Skip to main content

Automatic Microcalcification Detection in Multi-vendor Mammography Using Convolutional Neural Networks

  • Conference paper
  • First Online:
Breast Imaging (IWDM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9699))

Included in the following conference series:

Abstract

Convolutional neural networks (CNNs) have shown to be powerful for classification of image data and are increasingly used in medical image analysis. Therefore, CNNs might be very suitable to detect microcalcifications in mammograms. In this study, we have configured a deep learning approach to fulfill this task. To overcome the large class imbalance between pixels belonging to microcalcifications and other breast tissue, we applied a hard negative mining strategy where two CNNs are used. The deep learning approach was compared to a current state-of-the-art method for the detection of microcalcifications: the cascade classifier. Both methods were trained on a large training set including 11,711 positive and 27 million negative samples. For testing, an independent test set was configured containing 5,298 positive and 18 million negative samples. The mammograms included in this study were acquired on mammography systems from three manufactures: Hologic, GE, and Siemens. Receiver operating characteristics analysis was carried out. Over the whole specificity range, the CNN approach yielded a higher sensitivity compared to the cascade classifier. Significantly higher mean sensitivities were obtained with the CNN on the mammograms of each individual manufacturer compared to the cascade classifier in the specificity range of 0 to 0.1. To our knowledge, this was the first study to use a deep learning strategy for the detection of microcalcifications in mammograms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bornefalk, H., Hermansson, A.B.: On the comparison of FROC curves in mammography CAD systems. Med. Phys. 32, 412–417 (2005)

    Article  Google Scholar 

  2. Bria, A., Karssemeijer, N., Tortorella, F.: Learning from unbalanced data: a cascade-based approach for detecting clustered microcalcifications. Med. Image Anal. 18, 241–252 (2013)

    Article  Google Scholar 

  3. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Cruz-Roa, A.A., Arevalo Ovalle, J.E., Madabhushi, A., González Osorio, F.A.: A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 403–410. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap, vol. 57. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  6. Guo, Y., Wu, G., Commander, L.A., Szary, S., Jewells, V., Lin, W., Shen, D.: Segmenting hippocampus from infant brains by sparse patch matching with deep-learned features. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 308–315. Springer, Heidelberg (2014)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification (2015). arXiv:150201852v1

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  9. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  10. Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: Proceedings of 2002 International Conference on Image Processing, vol. 1, pp. I-900–I-903 (2002)

    Google Scholar 

  11. Samuelson, F., Petrick, N.: Comparing image detection algorithms using resampling. In: IEEE International Symposium on Biomedical Imaging, pp. 1312–1315 (2006)

    Google Scholar 

  12. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv:14091556

  14. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Torralba, A., Murphy, K., Freeman, W.: Sharing visual features for multiclass and multiview object detection. IEEE Trans. Pattern Anal. Mach. Intell. 29, 854–869 (2007)

    Article  Google Scholar 

  16. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. I-511–I-518 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Jurre Mordang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mordang, JJ., Janssen, T., Bria, A., Kooi, T., Gubern-Mérida, A., Karssemeijer, N. (2016). Automatic Microcalcification Detection in Multi-vendor Mammography Using Convolutional Neural Networks. In: Tingberg, A., Lång, K., Timberg, P. (eds) Breast Imaging. IWDM 2016. Lecture Notes in Computer Science(), vol 9699. Springer, Cham. https://doi.org/10.1007/978-3-319-41546-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41546-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41545-1

  • Online ISBN: 978-3-319-41546-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics