==),(>=),(<=).
Although this is sufficient for most cases, more fine-grained relations could be
encoded with SMT formulas then passed to a solver.

The tool is available for download at http://marksantolucito.com/cavae.
html.

Evaluation. To evaluate our tool, we take a subset of 20 benchmarks from
an existing dataset of configuration errors [1,8,11] which are supported by our
tool. Table 1 contains an evaluation summary. We do not report the running
times, since they are negligible: even when running in the interpreter mode,
files are analyzed instantaneously. We spent approximately 30 s on learning the
rules. When we run the compiled version, we need for learning and verification
combined less than 5 s. Our focus is usefulness of the tool: its ability to detect
configuration errors and the number of false positives. For every benchmark class
we took five examples. The middle column represents the number of detected
errors, while the right column represents the number of returned false positives
per each benchmark.

A benchmark passes a test if it reports an error on the source of the mis-
configuration (it is not a false negative). We call false positives any reported
error that was unrelated to the value of interest. It is worth noting that this is
in fact a conservative estimate. Since these benchmarks are taken from online
forums, there is no guarantee the files contain only a single error. Indeed, on
some benchmarks, ConfigC found errors in the file that were similar to rules
broken by other benchmarks.

We fail one benchmark in Value Relations because we do not yet support
relations between file sizes of different units (Mb to Kb). In one Keyword Order-
ing benchmark, ConfigC reports a type error on the value of interest instead of

http://marksantolucito.com/cavae.html
http://marksantolucito.com/cavae.html


86 M. Santolucito et al.

an ordering error. This is a result of our context embedding in the translation to
the intermediate representation - reordering the value puts it in a new context
where the type is now also incorrect.

Table 1. Benchmarks for misconfiguration detection

Error type Passing tests False positives

Missing Entry 5/5 1, 0, 0, 0, 4

Type Error 5/5 0, 0, 0, 0, 0

Keyword Ordering 5/5 0, 2, 1, 0, 6

Value Relations 4/5 0, 0, 0, 1, 0

All but one false positive reports were integer relations. They are the result
of overfitting on rules. ConfigC can learn overapproximating rules when the
learning set does not show the full spectrum of possible values. Since integer
relations have a larger space of relation than ordering relations for instance,
ConfigC needs a larger learning set in order to eliminate false positives.

The false positive for the Value Relation was a Missing Entry error. This is
a result of the fact that we cannot learn rules that are disjunctions. In this case,
no socket is provided to [mysqld], failing a rule we had learned over the dataset.
In fact, this is not a misconfiguration because a socket only needs to be provided
to one (or both) [mysqld] or [wampsqld]. We reported an error since none of the
files in the learning set had no socket associated with [mysqld]. In fact, since we
do not support disjunctive rules, we could not have even learned such a rule -
though in practice these seem to be uncommon.

5 Conclusions

In this paper, we introduce ConfigC, a highly-modular framework that allows
verification of configuration files, even without a language model of the file.
New verification properties require only a small amount of code and are not
language specific, all indicating that ConfigC could be widely adopted by system
administrators. Such a verification tool that scales in both performance and
expressivity can revolutionize configuration file checking, reducing the cost of
system maintenance and failure dramatically.

The field of verification must guarantee the reliability of entire systems, and
31 % of all system failures are caused by misconfiguration, while only 20 % are
caused by program bugs [9]. We hope ConfigC can be a catalyst to spark interest
in the potential impact of verification for configuration files.

Acknowledgements. We thank the anonymous reviewers for their insightful com-
ments. We also thank Tianyin Xu for his valuable feedback on earlier version of this
work. This research was supported by the NSF under grant CCF-1302327.



Probabilistic Automated Language Learning for Configuration Files 87

References

1. Misconfiguration dataset. https://github.com/tianyin/configuration datasets
2. parallel-3.2.1.0: Parallel programming library. https://hackage.haskell.org/

package/parallel-3.2.1.0/docs/Control-Parallel-Strategies.html
3. Attariyan, M., Flinn, J.: Automating configuration troubleshooting with dynamic

information flow analysis. In: 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), October 2010

4. Launchbury, J., Jones, S.L.P.: Lazy functional state threads. In: Programming
Language Design and Implementation (PLDI), pp. 24–35. ACM Press (1993)

5. Su, Y., Attariyan, M., Flinn, J.: AutoBash: improving configuration management
with operating systems. In: 21st ACM Symposium on Operating Systems Principles
(SOSP), October 2007

6. Wang, H.J., Platt, J.C., Chen, Y., Zhang, R., Wang, Y.: Automatic misconfigura-
tion troubleshooting with PeerPressure. In: 6th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), December 2004

7. Whitaker, A., Cox, R.S., Gribble, S.D.: Configuration debugging as search: finding
the needle in the haystack. In: 6th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), December 2004

8. Xu, T., Jin, L., Fan, X., Zhou, Y., Pasupathy, S., Talwadker, R.: Key, you have
given me too many knobs!: Understanding and dealing with over-designed con-
figuration in system software. In: 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), August 2015

9. Xu, T., Zhang, J., Huang, P., Zheng, J., Sheng, T., Yuan, D., Zhou, Y., Pasupathy, S.:
Do not blame users for misconfigurations. In: 24th ACM Symposium on Operating
Systems Principles (SOSP), November 2013

10. Xu, T., Zhou, Y.: Systems approaches to tackling configuration errors: a survey.
ACM Comput. Surv. 47(4), 70 (2015)

11. Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L.N., Pasupathy, S.: An
empirical study on configuration errors in commercial and open source systems. In:
23rd ACM Symposium on Operating Systems Principles (SOSP), October 2011

12. Yuan, D., Xie, Y., Panigrahy, R., Yang, J., Verbowski, C., Kumar, A.: Context-
based online configuration-error detection. In: USENIX ATCUSENIX Annual
Technical Conference (USENIX ATC), June 2011

13. Zhang, J., Renganarayana, L., Zhang, X., Ge, N., Bala, V., Xu, T., Zhou, Y.:
Encore: exploiting system environment and correlation information for miscon-
figuration detection. In: Architectural Support for Programming Languages and
Operating Systems (ASPLOS), March 2014

https://github.com/tianyin/configuration_datasets
https://hackage.haskell.org/package/parallel-3.2.1.0/docs/Control-Parallel-Strategies.html
https://hackage.haskell.org/package/parallel-3.2.1.0/docs/Control-Parallel-Strategies.html

	Probabilistic Automated Language Learning for Configuration Files
	1 Introduction and System Overview
	2 Motivating Examples
	3 Learning the Rules
	4 Implementation and Evaluation
	5 Conclusions
	References


