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Abstract. With an increasing popularity of graph data and graph
processing systems, the need of efficient graph processing and graph
query optimization becomes more important. Subgraph isomorphism
queries, one of the fundamental graph query types, rely on an accurate
cardinality estimation of a single edge of a pattern for efficient query
processing. State of the art approaches do not consider two important
aspects for cardinality estimation of graph queries on property graphs:
the existence of nodes with a high outdegree and functional dependencies
between attributes. In this paper we focus on these two challenges and
integrate the detection of high-outdegree nodes and functional depen-
dency analysis into the cardinality estimation. We evaluate our approach
on two real data sets and compare it against a state-of-the-art query opti-
mizer for property graphs as implemented in Neo4j.

1 Introduction

The recent advent of graph-structured data and the ever-growing need to process 
graph data led to the development of a plethora of graph processing systems and 
frameworks [5]. While some of them target long-running offline, analytic graph 
queries like PageRank calculation and community detection, others focus on 
online transactional queries. A subgraph isomorphism query is one of the most 
fundamental graph query types represented in both graph query paradigms. It 
is supported in most commercial gdbms either through a specific language such 
as Neo4j’s declarative query language Cypher or can be emulated through a 
programming interface, such as in Sparksee [6]. A subgraph isomorphism query 
discovers all data subgraphs matching a query graph and belongs to queries 
with high computational costs [4]. To decrease the processing efforts, usually 
such queries rely on statistics about the underlying data graph and a cardinality 
estimation of each edge in a query graph. Therefore, to estimate a cardinality 
of a graph pattern, it is necessary to estimate precisely the cardinality of each 
single edge in a query. Query optimization based on the cardinality estimation of 
an edge(graph) becomes crucial for efficient subgraph isomorphism queries and 
adaptation of the online query processing.
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Figure 1 shows the result of a micro benchmark evaluating the cardinality
estimation quality of Neo4j1 for the ldbc data set at scale factor 1. We con-
duct evaluation for simple filter operations on nodes—a predicate on firstname
and a conjunctive predicate on the correlated attributes firstname and gender—
and for 1-hop traversals based on the knows subgraph describing relationships
between forum users. Neo4j assumes a uniform distribution of selectivities for
both, attributes and neighborhoods, respectively. This results in a dramatic car-
dinality underestimation with a q-error of about 1000 and more for the predi-
cate evaluation on correlated attributes and for neighborhood queries on high-
outdegree nodes. It is not our intention to belittle Neo4j and its query optimizer,
but instead to raise fundamental problems in dealing with real-world graphs that
are prevalent in most graph database management systems.
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Fig. 1. Output cardinality estimation with Q-error of filter evaluation on nodes and
simple 1-hop neighborhood queries in Neo4j.

Although cardinality estimation for graph pattern matching on property
graphs is a rather new research field, there have been extensive studies on graph
pattern matching in sparql—the declarative query language of the rdf data
model—and cardinality estimation techniques in rdfdbms [7,8,16]. While some
techniques can be directly applied to the graph pattern matching on property
graphs, there are some fundamental differences caused by the different under-
lying data models like the RDF data model does not provide natural support
for attributes on edges. Moreover, these techniques focus only on cardinality
estimation of a star topology, which is a typical pattern in the rdf graphs. In
opposite, property graphs can include arbitrary topologies and nodes and edges
can be described by multiple attributes.

1 We use the latest available version: Neo4j 2.3.0-M2.
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As a single edge estimation is crucial for estimating the cardinality of a
graph query, we improve it by addressing two important challenges—handling of
correlated attributes with a skewed value distribution and cardinality estimation
for neighborhood queries in the presence of high-outdegree nodes. We summarize
our contributions as follows:

– We reuse a technique well-known from the relational world to detect soft
functional dependencies between attributes and apply it to the property graph
model.

– We propose degree histograms, a concise representation of the degree distrib-
ution with a dedicated handling of vertices with a large in/outdegree.

– We evaluate our approach on two realistic graph data sets with a rich set of
attributes, correlations between attributes, and a skewed degree distribution.
We show that our techniques achieve cardinality estimations that are up to
a factor of 50 better than a naive solution.

In the following we present the state of the art of cardinality estimation for graphs
in Sect. 2. Then we provide the general description of cardinality estimation on
graphs in Sect. 3. We enhance it by considering correlated attributes in Sect. 4
and detecting high-outdegree nodes in Sect. 5. We evaluate our solution on two
data sets in Sect. 6 before we conclude in Sect. 7.

2 Related Work

Most graph queries require high processing efforts caused by the flexible schema
of a graph model and the complexity of graph queries themselves. The optimiza-
tion of such queries is a challenging task due to the irregularity of the graph
topology, the exposed attributes, and the value-based and topology-based corre-
lations exhibited in real-world graphs. Usually graph query optimization focuses
on establishing a traversal path through the query and answers the question:
‘Which edge has to be processed next?’ by estimating the cardinality of each
candidate edge. In this section we discuss the state of the art work on cardinal-
ity estimation with the focus on graph data.

2.1 RDF Cardinality Estimation

In the graph database research community, cardinality estimation of patterns
[7,8,16] is critical for rdf (Resource Description Framework) graphs, where each
query can be represented as a join of several stars describing specific entities. The
rdf data representation enables storing and processing of schema-free structured
information. A typical pattern for rdf data is a star, therefore, it is taken as
the base for query optimization.

Basic Graph Pattern (BGP) in a form of (un)bounded triples are used as a
static optimization [16] to determine a join order for pattern calculation. The
proposed system constructs a query plan by traversing edges according to the
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minimum estimated selectivity principle by passing first visiting triples to pre-
vent a system from having to compute the Cartesian product of two intermediate
result sets. To increase the estimation quality, cardinality for a bounded object
is calculated deterministically, while an upper bound of the size of joined triples
for unbounded objects is supported by domain/range information. In compar-
ison to our approach, the cardinality estimation of BGP does not support the
reduction of intermediate results based on the neighboring relations. Moreover,
the underlying model differs from the property graph model and therefore does
not support modeling of attributes on edges.

Cardinality estimation for the schema-free representation is provided by fre-
quent path calculation [8] and characteristic sets identification [7]. In both cases
these statistics are precomputed and they describe two kinds of patterns spe-
cific for the RDF data representation: chains and stars. In comparison to these
solutions, we work with entities and calculate their cardinalities based on the
estimated schema information and additional graph-specific characteristics like
in - and outdegrees and their modifications for particular edge types. In addition,
we provide more precise cardinality estimation by overcoming the independence
assumption.

2.2 Cardinality Estimation in DBMS

Query optimization in dbms is a long-term established research field. Leverag-
ing statistics about data distributions, correlations, and selectivities have been
around in the dbms market since the very beginning. Cardinality estimation is
used for example for establishing an optimal join order. For this purpose, the
join selectivity and selectivity of a selection operator are calculated based on the
data distribution and multidimensional histograms. To increase the performance
of estimation, sampling techniques are used. We refer an interesting reader to
the survey [2]. In our work we focus on eliminating predicates based on func-
tional dependencies between them [10,12]. This allows us discarding dependent
predicates from the cardinality estimation and thereby increasing the quality of
the estimation.

2.3 Graph Cardinality Estimation

The property graph model is a natural graph data model where vertices repre-
sent entities and edges describe relationships between them. This data model is
used in modern graph processing systems, e.g. Neo4j. By estimating a graph
pattern of a property graph, we need to consider statistics from dbms and graph
databases. However, for the property graph data model, only a few works [1,9,15]
exist that try to apply relational/rdf results to property graphs.

In graph databases statistics natural for graphs can be based on neighborhood
relationships [1,9]. In this case, as statistics we can use the complete “neigh-
borhood” function of a graph. The exact calculation of a neighborhood func-
tion is expensive, which is why multiple approximation methods are considered.
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These statistics can be used to determine the similarity between two graphs or
to calculate the diameter of a graph.

For pattern detection, to reduce the complexity of matching, nodes and edges
are filtered based on the label similarity [15]. For this purpose, the algorithm
Quick-SI pre-processes a data graph and computes frequencies of vertex labels
and frequencies of triples (source, edge, and target labels). The algorithm joins
edges starting with the low-frequency edges.

3 Graph Data Model and Cardinality Estimation

Our system uses the property graph model [13] as an underlying data model.
It represents a graph as a directed multigraph, where nodes are entities and
edges are relationships between them. Each edge and node can be described by
multiple types of attributes that can differ among edges and nodes—even if they
have the same semantic type.

Definition 1 (Property Graph). We define a property graph as a directed
graph G = (V,E, u, f, g) over an attribute space A = AV ∪̇AE, where: (1) V,E
are finite sets of nodes and edges; (2) u : E → V 2 is a mapping between edges
and nodes; (3) f : V → AV and g : E → AE are attribute functions for nodes
and edges; and (4) AV and AE are their attribute spaces.

Typical queries supported by graph databases include subgraph isomorphism
queries, reachability queries, etc. Graph databases rely on accurate cardinality
estimation to process such queries efficiently and usually support multiple indices
specific for each query type. Before estimating the cardinality for any graph
query, we must take into account the specifics of property graphs expressed by
notation and topology.

3.1 Notation: Attribute Histograms

A property graph can have attributes on nodes and on edges. For each attribute
we construct a frequency histogram, where the x-axis represents values of the
attribute domain and the y-axis shows the number of occurrences for the specific
value in the data graph. We support numerical as well as categorical attributes.
An important parameter of an attribute histogram is the bucket width, which
allows controlling the size of the histogram and consequently the quality of the
cardinality estimation. Dividing a one-dimensional histrogram into equi-width
buckets can be easily applied to numerical value domains, but is not meaningful
for categorical attribute domains. To tackle this problem we apply the creation of
buckets not directly on the values, but instead on the value codes that stem from
a dictionary encoding. Dictionary encoding is frequently used for compressing
categorical values by replacing the variable-length value with a fixed-length value
code. For one-dimensional histograms with a bucket size larger than one, the
value frequency describes the number of occurences of values from an interval
of value codes. While increasing the interval width allows reducing the memory
consumption of the histogram, it also decreases the precision of the cardinality
estimation.
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3.2 Topology: Degree Histograms

The graph topology is a unique property of a graph model. It can be represented
by an in - or outdegree of a node and its neighbors, typical graph topologies like
triangles, stars etc.

General node in - or outdegree describes the maximum number of its direct
neighbors. For cardinality estimation we define the in- and outdegree separately
for each edge type. An edge type is a special kind of edge attributes allowing to
extract subgraphs like a friend-of-friend network. An edge can have only a single
edge type. Typically, there is only a small number of different edge types in a
data graph (N(types) << N(edges)). For example, ldbc data set with scale
factor 1 has 16 edge types, while the total number of edges exceeds 21Mio. We
specialize a degree histogram for each available edge type and thereby increase
the quality of the cardinality estimation. For each kind of degree and edge type
we construct degree histograms that map node identifiers (or intervals) to the
number of adjacent edges with a specific edge type.

3.3 Cardinality Estimation

To estimate the cardinality of a query graph, we have to estimate the cardinality
of each node and edge in the query graph, and combine them together into a
single query graph.

Vertex Cardinality Estimation. To estimate the cardinality of a single node
in a query graph, we have to consider selectivities of the predicates.

For a data graph with N nodes the selectivity of a node without any predicate
is sel(vi) = 1. If a node vi has predicate pk then its selectivity is determined by
the selectivity of its predicate

sel(vi|pk) = sel(pk) =
N(pk)

N
(1)

The number of nodes matching a predicate pk can be taken from the correspond-
ing attribute histogram. The selectivity of a node vi is defined as the selectivity
over an attribute space A = AV , where attributes are assumed to be indepen-
dent:

sel(vi|pk, pl) = sel(pk) ∗ sel(pl) (2)

Edge and Path Cardinality Estimation. The cardinality estimation of an
edge is similar to the cardinality estimation of a node: we use predicate selectiv-
ities to estimate the number of edges matching the edge description as in Eq. 2.
This estimation is node-irrespective. To estimate the cardinality of a path(1)
C(s−e−t) that represents source(s)-edge(e)-target(t), we have to consider source
and target nodes of an edge as follows. First, we estimate the selectivity and car-
dinality of a source and then we multiply it with the average outdegree for an
edge. Finally, we multiply it by the selectivity of the target:

C(s − e − t) = sel(s) ∗ N ∗ avg.outdeg(e(type)) ∗ sel(e) ∗ sel(t) (3)
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The estimation of a path cardinality is commonly used in graph queries, for
example: subgraph isomorphism queries for establishing the join order [15]. The
estimation is crucial for enabling efficient graph processing. In the following we
improve the above presented standard estimation by focusing on two challenges,
namely: (1) notation: considering functional dependencies between attributes
and (2) topology: handling nodes with a high outdegree.

4 Considering Functional Dependencies Between
Attributes

Considering dependency between attributes of the same query edge or node
can increase the quality of cardinality estimation. Inspiring by work on deter-
mining functional dependencies between columns [12], we detect soft functional
dependencies between attributes of nodes or edges as follows. The dependency
between attributes can be expressed by the uncertainty coefficient, also called
entropy coefficient as

U(Y |X) =
IXY

HX
(4)

where Y,X are two attributes, IXY = HX + HY − H(XY ) is their dependence
information, H(X),H(Y ),H(XY ) are the entropy values of attributes X,Y , and
the coentropy of a joint distribution XY , respectively. The uncertainty coeffi-
cient U(Y |X) shows how well an attribute value from X defines an attribute
value from Y and varies between [0; 1]. While U(Y |X) = 0 indicates value inde-
pendence of the two attributes, U(Y |X) = 1 expresses a strong dependency. The
measure is not symmetric: U(Y |X) �= U(X|Y ).

Example. Assume a data graph represents a social network, where some typ-
ical attributes for persons are a firstname and a gender. The functional depen-
dency U(gender|firstname) will be high, while U(firstname|gender) is rather
small. In practice we can almost always derive a gender of a person from his first-
name. For example, Bob should be a male, while Alice is a female. The converse
is not true: if a gender is a female, the firstname cannot be easily derived.

Functional dependencies are static statistics and are calculated offline. To
reduce the overhead of determining functional dependencies between all pairs of
attributes, we group attributes into several sets and calculate functional depen-
dencies only between attributes of the same set. We create sets based on seman-
tical relatedness between attributes. In many scenarios, for example, social net-
works, such sets are already defined in the form of an attribute type for nodes like
a person, a web page, or a city. If the nodes do not have any attribute type, we
create characteristic sets [7]. Originally, a characteristic set describes a typical
star relationship for the rdf data.

In Fig. 2 we show the transformation of a characteristic set from rdf into
the property graph model. As we can see, a characteristic set in the property
graph represents only the typical schema of a node. To describe typical outgoing
connections for a specific characteristic set in a property graph, we can create
an edge characteristic set. It allows describing the topology and the notation
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Fig. 2. Characteristic set for a property graph.

Fig. 3. Predicate selection for cardinality estimation.

Algorithm 1. Predicate Selection.
1: function selectPredicates(p[])
2: predicateMap
3: for all pi ∈ p[] do
4: for all pi.next ∈ p[] do
5: if FDA(pi, pi.next)≥FDA(pi.next, pi) then � select precomputed

FDA-coefficients and filter the strongest ones in pairs
6: predicateMap ← FDA(pi, pi.next)
7: else if FDA(pi.next, pi)>FDA(pi, pi.next) then
8: predicateMap←FDA(pi.next, pi)

9: for all FDA ∈ predicateMap do
10: if FDA < threshold then � remove pairs with low FDA-coefficients
11: remove FDA
12: startPredicate ← max(predicateMap)
13: remove startPredicate from p[]
14: for all pair ∈ predicateMap do
15: if pair[2] ∈ p then � remove dependent predicates
16: remove pair[2] from p

17: p[] ← startPredicate return p[]

of a graph more precisely and in such a way we can separate edges from the
analyzing attribute dependencies for nodes.
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Predicate Selection

To calculate the selectivity of a node, we first filter out those predicates, whose
attributes are functionally dependent from others and therefore can be derived
from the already considered attributes. In Fig. 3 and Algorithm 1 we present
the process of selecting the predicates. As an input, Algorithm 1 receives a
set of node predicates. For each pair of predicates we query their precomputed
pair of functional dependency coefficients and choose the largest one (Lines 5-
8). Afterwards, we remove all dependencies below a threshold in Lines 9-11,
dependent predicates, which can be derived by their pair partners (Lines 14-17),
and return filtered predicates.

5 Handling High-Outdegree Nodes

One of the problems in cardinality estimation of graph queries that has been
mostly ignored by the research community so far is the special handling of nodes
with a large number of outgoing edges. Usually the number of such nodes is much
smaller than the total number of nodes in a data graph and ignoring them can
lead to dramatic cardinality underestimations.

In Fig. 4 we present the outdegree distributions for the DBpedia and ldbc
data sets for a single edge type that we use later in the experimental evaluation
in Sect. 6. The tail on the right-hand side of each figure represents nodes with
a high outdegree. If we do not treat them separately, the cardinality estimation
can produce an estimation error of several orders of magnitude.

For a correct handling of nodes with a high outdegree, we need to answer
two questions: (1) how to discover such nodes and (2) how to efficiently store
and process them.
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Fig. 4. Outdegree diagrams.
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5.1 Discovery of Nodes with a High Outdegree

Nodes with a high outdegree can be interpreted as outliers. To detect them,
we have to study the degree distribution of nodes in a data graph and define
a node vi as an outlier, whose degree is much larger than the average degree
(avg.degree << degreevi

). For this purpose, we use the algorithm based on the
calculation of the modified z-score for a univariate data set [3]. The calculation
requires two components: the median and the median of the absolute deviation
of the median that is calculated as

MAD = median|xi − x̃|, (5)

where x̃ is the sample median. As a consequence, the modified z-score can be
computed as

Mi =
0.6745 ∗ (xi − x̃)

MAD
, (6)

where E(MAD) = 0.675σ for large normal data. The authors suggested Mi >
|3.5| to be outliers. In our case xi is an outdegree of node vi, which has at least
one edge of a specific type. Therefore, we call a node an outlier, if its modified
z-score is M > |3.5|. We refer the interested user to the survey of existing outlier
detection methods [14].

5.2 Processing of High-Outdegree Nodes

Based on the selectivity estimation of the predicates on nodes, we distinguish
between nodes with an average outdegree and those with a high outdegree. To
identify efficiently, whether a given graph pattern matches one or multiple high-
outdegree nodes, we use a lightweight data structure to partially index attributes
for high-outdegree nodes. For each attribute, we use an ordered tree structure
to map attribute values to high-outdegree nodes. The value of a node in the tree
structure provides a reference to the corresponding cardinality of the node in the
degree histogram. In a final step, we union the general cardinality estimation of
nodes with the cardinality estimation of matched high-outdegree nodes.

6 Experimental Evaluation

In this section we provide an experimental evaluation of our techniques for
detecting and leveraging functional dependencies during cardinality estimation
and for detecting nodes with a high outdegree. We implemented the proposed
techniques in Graphite [11]—a columnar graph processing system—and con-
ducted all experiments on a two socket Linux based system with Intel Xeon
X5650 CPUs equipped with 6 cores @2.67 GHz and 48 GB RAM. We use two
data sets in our experiments—ldbc scale factor 1 (3.7 Mio. vertices with 17
attributes, 21.7 Mio. edges with 16 types and 4 attributes) and DBpedia (0.2
Mio. vertices with 1543 attributes, 0.8 Mio. edges with 829 types)—and initially
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Fig. 5. Cardinality estimation quality of conjunctive queries on correlated and uncor-
related attributes.

populate them into Graphite and Neo4j. For Neo4j, we created secondary
indices on each vertex attribute to allow the system collecting additional statis-
tics about the attributes.

6.1 Correlated Attributes

In this experiment we evaluate the influence of (soft) functional dependencies
between vertex attributes on the quality of the cardinality estimation and present
our results in Fig. 5. We use the ldbc data set at scale factor 1 and selected two
representative conjunctive predicates (cf. Table 1). We evaluate the estimation
quality for Neo4j, a naive cardinality estimation (using equi-width histograms
with bucket size 1 and attribute independence assumption), and our cardi-
nality estimation that automatically detects functional dependencies between
attributes and takes them into account during the estimation process. For a
strong functional dependency (see Fig. 5a), our cardinality estimation outper-
forms the cardinality estimation quality of Neo4j by up to factor 53 and a naive
cardinality estimation (under the independence assumption) by up to 50 % for
large output cardinalities. For uncorrelated attributes (see Fig. 5b) we decide,
based on the estimated functional dependency and a threshold, whether we
estimate the conjunctive cardinality under the independence assumption or by
exploiting the knowledge about functional dependencies. For a weak functional
dependency we estimate the cardinality under the independence assumption and
represent both, the naive and our solution with functional dependency analysis
by the same blue plot line.
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6.2 High-Outdegree Vertices

In this set of experiments we evaluate the automatic detection of high-outdegree
vertices and compare it with manually chosen numbers of nodes with a high
outdegree based on the top-k principle. We conducted our evaluation on two data
sets, DBpedia and ldbc, and generated different query templates instantiated
with different predicate values (cf. Table 1).
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Fig. 6. Evaluating functional dependency analysis.

While for the DBpedia data set (cf. Fig. 6a) the system automatically
detected the kink at around 2886, it determined a value of around 900 for the
ldbc data set. For both data sets, we observed that by increasing the number of
considered high-outdegree nodes, the q-error decreases more slowly than before
the kink.

6.3 End-to-End Cardinality Estimation

In this test we evaluate the influence of functional dependencies between
attributes and the presence of high-outdegree nodes on the quality of the esti-
mation (cf. Fig. 7). We consider four different configurations combined from two
features: with or without functional dependency analysis (FDA) and with or
without automatic selection of high-outdegree nodes (SN). Neo4j provides a
good estimation quality for the ldbc data set but fails estimating the cardinal-
ity of queries for the DBpedia data set which requires an estimation of selective
predicates. Most queries match at most a single source vertex and Neo4j esti-
mates these high-selective vertices to 0. Since the q-error cannot be computed
for a cardinality (exact and estimated) of 0, we omit the results for Neo4j for
the DBpedia data set in Fig. 7a.
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Fig. 7. Cardinality estimation quality for Neo4j and possible combinations of our two
proposed techniques.

Since both query templates do not hit many high-outdegree nodes, the car-
dinality estimation improvement is only marginal. For both query templates,
the FDA has the highest impact, and therefore, represents in conjunction with
the handling of high-outdegree vertices the best results. We conclude that both
techniques are important key components for efficient cardinality estimation on
subgraph isomorphism queries and can reduce the cardinality estimation error
significantly.

7 Conclusion

We tackled two important challenges that arise in graph pattern cardinality esti-
mation caused by the skewedness of the degree distribution and the irregularity
of exposed attributes in vertices and edges present in real-world graphs, namely:
detection of functional dependencies between node attributes and consideration
of nodes with a high outdegree. By analyzing two real-world graph data sets with
a rich set of attributes and a power-law vertex degree distribution, we identified
that these two aspects are important for the cardinality estimation of subgraph
isomorphism queries over property graphs. With our solution for the cardinality
estimation considering both aspects, we outperform a naive approach relying
on average outdegree measures and the independence assumption in conjunctive
predicates by up to 50 % and the cost-based query optimizer of Neo4j by up to
a factor of 50.
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A Evaluated Queries

Table 1. Query templates used in the evaluation.
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11. Paradies, M., Lehner, W., Bornhövd, C.: GRAPHITE: an extensible graph traver-
sal framework for relational database management systems. In: Proceedings of the
SSDBM 2015, pp. 29: 1–29: 12 (2015)

12. Paradies, M., Lemke, C., Plattner, H., Lehner, W., Sattler, K.-U., Zeier, A.,
Krueger, J.: How to juggle columns: an entropy-based approach for table com-
pression. In: Proceedings of the IDEAS 2010, pp. 205–215 (2010)

13. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bull. Am. Soc.
Inf. Sci. Technol. 36(6), 35–41 (2010)

14. Seo, S.: A review and comparison of methods for detecting outliers in univariate
data sets. Master’s thesis, Faculty of Graduate School of Public Health, University
of Pittsburgh (2006)

15. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: an efficient
algorithm for testing subgraph isomorphism. Proc. VLDB Endow. 1(1), 364–375
(2008)

16. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic
graph pattern optimization using selectivity estimation. In: Proceedings of the
WWW 2008, pp. 595–604 (2008)

Final edited form was published in "Biomedical Data Management and Graph Online Querying: VLDB 2015 Workshops. 
Waikoloa 2015", S. 184-198. ISBN: 978-3-319-41576-5 

https://doi.org/10.1007/978-3-319-41576-5_14

15 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden 


	Robust Cardinality Estimation for Subgraph_Vorsatzblatt
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Marcus Paradies, Elena Vasilyeva, Adrian Mocan, Wolfgang Lehner

	Paradies2016_Chapter_RobustCardinalityEstimationFor
	Robust Cardinality Estimation for Subgraph Isomorphism Queries on Property Graphs
	1 Introduction
	2 Related Work
	2.1 RDF Cardinality Estimation
	2.2 Cardinality Estimation in DBMS
	2.3 Graph Cardinality Estimation

	3 Graph Data Model and Cardinality Estimation
	3.1 Notation: Attribute Histograms
	3.2 Topology: Degree Histograms
	3.3 Cardinality Estimation

	4 Considering Functional Dependencies Between Attributes
	5 Handling High-Outdegree Nodes
	5.1 Discovery of Nodes with a High Outdegree
	5.2 Processing of High-Outdegree Nodes

	6 Experimental Evaluation
	6.1 Correlated Attributes
	6.2 High-Outdegree Vertices
	6.3 End-to-End Cardinality Estimation

	7 Conclusion
	A Evaluated Queries
	References


	ADPFB90.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Marcus Paradies, Elena Vasilyeva, Adrian Mocan, Wolfgang Lehner




