Skip to main content

Towards a Computational Framework for Function-Driven Concept Invention

  • Conference paper
  • First Online:
  • 1462 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9782))

Abstract

We propose a novel framework for computational concept invention. As opposed to recent implementations of Fauconnier’s and Turner’s Conceptual Blending Theory, our framework simplifies computational concept invention by focusing on concepts’ functions rather than on structural similarity of concept descriptions. Even though creating an optimal combination of concepts that achieves the desired functions is NP-complete in general, some interesting special cases are tractable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aerts, D., Gabora, L.: A theory of concepts and their combinations ii: a hilbert space representation. Kybernetes 34(1/2), 192–221 (2005)

    Article  MATH  Google Scholar 

  2. Besold, T., Kühnberger, K.-U., Plaza, E.: Analogy, amalgams, and concept blending. In: Proceedings of ACS 2015, p. 23 (2015)

    Google Scholar 

  3. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  4. Eppe, M., Confalonieri, R., Maclean, E., Kaliakatsos-Papakostas, M.A., Cambouropoulos, E., Schorlemmer, W.M., Codescu, M., Kühnberger, K.: Computational invention of cadences and chord progressions by conceptual chord-blending. In: Proceedings of IJCAI 2015, pp. 2445–2451. AAAI Press (2015)

    Google Scholar 

  5. Fauconnier, G., Turner, M.: Conceptual integration networks. Cogn. Sci. 22(2), 133–187 (1998)

    Article  Google Scholar 

  6. Fauconnier, G., Turner, M.: The Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. Basic Books, New York (2008)

    Google Scholar 

  7. Goguen, J.A., Harrell, D.F.: Style: a computational and conceptual blending-based approach. In: Argamon, S., Burns, K., Dubnov, S. (eds.) The Structure of Style, pp. 291–316. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Guhe, M., Pease, A., Smaill, A., Martinez, M., Schmidt, M., Gust, H., Kühnberger, K.-U., Krumnack, U.: A computational account of conceptual blending in basic mathematics. Cogn. Syst. Res. 12(3–4), 249–265 (2011)

    Article  Google Scholar 

  9. Li, B., Zook, A., Davis, N., Riedl, M.O.: Goal-driven conceptual blending: a computational approach for creativity. In: International Conference on Computational Creativity, vol.10 (2012)

    Google Scholar 

  10. Martinez, M., Krumnack, U., Smaill, A., Besold, T.R., Abdel-Fattah, A.M.H., Schmidt, M., Gust, H., Kühnberger, K.-U., Guhe, M., Pease, A.: Algorithmic aspects of theory blending. In: Aranda-Corral, G.A., Calmet, J., Martín-Mateos, F.J. (eds.) AISC 2014. LNCS, vol. 8884, pp. 180–192. Springer, Heidelberg (2014)

    Google Scholar 

  11. Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods. J. logic Program. 19, 629–679 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Neuhaus, F., Kutz, O., Codescu, M., Mossakowski, T.: Fabricating monsters is hard: towards the automation of conceptual blending. In: Proceedings of the C3GI@ ECAI-14, vol. 1 (2014)

    Google Scholar 

  13. Pereira, F.C.: Creativity and artificial intelligence: a conceptual blending approach, vol. 1. Walter de Gruyter, Hawthorne (2007)

    Google Scholar 

  14. Popescul, A., Ungar, L.H.: Cluster-based concept invention for statistical relational learning. In: Proceedings of the 10th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 665–670. ACM (2004)

    Google Scholar 

  15. Schorlemmer, M., Smaill, A., Kühnberger, K.-U., Kutz, O., Colton, S., Cambouropoulos, E., Pease, A.: Coinvent: towards a computational concept invention theory. In: Proceedings of the ICCC 2014 (2014)

    Google Scholar 

Download references

Acknowledgements

Some of the authors acknowledge the financial support of the Future and Emerging Technologies Programme within the Seventh Framework Programme for Research of the European Commission, under FET-Open grant number: 611553 (COINVENT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Potyka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Potyka, N., Gómez-Ramírez, D., Kühnberger, KU. (2016). Towards a Computational Framework for Function-Driven Concept Invention. In: Steunebrink, B., Wang, P., Goertzel, B. (eds) Artificial General Intelligence. AGI 2016. Lecture Notes in Computer Science(), vol 9782. Springer, Cham. https://doi.org/10.1007/978-3-319-41649-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41649-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41648-9

  • Online ISBN: 978-3-319-41649-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics