
LTL Parameter Synthesis of Parametric Timed
Automata

Peter Bezděk, Nikola Beneš, Jǐŕı Barnat, and Ivana Černá

Faculty of Informatics, Masaryk University, Brno, Czech Republic
bezdek@mail.muni.cz,{xbenes3,barnat,cerna}@fi.muni.cz

Abstract. The parameter synthesis problem for parametric timed au-
tomata is undecidable in general even for very simple reachability proper-
ties. In this paper we introduce restrictions on parameter valuations under
which the parameter synthesis problem is decidable for LTL properties.
The investigated bounded integer parameter synthesis problem could be
solved using an explicit enumeration of all possible parameter valuations.
We propose an alternative symbolic zone-based method for this prob-
lem which results in a faster computation. Our technique extends the
ideas of the automata-based approach to LTL model checking of timed
automata. To justify the usefulness of our approach, we provide experi-
mental evaluation and compare our method with explicit enumeration
technique.

1 Introduction

Model checking [1] is a formal verification technique applied to check for logical
correctness of discrete distributed systems. While it is often used to prove the
unreachability of a bad state (such as an assertion violation in a piece of code),
with a proper specification formalism, such as the Linear Temporal Logic (LTL),
it can also check for many interesting liveness properties of systems, such as
repeated guaranteed response, eventual stability, live-lock, etc.

Timed automata have been introduced in [2] and have emerged as a useful
formalism for modelling time-critical systems as found in many embedded and
cyber-physical systems. The formalism is built on top of the standard finite
automata enriched with a set of real-time clocks and allowing the system actions to
be guarded with respect to the clock valuations. In the general case, such a timed
system exhibits infinite-state semantics (the clock domains are continuous).
Nevertheless, when the guards are limited to comparing clock values with integers
only, there exists a bisimilar finite state representation of the original infinite-
state real-time system referred to as the region abstraction. A practically efficient
abstraction of the infinite-state space came with the so called zones [3]. The
zone-based abstraction is much coarser and the number of zones reachable from
the initial state is significantly smaller. This in turns allows for an efficient
implementation of verification tools for timed automata, see e.g. UPPAAL [4].

Very often the correctness of a time-critical system relates to a proper timing,
i.e. it does not only depend on the logical result of the computation, but also on

ar
X

iv
:1

40
9.

36
96

v2
  [

cs
.F

L
] 

 4
 M

ar
 2

01
6



the time at which the results are produced. To that end the designers are not
only in the need of tools to verify correctness once the system is fully designed,
but also in the need of tools that would help them derive proper time parameters
of individual system actions that would make the system as a whole satisfy
the required specification. After all this problem of parameter synthesis is more
urgent in practice than the verification as such.

Related Work. The problem of the existence of a parameter valuation for
a reachability property of a parametric timed automaton in continuous time has
been shown to be undecidable in [5,6] for a parametric timed automaton with
as few as 3 clocks. This problem remains undecidable even for integer-valued
parameters [7]. A solution for the parameter synthesis problem and reachability
properties is presented in [8] where the authors provide a semi-decision algorithm
which is not guaranteed to terminate in all cases. Authors also introduce a subclass
of parametric timed automata, called L/U automata for which the emptiness
problem is decidable. Decidability results for the class of L/U automata are
further extended in [9]. In particular, the authors show that emptiness, finiteness
and universalitity problems of the set of parameter valuations for which there is
an infinite accepting run are decidable.

To obtain a decidable version of parameter synthesis problem for parametric
timed automata we need to restrict parameter valuations to bounded integers.
When modelling a real-time system, designers can usually provide practical
bounds on time parameters of individual system actions. Therefore, introducing
a parameter synthesis method with such a restriction is still reasonable. In [10]
the authors show that the problem of existence of bounded integer parameter
value such that a given property is satisfied is PSPACE-complete for a significant
number of properties, which include Timed Computational Tree Logic. They give
symbolic algorithms only for reachability and unavoidability properties.

Contribution. The main contribution of this paper is a symbolic method that
solves the parameter synthesis problem for specifications given in the Linear Time
Logic (LTL) and parametric timed automata with bounded integer parameters.
To this end, we introduce a finite abstraction of parametric timed automata
with bounded integer parameters and provide an algorithm working over this
abstraction. To evaluate our technique we implemented both a symbolic approach
and explicit enumeration technique in a proof-of-concept tool and compare the
techniques on a case study. The finite abstraction does not provide a unique rep-
resentation of states and therefore we design an efficient state storage mechanism
that deals with this problem. The experiments demonstrate the strength of the
symbolic approach which may be faster by an order of magnitude.

Outline. The rest of the paper is organised as follows. The problem definition
is given in Section 2 that also introduces the basic notions. We then define
the symbolic semantics of a parametric timed Büchi automaton and its finite



abstraction in Section 3. Section 4 describes the parameter synthesis algorithm
itself. Section 5 describes the implementation and used heuristics. Then, in
Section 6 we experimentally evaluate the proposed algorithm and compare it
with explicit enumeration. Finally, Section 7 concludes the paper.

2 Preliminaries and Problem Statement

In order to state our main problem formally, we need to describe the notion of
a parametric timed automaton. We start by describing some basic notation.

Let P be a finite set of parameters. An affine expression is an expression
of the form z0 + z1p1 + . . . + znpn, where p1, . . . , pn ∈ P and z0, . . . , zn ∈ Z.
We use E(P ) to denote the set of all affine expressions over P . A parameter
valuation is a function v : P → Z which assigns an integer number to each
parameter. Let lb : P → Z be a lower bound function and ub : P → Z be
an upper bound function. For an affine expression e, we use e[v] to denote the
integer value obtained by replacing each p in e by v(p). We use maxlb,ub(e) to
denote the maximal value obtained by replacing each p with a positive coefficient
in e by ub(p) and replacing each p with a negative coefficient in e by lb(p). We say
that the parameter valuation v respects lb and ub if for each p ∈ P it holds that
lb(p) ≤ v(p) ≤ ub(p). We denote the set of all parameter valuations respecting lb
and ub by V allb,ub(P ). In the following, we only consider parameter valuations
from V allb,ub(P ).

Let X be a finite set of clocks. We assume the existence of a special zero clock,
denoted by x0, that has always the value 0. A guard is a finite conjunction of
expressions of the form xi − xj ∼ e where xi, xj ∈ X, e ∈ E(P ) and ∼ ∈ {≤, <}.
We use G(X,P ) to denote the set of all guards over a set of clocks X and a set of
parameters P . A simple guard is a guard containing only expressions of the form
xi − xj ∼ e where xi, xj ∈ X, e ∈ E(P ), ∼ ∈ {≤, <}, and xi = x0 or xj = x0.
We also use G(X,P ) to denote the set of all simple guards over a set of clocks X
and a set of parameters P . A clock valuation is a function η : X → R≥0 assigning
non-negative real numbers to each clock such that η(x0) = 0. We denote the set of
all clock valuations by V al(X). Let g ∈ G(X,P ) and v be a parameter valuation
and η be a clock valuation. Then g[v, η] denotes a boolean value obtained from g
by replacing each parameter p with v(p) and each clock x with η(x). A pair
(v, η) satisfies a guard g, denoted by (v, η) |= g, if g[v, η] evaluates to true.
The semantics of a guard g, denoted by JgK, is a set of all valuation pairs (v, η)
such that (v, η) |= g. For a given parameter valuation v we write JgKv for the set
of clock valuations {η | (v, η) |= g}.

We define two operations on clock valuations. Let η be a clock valuation,
d a non-negative real number and R ⊆ X a set of clocks. We use η + d to denote
the clock valuation that adds the delay d to each clock, i.e. (η+ d)(x) = η(x) + d
for all x ∈ X \ {x0}. We further use η〈R〉 to denote the clock valuation that
resets clocks from the set R, i.e. η〈R〉(x) = 0 if x ∈ R, η〈R〉(x) = η(x) otherwise.

Definition 2.1 (PTA). A parametric timed automaton (PTA) is a tuple M =
(L, l0, X, P,∆, Inv) where



– L is a finite set of locations,

– l0 ∈ L is the initial location,

– X is a finite set of clocks,

– P is a finite set of parameters,

– ∆ ⊆ L×G(X,P )× 2X × L is a finite transition relation, and

– Inv : L→ G(X,P ) is an invariant function.

We use q
g,R−−→∆ q′ to denote (q, g, R, q′) ∈ ∆. The semantics of a PTA is given

as a labelled transition system. A labelled transition system (LTS) over a set of
symbols Σ is a triple (S, s0,→), where S is a set of states, s0 ∈ S is an initial

state and → ⊆ S × Σ × S is a transition relation. We use s
a−→ s′ to denote

(s, a, s′) ∈ →.

Definition 2.2 (PTA semantics). Let M = (L, l0, X, P,∆, Inv) be a PTA and
v be a parameter valuation. The semantics of M under v, denoted by JMKv, is
an LTS (SM , s0,→) over the set of symbols {act} ∪ R≥0, where

– SM = L× V al(X) is a set of all states,

– s0 = (l0,0), where 0 is a clock valuation with 0(x) = 0 for all x, and

– the transition relation → is specified for all (l, η), (l′, η′) ∈ SM as follows:

• (l, η)
d−→ (l′, η′) if l = l′, d ∈ R≥0, η′ = η + d, and (v, η′) |= Inv(l′),

• (l, η)
act−−→ (l′, η′) if ∃g,R : l

g,R−−→∆ l′, (v, η) |= g, η′ = η〈R〉,
and (v, η′) |= Inv(l′).

The transitions of the first kind are called delay transitions, the latter are
called action transitions.

We write s1
act−−→d s2 if there exists s′ ∈ SM and d ∈ R≥0 such that s1

act−→
s′

d−→ s2. A proper run π of JMKv is an infinite alternating sequence of delay

and action transitions that begins with a delay transition π = (l0, η0)
d0−→ (l0, η0 +

d0)
act−−→ (l1, η1)

d1−→ · · · . A proper run is called Zeno if the sum of all its delays
is finite.

Let M be a PTA, L : L → 2Ap be a labelling function that assigns a set
of atomic propositions to each location of M , v be a parameter valuation, and
ϕ be an LTL formula. We say that M under v with L satisfies ϕ, denoted
by (M,v,L) |= ϕ if for all proper runs π of JMKv, π satisfies ϕ where atomic
propositions are determined by L.

Given a parametric timed automaton M , a labelling function L, and an LTL
property ϕ, the parameter synthesis problem is to compute the set of all parameter
valuations v such that (M,v,L) |= ϕ. Unfortunately, it is known that the
parameter synthesis problem for a PTA is undecidable even for very simple
(reachability) properties [5]. Instead of solving the general problem, we thus focus
on a more constrained version which is still reasonable for practical purposes.



Problem Formulation. Given a parametric timed automaton M , a labelling
function L, an LTL property ϕ, a lower bound function lb and an upper bound
function ub, the bounded integer parameter synthesis problem is to compute the set
of all parameter valuations v such that (M, v,L) |= ϕ and lb(p) ≤ v(p) ≤ ub(p).

This problem is trivially decidable using the standard zone-based abstrac-
tion and explicit enumeration of all parameter valuations. In order to avoid
the necessity of the explicit enumeration of all parameter valuations we use
a combination of the zone-based abstraction and a symbolic representation of
parameter valuation sets. Our algorithmic framework which solves this problem
consists of three steps.

As the first step, we apply the standard automata-based LTL model checking
of timed automata [2] to parametric timed automata. We employ this approach
in the following way. From a PTA M and an LTL formula ϕ we produce a prod-
uct parametric timed Büchi automaton (PTBA) A. The accepting runs of the
automaton A correspond to the runs of M violating the formula ϕ.

As the second step, we employ a symbolic semantics of a PTBA A with
a suitable extrapolation. From the symbolic state space of a PTBA A we fi-
nally produce a Büchi automaton B in which each state is associated symbolic
information about parameter valuations. This transformation is described in
Section 3.

As the last step, we need to detect all parameter valuations for which there
exists an accepting run in Büchi automaton B. To that end, we employ a new
algorithm, which we call the Cumulative NDFS. The algorithm is described in
detail in Section 4.

We now proceed with the definitions of a Büchi automaton, a parametric
timed Büchi automaton and its semantics.

Definition 2.3 (BA). A Büchi automaton (BA) is a tuple B = (Q, q0, Σ,→, F ),
where Q is a finite set of states, q0 ∈ Q is an initial state, Σ is a finite set of
symbols, →⊆ Q×Σ ×Q is a set of transitions, and F ⊆ Q is a set of accepting
states (acceptance condition). An ω-word w = a0a1a2 . . . ∈ Σω is accepting if

there is an infinite sequence of states q0q1q2 . . . such that qi
ai−→ qi+1 for all i ∈ N,

and there exist infinitely many i ∈ N such that qi ∈ F .

Definition 2.4 (PTBA). A parametric timed Büchi automaton (PTBA) is
a pair A = (M,F ) where M = (L, l0, X, P,∆, Inv) is a PTA, and F ⊆ L is a set
of accepting locations.

Zeno runs represent non-realistic behaviours and it is desirable to ignore
them in analysis. Therefore, we are interested only in non-Zeno accepting runs of
a PTBA. There is a syntactic transformation to the so-called strongly non-Zeno
form [11] of a PTBA, which guarantees that each accepting run is non-Zeno. For
the rest of the paper, we thus assume that there are no Zeno accepting runs in
the PTBA.

Definition 2.5 (PTBA semantics). Let A = (M,F ) be a PTBA and v be
a parameter valuation. The semantics of A under v, denoted by JAKv, is defined
as JMKv = (SM , s0,→).



We say a state s = (l, η) ∈ SM is accepting if l ∈ F . A proper run π =

s0
d0−→ s′0

act−→ s1
d1−→ s′1

act−→ . . . of JAKv is accepting if there exists an infinite set
of indices i such that si is accepting.

3 Symbolic Semantics

In this section we show the construction of a finite system which represents the
semantics of a given PTBA. First, we describe a parametric extension of the zone
abstraction. This extension is based on constrained parametric difference bound
matrices, described in [8]. However, this abstraction itself does not guarantee
finiteness in our setting. To solve this problem we further introduce a finite
parametric extrapolation.

3.1 Constrained Parametric Difference Bound Matrix

A constraint is an inequality of the form e ∼ e′ where e, e′ ∈ E and ∼ ∈ {>,≥,
≤, <}. We define c[v] as the boolean value obtained by replacing each p in c by
v(p). A valuation v satisfies a constraint c, denoted v |= c, if c[v] evaluates to
true. The semantics of a constraint c, denoted JcK, is the set of all valuations
that satisfy c. A finite set of constraints C is called a constraint set. A valuation
satisfies a constraint set C if it satisfies each c ∈ C. The semantics of a constraint
set C is given by JCK =

⋂
c∈CJcK. A constraint set C is satisfiable if JCK 6= ∅.

A constraint c covers a constraint set C, denoted C |= c, if JCK ⊆ JcK.
As in [8], we identify the relation symbol ≤ with the boolean value true and

< with the boolean value false. Then, we treat boolean connectives on relation
symbols ≤, < as operations with boolean values. For example, (≤ =⇒ <) = <.

We now define the parametric difference bound matrix, the constrained
parametric difference bound matrix, several operations on them, and the symbolic
semantics of a PTBA.

Definition 3.1. A parametric difference bound matrix (PDBM) over P and X
is a set D which contains for all 0 ≤ i, j ≤ |X| a guard of the form xi−xj ≺ij eij
where xi, xj ∈ X and eij ∈ E(P ) ∪ {∞} and i = j =⇒ eii = 0. We denote
by Dij a guard of the form xi − xj ≺ij eij contained in D . Given a parameter
valuation v, the semantics of D is given by JDKv = J

∧
i,j DijKv. A PDBM D is

satisfiable with respect to v if JDKv is non-empty.

Definition 3.2. A constrained parametric difference bound matrix (CPDBM)
is a pair (C,D), where C is a constraint set and D is a PDBM and for each
0 ≤ i ≤ |X| it holds that C |= e0i ≥ 0. The semantics of (C,D) is given by
JC,DK = {(v, η) | v ∈ JCK ∧ η ∈ JDKv}. We call (C,D) satisfiable if JC,DK is
non-empty. A CPDBM (C,D) is said to be in the canonical form if and only if
for all i, j, k, C |= eij(≺ik ∧ ≺kj)eik + ekj.



Resetting a Clock. Suppose (C,D) is a CPDBM in the canonical form. The
reset of the clock xr in (C,D), denoted by (C,D)〈xr〉, is given as (C,D〈xr〉)
where:

D〈xr〉ij =


D0j if i 6= j and i = r,

Di0 if i 6= j and j = r,

Dij else.

We can again generalise this definition to a set of clocks:

(C,D)〈xi0 , xi1 , . . . , xik〉
def⇔ (C,D)〈xi0〉〈xi1〉 . . . 〈xik〉.

Applying a Guard. Suppose g is a guard of the form xi − xj ≺ e, (C,D) is
a CPDBM in the canonical form and Dij = (eij ,≺ij). The application of the
guard g on (C,D) generally results in a set of CPDBMs and is defined as follows:

(C,D)[g] =


{(C,D[g])} if C |= ¬(eij(≺ij =⇒ ≺)e),

{(C,D)} if C |= eij(≺ij =⇒ ≺)e,

{(C ∪ {eij(≺ij =⇒ ≺)e}, D), otherwise,

(C ∪ {¬eij(≺ij =⇒ ≺)e}, D[g]), }

where D[g] is defined as follows:

D[g]kl =

{
(e,≺) if k = i and l = j,

Dkl else.

We can generalise this definition to conjunctions of guards as follows:

D[gi0 ∧ gi1 ∧ . . . ∧ gik ]
def⇔ D[gi0 ][gi1 ] . . . [gik ].

Time Successors. Suppose (C,D) is a CPDBM in the canonical form. The
time successor of (C,D), denoted by (C,D)↑, represents a CPDBM with all
upper bounds on clocks removed and is given as (C,D↑) where:

D↑ij =

{
(∞, <) if i 6= 0 and j = 0,

Dij else.

The reset and time successor operations preserve the canonical form of
a CPDBM. After the application of a guard the CPDBM may no longer be
in the canonical form and thus a transformation to the canonical form needs
to be performed. However, due to the presence of parameters the standard
canonisation [12] process can be ambiguous. The canonisation procedure is
therefore extended to cope with this ambiguity. As a consequence, the result of
the canonisation is not a single CPDBM, but may generally be a set containing
potentially more CPDBMs in the canonical form with mutually disjoint constraint
sets.

To canonise the given CPDBM we need to derive the tightest constraint on
each clock difference. Deriving the tightest constraint on a clock difference can be



seen as finding the shortest path in the graph interpretation of the CPDBM. In [8]
the authors implement the canonisation using a nondeterministic extension of
the Floyd-Warshall algorithm where on each relaxation a split into two different
CPDBMs can occur.

Canonisation. First, we define a relation −→FW on constrained parametric
bound matrices as follows, for all 0 ≤ k, i, j ≤ |X|:

– (k, i, j, C1, D1) −→FW (k, i, j + 1, C2, D2)
if (C2, D2) ∈ (C1, D1)[xi − xj(≺ik ∧ ≺kj)eik + ekj ]

– (k, i, |X|+ 1, C1, D1) −→FW (k, i+ 1, 0, C1, D1)
– (k, |X|+ 1, 0, C1, D1) −→FW (k + 1, 0, 0, C1, D1)

The relation −→FW can be seen as a representation of the computation steps
of the extended Floyd-Warshall algorithm.

Suppose now (C,D) is a CPDBM. The canonical set of (C,D), denoted as
(C,D)c, represents a set of CPDBMs with the tightest constraint on each clock
difference in D and is defined as follows:

(C,D)c = {(C ′, D′) | (0, 0, 0, C,D) −→∗FW (|X|+ 1, 0, 0, C ′, D′)}

Example 3.3. Let x, y ∈ X and p, q ∈ P . For a CPDBM (C,D) = (∅, {x ≤ p, y ≤
q, y ≤ x, y ≤ x}) we obtain by canonisation (C,D)c = {({p ≤ q}, {x ≤ p, y ≤
p, y ≤ x, y ≤ x}) , ({q < p}, {x ≤ q, y ≤ q, y ≤ x, y ≤ x})}.

Definition 3.4 (PTBA symbolic semantics). Let A = ((L, l0, X, P,∆, Inv),
F ) be a PTBA. Let lb and ub be a lower bound function and an upper bound
function on parameters. The symbolic semantics of A with respect to lb and ub
is a transition system (SA,Sinit,=⇒), denoted as JAKlb,ub, where

– SA = L× {JC,DK | (C,D) is a CPDBM} is the set of all symbolic states,
– the set of initial states Sinit = {(l0, JC,DK) | (C,D) ∈ (∅, E↑)[Inv(l0)]}, where
• E is a PDBM with Ei,j = (0,≤) for each i, j, and
• for each p ∈ P , the constraints p ≥ lb(p) and p ≤ ub(p) are in C.

– There is a transition (l, JC,DK) =⇒ (l′, JC ′c, D′cK) if

• l g,R−→∆ l′ and
• (C ′′, D′′) ∈ (C,D)[g] and
• (C ′′c , D

′′
c ) ∈ (C ′′, D′′)c and

• (C ′, D′) ∈ (C ′′c , D
′′
c 〈R〉↑)[Inv(l′)] and

• (C ′c, D
′
c) ∈ (C ′, D′)c.

We say that a state S = (l, JC,DK) ∈ SA is accepting if l ∈ F . We say
that π = S0 =⇒ S1 =⇒ . . . is a run of JAKlb,ub if S0 ∈ Sinit and for each i,
Si ∈ SA and Si−1 =⇒ Si. A run respects a parameter valuation v if for each
state Si = (li, JCi, DiK) it holds that v ∈ JCiK. A run π is accepting if there exists
an infinite set of indices i such that Si is accepting. For the rest of the paper we
fix lb, ub and use JAK to denote JAKlb,ub.



3.2 Finite Abstraction

Similarly to the nonparametric case, the symbolic transition system JAK may be
infinite. In order to obtain a finite transition system we need to apply a finite
abstraction over JAK. In the standard case of timed automata without parameters
we use one of the extrapolation techniques [13,14]. In our parametric setup we
define a new finite abstraction called the pk-extrapolation which is a parametric
extension of the widely used k-extrapolation [13]. The k-extrapolation identifies
states which are identical except for the clock values which exceeds the maximal
constant from guards and invariants.

In our parametric setup, we need to define the maximal constant with which
each clock within a PTBA is compared. We define M(x) as the maximal value
in {maxlb,ub(e) | e is compared with x in a guard or an invariant of the con-
sidered PTBA}. The core idea of pk-extrapolation is the same as the idea of
k-extrapolation. We substitute each bound on clock difference in the CPDBM
whenever this bound exceeds the maximal constant. The precise description of
this substitution process is given in the Definition 3.5. Contrary to the non-
parametric case, due to the occurrence of parameters in the CPDBM bounds,
the substitution process may be ambiguous. In these situations we restrict the
parameter values in order to obtain an unambiguous situation. This solution is
similar to the constraint set splitting that is done in the application of a guard
and in the canonisation procedure. Therefore, the result of pk-extrapolation is
a set of CPDBMs instead of a single CPDBM.

Definition 3.5. Let A be a PTBA, (l, JC,DK) be a symbolic state of JAK and
Dij = xi − xj ≺ij eij for each 0 ≤ i, j ≤ |X|. We define the pk-extrapolation
αpk in the following way. αpk(l, JC,DK) is the set of all (l, JC ′, D′K) such that for
each i, j, 0 ≤ i, j ≤ |X| one of the following conditions holds:

– D′ij = xi − xj ≺ij eij and the constraint (eij ≤M(xi)) ∈ C ′,
– D′ij = xi − xj <∞ and the constraint (eij > M(xi)) ∈ C ′,
– D′ij = xi − xj ≺ij eij and the constraint (eij ≥ −M(xj)) ∈ C ′,
– D′ij = xi − xj < −M(xj) and the constraint (eij < −M(xj)) ∈ C ′.

Example 3.6. Consider x, y ∈ X, p ∈ P , p ∈ [0, 7], M(x) = M(y) = 10, and
the symbolic state (l, JC,DK) where C = ∅ and D = {x ≤ y, y ≤ x, y ≤ 2p}.
Now, αpk(l, JC,DK) contains two symbolic states: (l, JC1, D1K) and (l, JC2, D2K)
where C1 = {2p ≤ 10}, D1 = {x ≤ y, y ≤ x, y ≤ 2p}, C2 = {2p > 10},
D2 = {x ≤ y, y ≤ x, y <∞}.

Theorem 3.7. Let A be a PTBA. The pk-extrapolation is a finite abstraction
that preserves all accepting runs of JAKv for each parameter valuation v.

The proof of this theorem is given in Appendix A.



4 Parameter Synthesis Algorithm

We recall that our main objective is to find all parameter valuations for which the
parametric timed automaton satisfies its specification. In the previous sections we
have described the standard automata-based method employed under a parametric
setup which produces a Büchi automaton. For the rest of this section we use
s.JCK to denote the set JCK where s = (l, JC,DK) is a state of the input Büchi
automaton. We say that a sequence of states s1 =⇒ s2 =⇒ . . . =⇒ sn =⇒ s1 is
a cycle under the parameter valuation v if each state si in the sequence satisfies
v ∈ si.JCK. A cycle is called accepting if there exists 0 ≤ i ≤ n such that si is
accepting.

The standard automata-based LTL model checking checks the emptiness of
the produced Büchi automaton. The emptiness check can be performed using
the Nested Depth First Search (NDFS) algorithm [15]. The NDFS algorithm is
a modification of the depth first search algorithm which allows a detection of
an accepting cycle in the given Büchi automaton.

Contrary to the standard LTL model checking, it is not enough to check the
emptiness of the produced Büchi automaton. Our objective is to check the empti-
ness of the produced Büchi automaton for each considered parameter valuation.
To solve this objective, we introduce a new algorithm called the Cumulative
NDFS algorithm which is an extension of the NDFS algorithm. The pseudocode
of Cumulative NDFS is given in Algorithm 1. Our modification is based on the set
Found which accumulates all detected parametric valuations such that an accept-
ing cycle under these valuations was found. In contrast to the NDFS algorithm,
whenever Cumulative NDFS detects an accepting cycle, parameter valuations
are saved to the set Found and the computation continues with a search for
another accepting cycle. Note the fact that whenever we reach a state s′ with
s′.JCK ⊆ Found we already have found an accepting cycle under all valuations
from s′.JCK and there is no need to continue with the search from s′. Therefore,
we are able to speed up the computation whenever we reach such a state.

The crucial property the algorithm is based on is that of monotonicity. The set
of parameter valuations s.JCK can not grow along any run of the input automaton.
Lemma 4.1 states this observation formally. The observation follows from the
definition of successors in JAKα and the definition of operations on CPDBMs.
The clear corollary of Lemma 4.1 is the fact that each state s on a cycle has the
same set s.JCK.

Lemma 4.1. Let A be a PTBA, α be an abstraction and s be a state in JAKα.
For every state s′ reachable from s it holds that s′.JCK ⊆ s.JCK.

Theorem 4.2. Let A be a PTBA and α an abstraction over JAK. A parameter
valuation v is contained in the output of the CumulativeNDFS(JAKα) if and only
if there exists an accepting run respecting v in JAKα.

The proof of this theorem is given in Appendix B.



Algorithm CumulativeNDFS(G)
1 Found← ∅; Stack ← ∅

Outer ← ∅; Inner ← ∅
2 OuterDFS(sinit)
3 return Accepted← Found

Procedure OuterDFS(s)
4 Stack ← Stack ∪ {s}
5 Outer ← Outer ∪ {s}
6 foreach s′ such that s→ s′ do
7 if s′ /∈ Outer ∧ s′ /∈ Stack ∧

s′.JCK 6⊆ Found then
8 OuterDFS(s′)

9 if s ∈ Accepting ∧ s.JCK 6⊆ Found
then

10 InnerDFS(s)

11 Stack ← Stack \ {s}

Procedure InnerDFS(s)
12 Inner ← Inner ∪ {s}
13 foreach s′ such that s→ s′ do
14 if s′ ∈ Stack then
15 “Cycle detected”
16 Found← Found ∪ s′.JCK
17 return

18 if s′ /∈ Inner ∧
s′.JCK 6⊆ Found then

19 InnerDFS(s′)

Algorithm 1: Cumulative NDFS

As the last step in the solution to our problem, we need to complement the
set Accepted. Thus, the solution is the complement of the set Accepted, more
precisely the set V allb,ub(X,P )\Accepted. To conclude this section, we state that
Theorem 4.2 together with Theorem 3.7 imply the correctness of our solution.

5 Implementation

We have implemented our approach in a proof-of-concept tool. We are able to
process models given as networks of parametric timed automata. A network
represents a product of several parametric timed automata where handshake
synchronization of two components at a time is allowed. We also extend the
parametric timed automata with data variables which enable the usage of guards
on data values and transition effects on data values. Such model is considered
standard in the field and is used as the modelling language in the tool UPPAAL.

Deadlocks Cumulative NDFS algorithm returns all parameter valuations for
which LTL property does not hold. However, state space can contain deadlock
states which also need to be detected and reported. In the nonparametric setting
a state is a deadlock state if there are no enabled outgoing transitions. In a para-
metric setting the deadlock status of a state depends on the parameter valuation.
To decide for which parameter valuations a state (l, JC,DK) is a deadlock we
need to consider all guards g1, . . . , gn of the outgoing transitions of l. The state
(l, JC,DK) is a deadlock for all parameter valuations in JC,DK[¬g1 ∧ . . . ∧ ¬gn].
Applying this detection to each reachable state, all parameter valuations leading
to deadlock are detected during computation.

State space storage One of the performance critical parts of the implemen-
tation is the state space storage. We use the state space storage to look up and



Procedure InitializeStorage()
1 Storage← ∅; M1 ← ∅; M2 ← ∅

Procedure SetData(l, C,D, data)
2 if M2(C,D) 6= ∅ then
3 (C′, D′)←M2(C,D)
4 Storage(l, C′, D′)← data

5 else
6 IH ← integerHull(C,D)
7 foreach (C′, D′) in M1(IH) do
8 if JC′, D′K = JC,DK then
9 M2(C,D)← (C′, D′)

10 Storage(l, C′, D′)← data

11 M2(C,D)← (C,D)
12 M1(IH)←M1(IH) ∪ {(C,D)}
13 Storage(l, C,D)← data

Procedure GetData(l, C,D)
14 if M2(C,D) 6= ∅ then
15 (C′, D′)←M2(C,D)
16 return Storage(l, C′, D′)

17 else
18 IH ← integerHull(C,D)
19 foreach (C′, D′) in M1(IH) do
20 if JC′, D′K = JC,DK then
21 M2(C,D)← (C′, D′)
22 return Storage(l, C′, D′)

23 M2(C,D)← (C,D)
24 M1(IH)←M1(IH) ∪ {(C,D)}
25 Storage(l, C,D)← initialData
26 return initialData

Algorithm 2: State space storage operations

store information about presence of each state in the sets Inner, Outer, and
Stack. We refer to this information as data. A straightforward implementation
would simply store each state together with its data. Such a solution is only effi-
cient when a unique representation of states is available. Without such a unique
representation the storage operations have to perform expensive equivalence
checks with each stored state in the worst case scenario. In [10] the authors
introduce unique representation based on a computation of an integer hull. The
integer hull of a given set is a convex hull of all integer elements of a given set.

The solution of [10] assumes the existence of an upper bound for each clock.
We do not have such an upper-bound assumption and therefore this solution is
not directly applicable in our technique. However, we use the integer hull as a
heuristic approximation of a unique representation of a CPDBM instead. This
way we obtain a practically efficient solution that deals with the non-existence of
a unique representation of a state.

The solution is based on two mappings. The first mapping, denoted by M1

maps a given integer hull to a list of CPDBM representations. Each such list
contains the representations of semantically different CPDBMs with the same
integer hull. Thanks to M1 we can quickly distinguish states with different integer
hulls. However, each storage operation still needs to perform the expensive
computation of the integer hull. In order to reduce number of the integer hull
computations, we introduce the second mapping, denoted by M2. This second
mapping serves as a cache which maps a given CPDBM to its unique representative
in the storage. Once a CPDBM representative is resolved, it is saved in M2.

The pseudo code of state space storage operations is given in Algorithm 2.
Note that the procedures SetData and GetData are analogous. In our prototype
tool, the two mappings as well as the storage itself are implemented using hash



(a) Train (b) Gate

Fig. 1: Parametric TrainGate Model

tables. Checking whether two states are semantically equivalent is implemented
using Parma Polyhedra Library [16]. The library is also used to check parametric
constraint satisfaction in the CPDBM operations.

6 Experimental evaluation

We have implemented the proposed technique for integer parameter synthesis in
our proof-of-concept tool. Our goal is to compare our method with the explicit
enumeration technique. To be able to compare performance of both techniques
under similar conditions we also implemented the standard DBM-based LTL
model checker for timed automata. Both tools use the same LTL to BA translation
method [17] and analogous extrapolation techniques.

Our evaluation was performed on a parametric extension of the case study
TrainGate [18] provided with the tool UPPAAL. In the TrainGate model we
substitute all 6 integer bounds with separate parameters and consider two trains.
This model is presented in Figure 1. We checked two LTL properties. The first
property prop1 states that the two trains can not cross the bridge simultaneously
(G!(Train1.cross and Train2.cross)). The second property prop2 states that
whenever the first train is approaching the bridge it will cross the bridge eventually
(G Train1.appr =⇒ F Train1.cross). For all considered parameter valuations
which do not lead to the deadlock, prop1 and prop2 are satisfied.

Experiments were performed on a PC with CPU i5-4690 and 16GB RAM.
We considered a timeout of 12 hours for each task. We provide percentage of
solved parameter valuations if the timeout was reached by explicit enumeration.

Table 1 shows the impact of the number of parameters used in the model. For
models with a small number of parameters and small value ranges the explicit
enumeration can be more efficient. However, higher parameter count significantly
favours the cumulative algorithm. Table 2 shows the impact of the parameter



Table 1: Impact of model parameter count

TrainGate model
2 trains

3 params 4 params 5 params 6 params
p1 ∈ [20, 50] p1 ∈ [20, 50] p1 ∈ [20, 50] p1 ∈ [20, 50]
p2 ∈ [10, 50] p2 ∈ [10, 50] p2 ∈ [10, 50] p2 ∈ [10, 50]
p3 ∈ [15, 50] p3 ∈ [15, 50] p3 ∈ [15, 50] p3 ∈ [15, 50]
p4 = 7 p4 ∈ [ 7, 50] p4 ∈ [ 7, 50] p4 ∈ [ 7, 50]
p5 = 5 p5 = 5 p5 ∈ [ 5, 50] p5 ∈ [ 5, 50]
p6 = 3 p6 = 3 p6 = 3 p6 ∈ [ 3, 50]

prop1 explicit enumeration 0:01:03 0:44:50 Timeout(51%) Timeout(2%)
prop1 cumulative algorithm 0:08:16 0:54:39 3:20:25 7:58:42
prop2 explicit enumeration 0:01:21 0:58:17 Timeout(42%) Timeout(1%)
prop2 cumulative algorithm 0:12:20 1:23:37 5:11:01 10:48:16

Table 2: Impact of parameter range size
TrainGate model

2 trains
4 parameters
p5 = 5 p6 = 3

p1 ∈ [20, 50] p1 ∈ [20, 100] p1 ∈ [10, 100]
p2 ∈ [10, 50] p2 ∈ [10, 100] p2 ∈ [10, 100]
p3 ∈ [15, 50] p3 ∈ [15, 100] p3 ∈ [10, 100]
p4 ∈ [ 7, 50] p4 ∈ [ 7, 100] p4 ∈ [10, 100]

prop1 explicit enumeration 0:44:50 Timeout(68%) Timeout(63%)
prop1 cumulative algorithm 0:54:39 7:39:43 6:56:49
prop2 explicit enumeration 0:58:17 Timeout(56%) Timeout(53%)
prop2 cumulative algorithm 1:23:37 10:25:28 8:59:11

range size on the execution times. Note that for larger parameter ranges the
cumulative algorithm is faster than explicit enumeration.

7 Conclusion and Future Work

We have presented an algorithmic framework for the bounded integer parameter
synthesis for parametric timed automata with an LTL specification. The pro-
posed framework allows the avoidance of the explicit enumeration of all possible
parameter valuations.

Our symbolic technique is based on the zone abstraction and uses a para-
metric extension of difference bound matrices. To be able to employ the zone-
based method successfully we have introduced a finite abstraction called the
pk-extrapolation. To be able to synthesize all violating parameter valuations we
have introduced the Cumulative NDFS algorithm which is an extension of the
NDFS algorithm.

We have implemented the proposed technique in an experimental tool and
our experiments confirm that this technique can be significantly faster than the
explicit enumeration technique.

As for future work we plan to introduce different finite abstractions based on
different extrapolations and compare their influence on the state space size. We
also plan to introduce a parallel version of the cumulative algorithm. Other area



that can be investigated is the employment of different linear specification logics,
e.g. Clock-Aware LTL [19] which enables the use of clock-valuation constraints
as atomic propositions.

References

1. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT press (1999)
2. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theor. Comput. Sci. 126(2)

(1994) 183–235
3. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using

abstractions. In: TACAS. Springer (1998) 313–329
4. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Petterson, P., Yi, W.,

Hendriks, M.: Uppaal 4.0. In: QEST, IEEE (2006) 125–126
5. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In:

Proceedings of the twenty-fifth annual ACM symposium on Theory of computing,
ACM (1993) 592–601

6. Miller, J.S.: Decidability and complexity results for timed automata and semi-linear
hybrid automata. In: Hybrid Systems: Computation and Control. Springer (2000)

7. Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-
time parametric timed automata. In: ICALP. Volume 9135 of LNCS. Springer
Berlin Heidelberg (2015) 69–81

8. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model
checking of timed automata. The Journal of Logic and Algebraic Programming 52
(2002) 183–220

9. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. Formal Methods in System Design 35(2) (2009) 121–151

10. Jovanovic, A., Lime, D., Roux, O.H.: Integer parameter synthesis for real-time
systems. Software Engineering, IEEE Transactions on 41(5) (2015) 445–461

11. Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed büchi automata emptiness
efficiently. Formal Methods in System Design 26(3) (2005) 267–292

12. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Automatic verification methods for finite state systems, Springer (1990)

13. Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods in
System Design 24(3) (2004) 281–320

14. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds
in zone-based abstractions of timed automata. International Journal on Software
Tools for Technology Transfer 8(3) (2006) 204–215

15. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. In: CAV, Springer (1992)

16. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming 72(1–2) (2008) 3–21

17. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Computer
Aided Verification, Springer (2001) 53–65

18. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Formal methods
for the design of real-time systems. Springer (2004) 200–236

19. Bezděk, P., Beneš, N., Havel, V., Barnat, J., Černá, I.: On Clock-Aware LTL
properties of Timed Automata. In: ICTAC. Volume 8687 of LNCS., Springer (2014)

20. Li, G.: Checking Timed Büchi Automata Emptiness Using LU-Abstractions. In:
FORMATS. Volume 5813 of LNCS. Springer (2009) 228–242



A Proof of Theorem 3.7

A.1 Finiteness of pk-extrapolation

We start with necessary definitions. In the following, we write s1 ∈v S2 if
a concrete state s1 is contained in a symbolic state S2; more precisely if s1 = (l1, η)
is a concrete state from JAKv, S2 = (l2, JC,DK) is a symbolic state from JAK,
l1 = l2, v ∈ C, and η ∈ JDKv.

Definition A.1 (Time-abstracting simulation). Given an LTS (S, s0,→),
a time-abstracting simulation R over S is a binary relation satisfying the following
conditions:

– s1Rs2 and s1
act→ s′1 implies the existence of s2

act→ s′2 such that s′1Rs
′
2, and

– s1Rs2 and d1 ∈ R≥0 and s1
d1→ s′1 implies the existence of d2 ∈ R≥0 and

s2
d2→ s′2 such that s′1Rs

′
2.

We define the largest simulation relation over S (4S) in the following way:
s 4S s′ if there exists a time-abstracting simulation R with (s, s′) ∈ R. When S
is clear from the context we shall only use 4 instead of 4S in the following.

Definition A.2 (PTBA abstract symbolic semantics). Let A = (M,F ) be
a PTBA. An abstraction over JAK = (SA,Sinit,=⇒) is a mapping α : SA → 2SA

such that the following conditions hold:

– (l′, JC ′, D′K) ∈ α((l, JC,DK)) implies l = l′ ∧ JC ′K ⊆ JCK∧ JC ′, DK ⊆ JC ′, D′K,
– for each v ∈ JCK there exist S1, S2 such that S2 = (l, JC ′, D′K) ∈ α(S1) and

for each s ∈v S2 there exists a state s′ ∈v S1 satisfying s 4 s′.

An abstraction α is called finite if its image is finite. An abstraction α over JAK
induces a new transition system JAKα = (QA,Qinit,=⇒α) where

– QA = {S | S ∈ α(S′) and S′ ∈ SA},
– Qinit = {S | S ∈ α(S′) and S′ ∈ Sinit}, and
– Q =⇒α Q′ if there is S ∈ SA such that Q′ ∈ α(S) and Q =⇒ S.

An accepting state, a run and an accepting run are defined analogously as in the
JAK case. If α is finite then JAKα can be viewed as a Büchi automaton.

Lemma A.3. Let A be a PTBA. The pk-extrapolation is a finite abstraction
over JAK = (SA,Sinit,=⇒).

Proof. First, we prove that the pk-extrapolation is an abstraction. It is easy to
see that the pk-extrapolation satisfies the first condition (l′, JC ′, D′K) ∈ α((l,
JC,DK)) implies l = l′ ∧ JC ′K ⊆ JCK ∧ JC ′, DK ⊆ JC ′, D′K. The validity of the
second condition follows from the following observation. For each v ∈ JCK and
each η′ ∈ JD′Kv there exists η ∈ JDKv such that for each clock x and each guard g
the following implication holds: η′(x) |= g =⇒ η(x) |= g.



Now, we need to show that the pk-extrapolation is finite. From the definition
we have the fact that the number of locations is finite and the number of sets of
bounded parameter valuations is finite. We need to show that there are only finitely
many sets JC,DK when the pk-extrapolation is applied. This follows from the fact
that for each eij from D and v ∈ C the expression JeijKv can be evaluated only
to a value from the finite set {−M(xi),−M(xi) + 1, . . . ,M(xi)− 1,M(xi),∞}.

ut

A.2 Preservation of accepting runs

We transform the proof of Theorem 1 of [20] and all corresponding lemmata into
our parametric setup. For the sake of simplicity of the proof, we add labels to the
transitions in JAKα in the following way. For each transition we use the location
of a source state as the transition label. Since labels are not used in the proposed
method, it is safe to do that.

For the rest, let v be a parameter valuation, A be a PTBA, and α be a
finite abstraction over JAK. Then, we denote by A | v a timed Büchi automaton
obtained from A by replacing each parameter p with the value v(p). We use ≡N
to denote the standard region abstraction [20] over the timed automaton N .

We write s1
act1,act2,...,actk−1−−−−−−−−−−−−→d sk if there exist s2, . . . , sk−1 such that s1

act1−−−→d

s2, s2
act2−−−→d s3, . . ., and sk−1

actk−1−−−−→d sk. We write s
act1,act2,...,actk−−−−−−−−−−−→

∗
d s
′ if

s
act1,act2,...,actk−−−−−−−−−−−→d s

′ or there exist some s1, s2, . . . , sn(n ≥ 1) such that

s
act1,act2,...,actk−−−−−−−−−−−→d s1,s1

act1,act2,...,actk−−−−−−−−−−−→d s2,. . ., sn−1
act1,act2,...,actk−−−−−−−−−−−→d sn, and

sn
act1,act2,...,actk−−−−−−−−−−−→d s

′.

Lemma A.4. [20] The equivalence relation ≡A|v is a time-abstracting bisimu-
lation.

Lemma A.5. [20] Let s1,s′1,s2 be concrete states in JAKv, R be a time-abstracting

simulation and s1Rs
′
1. If s1

act1,act2...,actk−−−−−−−−−−→d s2, then there exists a concrete state

s′2 in JAKv such that s′1
act1,act2...,actk−−−−−−−−−−→d s

′
2.

Lemma A.6. Let s1,s2 be concrete states in JAKv. If s1
act1,act2...,actk−−−−−−−−−−→d s2 and

s1 ≡A|v s2, then there is an infinite sequence of concrete states s1s2 . . . in JAKv
such that for each i ≥ 1, si

act1,act2,...,actk−−−−−−−−−−−→d si+1.

Proof. We define sk (k = 3, 4, . . .) by induction on k.

Basis: By Lemma A.4 and lemma A.5 there exists s3 such that s2
act1,act2,...,actk−−−−−−−−−−−→d

s3, and s2 ≡A|v s3.
Assumption: Assume that we have s1, s2, . . . , sk such that for each i ∈

{1, 2, . . . , k − 1}, si
act1,act2,...,actk−−−−−−−−−−−→d si+1, and sk−1 ≡A|v sk.

Step: From sk−1
act1,act2,...,actk−−−−−−−−−−−→d sk, and sk−1 ≡A|v sk, by Lemma A.5 there

exists sk+1 such that sk
act1,act2,...,actk−−−−−−−−−−−→d sk+1, and sk ≡A|v sk+1.



Thus, using induction, we get an infinite sequence of states s1s2 . . . such that

for each i ≥ 1, si
act1,act2,...,actk−−−−−−−−−−−→d si+1. ut

Lemma A.7. Let s′, s1, s2 be concrete states in JAKv and S1,S2 be symbolic
states in JAK.

1. If S1 =⇒ S2 and s′ ∈v S2, then there exist concrete state s in JAKv such that

s
act−→d s

′.

2. If s1
act−→d s2 and s1 ∈v S1, then S1 =⇒ S2 for some symbolic state S2 in

JAK with s2 ∈v S2.

Proof. We refer the reader to the proofs of Lemma 3.16 and Lemma 3.18 in [8].

Lemma A.8. Let s, s1,s2 be concrete states in JAKv, and Q1,Q2 be symbolic
states in JAKα.

1. If Q1 =⇒α Q2 and s ∈v Q2, then there exist concrete states s′1, s
′
2 in JAKv

such that s′1
act−→d s

′
2, s
′
1 ∈v Q1 and s 4 s′2.

2. If s1
act−→d s2 and s1 ∈v Q1, then Q1 =⇒α Q2 for some symbolic state Q2 in

JAKα with s2 ∈v Q2.

Proof. 1. From Q1 =⇒α Q2 we know that there exists S such that Q1 =⇒ S
and Q2 ∈ α(S). For any s ∈v Q2, since Q2 ∈ α(S), there is s′2 ∈v S such
that s 4 s′2. Since Q1 =⇒ S and s′1 ∈v S, by Lemma A.7, there is a s′1 ∈v Q1

such that s′1
act−→d s

′
2.

2. By Lemma A.7 there is a S such that Q1 =⇒ S with s2 ∈v S. Let Q2 ∈ α(S)
then Q1 =⇒α Q2 and s2 ∈v Q2.

Lemma A.9. Let s be a concrete state in JAKv, Q1,Q2 be symbolic states in

JAKα. If Q1
act1,act2,...,actk
===========⇒ Q2, and s ∈v Q2, then there exist concrete states

s1, s2 in JAKv such that s1 ∈v Q1, s1
act1,act2,...,actk−−−−−−−−−−−→d s2, and s 4 s2.

Proof. We prove the lemma by induction on k.
Basis: By Lemma A.8, the lemma is true for k = 1.
Assumption: Assume that lemma holds for k = n.

Step: Now we prove the lemma for k = n + 1. Q1
act1,act2,...,actn+1
============⇒α Q2

implies that there exists a Q ∈ JAKα such that Q1
act1,act2,...,actn
===========⇒α Q and

Q
actn+1
====⇒α Q2. By Lemma A.8 and the fact that Q

actn+1
====⇒α Q2 and s ∈v

Q2, we have s′ and s′′ such that s′ ∈v Q, s′
actn+1−−−−→d s

′′, and s 4 s′′. Since

Q1
act1,act2,...,actn
===========⇒α Q and s′ ∈v Q, by the induction assumption there exist

s1 and s′′′ such that s1 ∈v Q1, s1
act1,act2,...,actn−−−−−−−−−−−→d s′′′ ,and s′ 4 s′′′. Since

s′ 4 s′′′ and s′
actn+1−−−−→d s

′′, by Lemma A.5 it follows that there is a s2 such that

s′′′
actn+1−−−−→d s2 and s′′ 4 s2. From the fact that 4 is transitive and s 4 s′′ and

s′′ 4 s2 we have s 4 s2.

By s1
act1,act2,...,actn−−−−−−−−−−−→d s

′′′ and s′′′
actn+1−−−−→d s2 we obtain s1

act1,act2,...,actn+1−−−−−−−−−−−−→d

s2. ut



Lemma A.10. Let s be a concrete state in JAKv, Q1,Q2 be symbolic states in

JAKα. If Q
act1,act2,...,actk
===========⇒α Q and s ∈v Q, then for any n ≥ 1, there exist

concrete states s1, s2 . . . sn+1 in JAKv such that s1 ∈v Q, s 4 sn+1, and for each

i ∈ 1, 2, . . . , n, si
act1,act2,...,actk−−−−−−−−−−−→d si+1.

Proof. We prove the lemma by induction on n.
Basis: By Lemma A.9, the lemma is true for n = 1.
Assumption: Assume that lemma holds for n = m.

Step: Now we prove that the lemma is true for n = m+1. SinceQ
act1,act2,...,actk
===========⇒α

Q and s ∈v Q, by Lemma A.9, there exist s′, s′′ such that s′ ∈v Q, s′
act1,act2,...,actk−−−−−−−−−−−→d

s′′, and s 4 s′′. Applying the induction assumption to Q
act1,act2,...,actk
===========⇒α Q and

s′ ∈v Q, we know that there exist s1, s2 . . . sm+1 such that s1 ∈v Q, s′ 4 sm+1,

and for each i ∈ 1, 2, . . . ,m, si
act1,act2,...,actk−−−−−−−−−−−→d si+1.

Since s′
act1,act2,...,actk−−−−−−−−−−−→d s

′′ and s′ 4 sm+1, by Lemma A.5, there exists sm+2

such that sm+1
act1,act2,...,actk−−−−−−−−−−−→d sm+2, and s′′ 4 sm+2.

Since s 4 s′′ and s′′ 4 sm+2 we obtain s 4 sm+2, thus the lemma holds for
n = m+ 1. ut

Lemma A.11. Let s be a concrete state in JAKv, Q1,Q2 be symbolic states in

JAKα. If Q
act1,act2,...,actk
===========⇒α Q and s ∈v Q, then there exist concrete states

s1, s2 . . . sm in JAKv and i ∈ {1, 2, . . . ,m − 1} such that s1 ∈v Q , si ≡A|v sm,

and for each j ∈ {1, 2, . . . ,m− 1}, sj
act1,act2,...,actk−−−−−−−−−−−→d sj+1.

Proof. We know that there are only finitely many ≡A|v-equivalence classes. Let
n be an integer greater than the number of ≡A|v-equivalence classes. By Lemma
A.10, there exist s1, s2 . . . sn+1 such that s1 ∈v Q, and for each j ∈ {1, 2, . . . , n},
sj

act1,act2,...,actk−−−−−−−−−−−→d sj+1.
Since the sequence of states s2, s3 . . . sn+1 has length n, there exist i,m ∈

{2, 3, . . . , n+ 1} such that i < m and si ≡A|v sm. ut

Lemma A.12. Let Q = (l, JC,DK) be symbolic states in JAKα such that v ∈ C.

If Q
act1,act2,...,actk
===========⇒α Q, then there exist concrete states s′, s′′, s′′′ in JAKv such

that s′ ∈v Q, s′
act1,act2,...,actk−−−−−−−−−−−→

∗
d s
′′, s′′

act1,act2,...,actk−−−−−−−−−−−→
∗
d s
′′′ and s′′ ≡A|v s′′′.

Proof. Since Q
act1,act2,...,actk
===========⇒α Q, by definition, there exist s ∈v Q. By Lemma

A.11, there exist s1, s2, s3, . . . , sm and i ∈ {2, 3, . . . ,m − 1} such that s1 ∈v Q,

si ≡A|v sm, and for each j ∈ {1, 2, . . . ,m− 1}, sj
act1,act2,...,actk−−−−−−−−−−−→d sj+1.

Let s′ = s1,s′′ = si, and s′′′ = sm, then s′ ∈v Q, s′
act1,act2,...,actk−−−−−−−−−−−→

∗
d s
′′,

s′′
act1,act2,...,actk−−−−−−−−−−−→

∗
d s
′′′, and s′′ ≡A|v s′′′. ut

Lemma A.13. Let s1, s2 be concrete states in JAKv. If s1
act1,act2,...,actk−−−−−−−−−−−→

∗
d s2

and s1 ≡A|v s2, then there is an infinite sequence of concrete states s1s2 . . . in

JAKv such that for each i ≥ 1, si
act1,act2,...,actk−−−−−−−−−−−→d si+1.



Proof. Follows from Lemma A.6. ut

Lemma A.14. Let Q = (l, JC,DK) be a symbolic state in JAKα such that v ∈ C.

If Q
act1,act2,...,actk
===========⇒α Q, then there is an infinite sequence of concrete states

s1s2 . . . in JAKv such that s1 ∈v Q, and for each i ≥ 1, si
act1,act2,...,actk−−−−−−−−−−−→

∗
d si+1.

Proof. By Lemma A.12, there exist s1, s2, s3 such that s1 ∈v Q, s1
act1,act2,...,actk−−−−−−−−−−−→

∗
d

s2, s2
act1,act2,...,actk−−−−−−−−−−−→

∗
d s3 and s2 ≡A|v s3.

By Lemma A.13, there is an infinite sequence of states s2, s3, s4, . . . such that

for each i ≥ 2, si
act1,act2,...,actk−−−−−−−−−−−→

∗
d si+1. ut

Theorem A.15. Let A = ((L, l0, X, P,∆, Inv), F ) be a PTBA and α be a finite
abstraction. For each parameter valuation v the following holds: there exists an
accepting run of JAKv if and only if there exists an accepting run respecting v of
JAKα.

Proof. The fact that the existence of an accepting run of JAKv implies the
existence of an accepting run respecting v of JAKα can be proved easily for each
valuation v by induction and Lemma A.8.

Now we give the proof for the other direction. If JAKα = (QA,Qinit, =⇒α) over
L has an accepting run respecting v, then there exists a Q = (l, JC,DK) ∈ QA
and act0, act1, . . . , acti, . . . , actk ∈ L such that Q0

act0,act1,...,acti−1
============⇒α Q, and

Q
acti,acti+1,...,actk
============⇒α Q, and F ∩ {acti, acti+1, . . . , actk} 6= ∅ where Q0 is the

initial state of JAKα and v ∈ C.

Applying Lemma A.14 to Qi
acti,acti+1,...,actk
============⇒α Qi we have an infinite se-

quence of states s′2s
′
3s
′
4 . . . such that s′2 ∈v Qi and for each j ≥ 2

s′j
acti,acti+1...,actk−−−−−−−−−−−→

∗
d s
′
j+1.

Applying Lemma A.9 to Q0
act0,act1,...,acti−1
============⇒α Qi and s′2 ∈v Q, it follows

that there exist s′, s′′ such that s′ ∈v Q0, s′
act0,act1,...,acti−1−−−−−−−−−−−−→d s

′′, and s′2 4 s
′′.

By s′ ∈v Q0 and Q0 ∈ α(S0), we know that there exists a s1 ∈v S0 such that

s′ 4 s1. From the fact that s′
act0,act1,...,acti−1−−−−−−−−−−−−→d s

′′, and s′ 4 s1, we know that

there exists a s2 such that s1
act0,act1,...,acti−1−−−−−−−−−−−−→d s2, and s′′ 4 s2. Thus we have

obtained that s′2 4 s2.

Applying Lemma A.5 to s′2 4 s2 and s′j
acti,acti+1...,actk−−−−−−−−−−−→

∗
d s
′
j+1(j = 2, 3, . . .),

we can obtain an infinite sequence of states s3s4 . . . such that s2
acti,acti+1...,actk−−−−−−−−−−−→

∗
d

s3
acti,acti+1...,actk−−−−−−−−−−−→

∗
d s4 . . ..

Furthermore, from the fact that s1 ∈v S0 it follows that there is a d ∈ R≥0

such that s0
d−→ s1 where s0 is the initial state of JAKv.

Thus, we have proved that there exists an infinite sequence of states s1, s2, . . .

such that s0
δ−→ s1

act0,act1,...,acti−1−−−−−−−−−−−−→d s2
acti,acti+1,...,actk−−−−−−−−−−−−→

∗
d s3

acti,acti+1,...,actk−−−−−−−−−−−−→
∗
d

s4 . . .. Now, by the fact that F ∩ {acti, acti+1, . . . , actk} 6= ∅, we know that JAKv
has an infinite accepting run. ut



Finally, we provide the proof of Theorem 3.7.

Theorem (Theorem 3.7). Let A be a PTBA. The pk-extrapolation is a finite
abstraction that preserves all accepting runs of JAKv for each parameter valuation
v.

Proof. Follows directly from Lemma A.3 and Theorem A.15.

B Proof of Theorem 4.2

Lemma B.1. If the valuation v is added to the set Found then v is returned by
the algorithm in the set Accepted.

Proof. This follows from the fact that the set Found is never decreased and at
the end of computation it is assigned to Accepted.

Lemma B.2. Let A be a PTBA and q be a state in JAK that does not appear on
any cycle under v. The OuterDFS procedure will backtrack from q only after every
reachable state s such that v ∈ s.JCK is already backtracked or s.JCK ⊆ Found.

Proof. Consider an arbitrary state s such that s is reachable from q. At the time
of backtracking from q there are two cases:

– Every path from q to the state s contains a state s′ such that s′.JCK ⊆ Found .
The fact that s is reachable from s′ implies s.JCK ⊆ s′.JCK (using Lemma 4.1).
Hence, s.JCK ⊆ Found .

– There exists a path from q to the state s such that for every state s′ on that
path it holds that s′.JCK 6⊆ Found . In this case, the OuterDFS procedure has
visited state s with state q on the stack. Hence, the OuterDFS procedure
backtracks from the state q after backtracking from s.

Lemma B.3. For every parameter valuation v, the Cumulative NDFS algorithm
returns the set Accepted containing the valuation v if and only if the given graph
contains an accepting cycle c under the valuation v.

Proof. Whenever the algorithm returns a set Accepted containing v there exists
an accepting cycle c under v. Such an accepting cycle can be constructed using
OuterDFS and InnerDFS search stack at the time of adding the valuation v to
the set Found.

The difficult case is to show that whenever there exists an accepting cycle
under v in the given graph then the algorithm returns a set Accepted containing v.
Suppose an accepting cycle under a valuation v exists in the given graph and the
algorithm returns a set Accepted such that v 6∈ Accepted .

Let si be an initial state in the given graph. Notice that for each state s
such that v 6∈ s.JCK it holds that if s′ is an ancestor of state s then v 6∈ s′.JCK
(using Lemma 4.1). Hence, using the assumption v 6∈ Accepted we get that the
OuterDFS procedure visits each state s such that v 6∈ s.JCK.

Let q be the first accepting state on a cycle under v from which InnerDFS is
started. There are two cases:



– There exists a path from a state q to some state on the stack of OuterDFS
and each state s on the path is unvisited by InnerDFS and s.JCK 6⊆ Found
at the time of starting InnerDFS from q.

– For all paths from a state q to some state p on the stack of OuterDFS there
exists a state s on the path such that s.JCK ⊆ Found or s is a state already
visited by InnerDFS.

For the first case the algorithm will detect an accepting cycle as expected
and will add the valuation v ∈ q.JCK to the set Found. From Lemma B.1 we
get v ∈ Accepted and we have reached a contradiction with the assumption
v 6∈ Accepted .

For the second case, whenever the path q  p contains a state s such that
v ∈ s.JCK ⊆ Found we reach contradiction (using Lemma B.1). Assume that for
each state s on path q  p it holds that v 6∈ s.JCK. Let r be the first visited
state that is reached from q during InnerDFS and is on a cycle through q. Let q′

be an accepting state that started InnerDFS in which r was visited for the first
time. Notice the fact that InnerDFS was started from q′ before starting from q.
There are two cases:

– The state q′ is reachable from q. Then there is an accepting cycle c′ =
q′  r  q  q′. If c′ contains a state s such that v ∈ s.JCK ⊆ Found we
reach a contradiction using Lemma B.1. Suppose there is no state s with
v ∈ s.JCK ⊆ Found on the cycle c′. The cycle c′ was not found previously.
However, this contradicts our assumption that q is the first accepting state
from which we missed a cycle.

– The state q′ is not reachable from q. Notice the fact that v ∈ q′.JCK (this
follows from Lemma 4.1) and therefore every cycle containing the state q′ is
a cycle under v. If q′ appears on a cycle, then an accepting cycle under v was
missed before starting InnerDFS from q, contrary to our assumption. If q′

does not apper on a cycle then by Lemma B.2 we backtracked from q in the
OuterDFS before backtracking from q′ and therefore InnerDFS started from
q before starting from q′. We have reached a contradiction with the fact that
InnerDFS started from q′ before starting from q.

Lemma B.4. The CumulativeNDFS algorithm always terminates.

Proof. From the fact that the number of vertices is finite we get that the size of
the sets Inner and Outer is bouned. Each invocation of InnerDFS (OuterDFS )
procedure increases the size of the set Inner (Outer). Hence, the CumulativeNDFS
algorithm cannot proceed infinitely due to the upper bound on the size of the set
Inner and Outer.

Theorem (Theorem 4.2). Let A be a PTBA and α an abstraction over JAK.
A parameter valuation v is contained in the output of the CumulativeNDFS(JAKα)
if and only if there exists an accepting run respecting v of JAKα.

Proof. By Lemma B.4 the algorithm is guaranteed to terminate returning the
set Accepted. The partial correctness, the ⇒ case: By Lemma B.3 for each v ∈



Accepted there exists an accepting cycle under v and for each v 6∈ Accepted there
is no accepting cycle under v. The partial correctness, the ⇐ case: Analogously.


	 LTL Parameter Synthesis of Parametric Timed Automata 

