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Analysis of Algorithms and Partial Algorithms

Andrew MacFie

Abstract. We present an alternative methodology for the analysis of
algorithms, based on the concept of expected discounted reward. This
methodology naturally handles algorithms that do not always terminate,
so it can (theoretically) be used with partial algorithms for undecidable
problems, such as those found in artificial general intelligence (AGI) and
automated theorem proving. We mention an approach to self-improving
AGI enabled by this methodology.

1 Introduction: Shortcomings of Traditional Analysis of

Algorithms

Currently, the (running time) analysis of algorithms takes the following form.
Given two algorithms A, B that solve the same problem, we find which is more ef-
ficient by asymptotically comparing the running time sequences (an), (bn) [4,15].
This could be using worst-case or average-case running times or even smoothed
analysis [16]. We refer to this general method as traditional analysis of algo-
rithms.

As with any model, traditional analysis of algorithms is not perfect. Authors
have noted [1,9] that comparing sequence tails avoids the arbitrariness of any
particular range of input lengths but leads us to say an = n100 is superior to
bn =

(

1 + exp(−1010)
)n

which is false for practical purposes.
A further issue with traditional analysis is illustrated by this situation: Say

we have a function F : {0, 1}∗ → {0, 1} and an algorithm A that computes F
such that for n ≥ 0, A takes (n!)! steps on the input 0n and n steps on any other
input of length n. The algorithm A then has worst-case running time (n!)! and
average-case running time slightly greater than 2−n(n!)!, which are both terrible.
However, if the inputs are generated according to a uniform distribution, the
probability of taking more than n steps is 2−n which is quickly negligible. We
see that A should be considered an excellent algorithm but traditional analysis
does not tell us that, unless we add “with high probability”.

The same issue arises if A simply does not halt on 0n, in which case the
worst-case and average-case running times are infinite. Indeed, this is not an
esoteric phenomenon. For any problem with Turing degree 0

′ we cannot have an
algorithm that halts on every input, but we develop partial solutions that work
on a subset of inputs. Such problems include string compression (Kolmogorov
complexity), the halting problem in program analysis [2], algebraic simplification
[17], program optimization, automated theorem proving, and Solomonoff induc-
tion (central to artificial general intelligence [13]). E.g. in the case of automated
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theorem proving, Buss, describing the main open problems in proof theory [3],
states, “Computerized proof search ... is widely used, but almost no mathematical
theory is known about the effectiveness or optimality of present-day algorithms.”

Definition 1. An algorithm A is a partial algorithm (a.k.a. computational method
[12, p5]) for a given problem if on all inputs, A either outputs the correct value,
or does not terminate.

Definition 2. We refer to partial algorithms for problems with Turing degree 0
′

as 0
′ algorithms.

To analyze 0
′ algorithms, and perhaps to better analyze normal terminat-

ing algorithms, we need a new approach that is not based on worst-case or
average-case running time sequences. In Sect. 2 we present a new method for
analyzing algorithms, called expected-reward analysis that avoids some of the
issues mentioned above. Then in Sect. 3 we mention how this method can be
used in self-improving AI systems. We give directions for further work in Sect. 4.

Notation 1. Given a (possibly partial) algorithm A and an input ω, we denote
the number of steps taken by A on ω by cA(ω), which takes the value ∞ if A
does not halt on ω.

2 Expected-Reward Analysis of Algorithms

2.1 Definition

Let A be a (possibly partial) algorithm with inputs in Ω. We say the score of A
is

S(A) =
∑

ω∈Ω

P ({ω})r(ω)D(cA(ω)) = E(r · (D ◦ cA)) ,

where P is a probability measure on Ω, D is a discount function [7], and r(ω) is
a reward (a.k.a. utility) value associated with obtaining the solution to ω. The
expression S(A) may be interpreted as the expected discounted reward that A
receives if run on a random input, and the practice of comparing scores among
algorithms we call expected-reward analysis. A higher score indicates a more
efficient algorithm.

The functions D and r are arbitrary and are free to be set in the context of
a particular application. E.g. in graphical user interface software we often desire
near-instant responses, with utility rapidly dropping off with time. Assuming
0 ≤ r ≤ 1, we immediately see that for all A, partial or not, we have

0 ≤ S(A) ≤ 1 .

For simplicity in this paper we assume r(ω) = 1 and D is an exponential discount
function, i.e.

D(cA(ω)) = exp(−λ cA(ω)) ,

where λ > 0 is a discount rate.



The choice of P is also arbitrary; we remark on two special cases. If all inputs
of a given length are weighted equally, P is determined by a probability mass
function on Z0+. In this case any common discrete probability distribution may
be used as appropriate. The measure P is also determined by a probability mass
function on Z0+ if we weight equal-length inputs according to Solomonoff’s uni-
versal distribution m [13], which is a particularly good general model, although
computationally difficult.

Expected-reward analysis is non-asymptotic, in the sense that all inputs po-
tentially matter. Thus, while expected-reward analysis can be used on terminat-
ing algorithms, we expect it to give different results from traditional analysis,
in general. Since particular inputs can make a difference to S(A), it may be ad-
vantageous to “hardcode” initial cases into an algorithm. This practice certainly
exists, e.g. humans may store the 12×12 multiplication table as well as knowing
a general integer multiplication algorithm.

Computational complexity theory often works with classes of problems whose
definitions are equivalent for all “reasonable” models of computation [5]. However,
even a varying constant factor could arbitrarily change a score. This is simply the
price of concreteness, and outside of complexity theory, traditional analysis of
algorithms generally selects a particular model of computation and gives precise
results that do not necessarily apply to other models [6].

Unlike traditional analysis, experimental data is relevant to score values in
a statistical sense. If we are able to generate inputs according to P , either arti-
ficially or by sampling inputs found in practice, S(A) is a quantity amenable to
statistical estimation. This suggests a form of experimental analysis of algorithms
which focuses on a single real number rather than plotting the estimated run-
ning time for every input length, which, in the necessary absence of asymptotics
in experimental analysis, may not conclusively rank two competing algorithms
anyway.

The expected-reward paradigm already appears in the analysis of artificial
agents, rather than algorithms [8]. As we see in Sect. 3, however, even in applica-
tions to AI, working in the more classical domain of algorithms brings benefits.

2.2 Theory and Practice

Traditional analysis of algorithms has an established literature going back decades
which provides a set of techniques for performing traditional analysis on algo-
rithms developed for various problems. We do not significantly develop a math-
ematical theory of expected-reward analysis here, but we make some very brief
initial remarks.

By way of introductory example, we consider expected-reward analysis ap-
plied to some well-known sorting algorithms. Let Sn be the set of permutations of
[1..n] and let Πn be a uniform random element of Sn. We denote the algorithms
mergesort and quicksort by M and Q, as defined in [15], and set

mn = E [exp(−λ cM (Πn))] , qn = E [exp(−λ cQ(Πn))] ,



where cA(ω) is the number of comparison operations used by an algorithm A to
sort an input ω.

Proposition 1. For n ≥ 1 we have

mn = exp
(

−λ(n⌈lg(n)⌉+ n− 2⌈lg(n)⌉)
)

, m0 = 1, (1)

qn =
e−λ(n+1)

n

n
∑

k=1

qk−1qn−k, q0 = 1 .

Proof. From [15], M makes the same number of comparisons for all inputs of
length n ≥ 1:

cM (Πn) = n⌈lg(n)⌉+ n− 2⌈lg(n)⌉ ,

so (1) is immediate.
Now, when Q is called on Πn, let ρ(Πn) be the pivot element, and let Πn, Πn

be the subarrays constructed for recursive calls to Q, where the elements in Πn

are less than ρ(Πn), and the elements in Πn are greater.
We have

E[ exp(−λcQ(Πn))]

=
1

n

n
∑

k=1

E[exp(−λ(n+ 1 + cQ(Πn) + cQ(Πn)) ) | ρ(Πn) = k]

=
e−λ(n+1)

n

n
∑

k=1

E[exp(−λ(cQ(Πn) + cQ(Πn)) ) | ρ(Πn) = k] .

It can be seen that given ρ(Πn) = k, Πn and Πn are independent, thus

E[ exp(−λcQ(Πn))]

=
e−λ(n+1)

n

n
∑

k=1

E[exp(−λcQ(Πn)) | ρ(Πn) = k] ·

E[exp(−λcQ(Πn)) | ρ(Πn) = k]

=
e−λ(n+1)

n

n
∑

k=1

E[exp(−λcQ(Πk−1))]E[exp(−λcQ(Πn−k))] . ⊓⊔

From examining the best-case performance of Q, it turns out that cM (Πn) ≤
cQ(Πn) for all n, so the expected-reward comparison of M and Q is easy:
S(M) ≥ S(Q) for any parameters. However, we may further analyze the ab-
solute scores of M and Q to facilitate comparisons to arbitrary sorting algo-
rithms. When performing expected-reward analysis on an individual algorithm,
our main desideratum is a way to quickly compute the score value to within a
given precision for each possible parameter value P, λ. Proposition 1 gives a way
of computing scores of M and Q for measures P that give equal length inputs



equal weight, although it does not immediately suggest an efficient way in all
cases. Bounds on scores are also potentially useful and may be faster to compute;
in the next proposition, we give bounds on mn and qn which are simpler than
the exact expressions above.

Proposition 2. For n ≥ 1,

e−2λ(n−1)

(n− 1)!λ/ log(2)
≤ mn ≤

e−λ(n−1)

(n− 1)!λ/ log(2)
. (2)

For all 0 < λ ≤ log(2) and n ≥ 0,

e−2γλ(n+1)−λ

(n+ 1)!2λ
(2π(n+ 1))λ < qn ≤

e−2λn

(n!)λ/ log(2)
,

where γ is Euler’s constant.

Proof. Sedgewick and Flajolet [15] give an alternative expression for the running
time of mergesort:

cM (Πn) =

n−1
∑

k=1

(⌊lg k⌋+ 2) .

Statement (2) follows from this because

log(k)/ log(2) + 1 < ⌊lg k⌋+ 2 ≤ log(k)/ log(2) + 2 .

With 0 < λ ≤ log(2), we prove the upper bound

qn ≤
e−2λn

(n!)λ/ log(2)
(3)

for all n ≥ 0 by induction. Relation (3) clearly holds for n = 0. We show that
(3) can be proved for n = N (N > 0) on the assumption that (3) holds for
0 ≤ n ≤ N − 1. Proposition 1 gives

qN =
e−λ(N+1)

N

N
∑

k=1

qk−1qN−k

≤
e−λ(N+1)

N

N
∑

k=1

e−2λ(k−1)

((k − 1)!)λ/ log(2)

e−2λ(N−k)

((N − k)!)λ/ log(2)

(by the assumption)

= e−3λN+λ

(

1

N

N
∑

k=1

(

1

(k − 1)!

1

(N − k)!

)λ/ log(2)
)

≤ e−3λN+λ





1

Nλ/ log(2)

(

N
∑

k=1

1

(k − 1)!

1

(N − k)!

)λ/ log(2)






(by Jensen’s inequality, since 0 < λ/ log(2) ≤ 1)

= e−3λN+λ

(

(2N−1)λ/ log(2)

(N !)λ/ log(2)

)

=
e−2λN

(N !)λ/ log(2)
.

Thus (3) has been proved for all n ≥ 0.

For the lower bound on qn, we use the probabilistic form of Jensen’s inequal-
ity,

qn = E [exp(−λcQ(Πn))] ≥ exp(−λE [cQ(Πn)]) ,

noting that average-case analysis of quicksort [15] yields

E [cQ(Πn)] = 2(n+ 1)(Hn+1 − 1), n ≥ 0 ,

where (Hn) is the harmonic sequence. For n ≥ 0, the bound

Hn+1 < log(n+ 1) + γ +
1

2(n+ 1)

holds [11] (sharper bounds exist), so we have

qn > exp

(

−2λ(n+ 1)

(

log(n+ 1) + γ +
1

2(n+ 1)
− 1

))

= e−2(γ−1)λ(n+1)−λ(n+ 1)−2λ(n+1) .

We finish by applying Stirling’s inequality

(n+ 1)−(n+1) ≥
√

2π(n+ 1) e−(n+1)/(n+ 1)!, n ≥ 0 . ⊓⊔

From these results we may get a sense of the tasks involved in expected-
reward analysis for typical algorithms. We note that with an exponential discount
function, the independence of subproblems in quicksort is required for obtaining
a recursive formula, whereas in traditional average-case analysis, linearity of
expectation suffices.

We end this section by mentioning an open question relevant to a theory of
expected-reward analysis.

Question 1. If we fix a computational problem and parameters P, λ, what is
supA S(A), and is it attained?

If supA S(A) is not attained then the situation is similar to that in Blum’s
speedup theorem. Comparing supA S(A) among problems would be the expected-
reward analog of computational complexity theory but because of the sensitivity
of S to parameters and the model of computation, this is not useful.



3 Self-Improving AI

The generality of 0′ problems allows us to view design and analysis of 0′ algo-
rithms as a task which itself may be given to a 0

′ algorithm, bringing about
recursive self-improvement. Here we present one possible concrete example of
this notion and discuss connections with AI.

Computational problems with Turing degree 0′ are Turing-equivalent so with-
out loss of generality in this section we assume 0

′ algorithms are automated
theorem provers. Specifically, we fix a formal logic system, say ZFC (assuming it
is consistent), and take the set of inputs to be ZFC sentences, and the possible
outputs to be provable and not provable.

Let a predicate β be such that β(Z) holds iff Z is a 0
′ algorithm which is

correct on provable inputs and does not terminate otherwise. In pseudocode we
write the instruction to run some Z on input ω as Z(ω), and if ω contains β or
S (the score function), their definitions are implicitly included.

We give an auxiliary procedure Search which takes as input a 0
′ algorithm

Z and a rational number x and uses Z to obtain a 0
′ algorithm which satisfies

β and has score greater than x (if possible). Symbols in bold within a string
literal get replaced by the value of the corresponding variable. We assume 0

′

algorithms are encoded as strings in a binary prefix code.

1: procedure Search(x, Z)
2: u← the empty string
3: loop

4: do in parallel until one returns provable:
5: A: Z(“∃v : (Z∗ = u0v =⇒ β(Z∗) ∧ S(Z∗) > x)”)
6: B: Z(“∃v : (Z∗ = u1v =⇒ β(Z∗) ∧ S(Z∗) > x)”)
7: C: Z(“Z∗ = u =⇒ β(Z∗) ∧ S(Z∗) > x”)

8: if A returned provable then

9: u← u0
10: if B returned provable then

11: u← u1
12: if C returned provable then

13: return u

We remark that the mechanism of Search is purely syntactic and does not
rely on consistency or completeness of ZFC, or the provability thereof. This
would not be the case if we strengthened β to require that β(Z) is true only if at
most one of Z(ω) and Z(¬ω) returns provable. Such a β would never provably
hold in ZFC.

The following procedure Improve takes an initial 0′ algorithm Z0 and uses
dovetailed calls to Search to output a sequence of 0

′ algorithms that tend
toward optimality.



1: procedure Improve(Z0)
2: best ← Z0, pool ← {}, score← 0
3: for n← 1 to ∞ do

4: an ← nth term in Stern-Brocot enumeration of Q ∩ (0, 1]
5: if an > score then

6: initialState← initial state of Search(an, best)
7: add (an, best, initialState) to pool

8: improvementFound← false
9: for (a, Z, state) in pool do

10: run Search(a, Z) one step starting in state state
11: newState← new current state of Search(a, Z)
12: if state is not a terminating state then

13: in pool, mutate (a, Z, state) into (a, Z, newState)
14: continue
15: improvementFound← true
16: best← output of Search(a, Z)
17: score← a
18: for (â, Ẑ, ˆstate) in pool where â ≤ score do

19: remove (â, Ẑ, ˆstate) from pool

20: print best

21: if improvementFound then

22: for (a, Z, state) in pool do

23: initialState← initial state of Search(a, best)
24: add (a, best, initialState) to pool

The procedure Improve has the following basic property.

Proposition 3. Let (Zn) be the sequence of 0′ algorithms printed by Improve.
If β(Z0) holds, and if there is any 0

′ algorithm Y and s ∈ Q where β(Y ) and
S(Y ) > s > 0 are provable, we have

lim
n→∞

S(Zn) ≥ s .

If (Zn) is finite, the above limit can be replaced with the last term in (Zn).

Proof. The value s appears as some value an. For an = s, if an > score in line
5, then Search(s, best) will be run one step for each greater or equal value of
n and either terminates (since Y exists) and score is set to s, or is interrupted
if we eventually have score ≥ s before Search(s, best) terminates. It suffices
to note that when score attains any value x > 0, all further outputs Z satisfy
S(Z) > x and there is at least one such output. ⊓⊔

The procedure Improve also makes an attempt to use recently printed 0
′

algorithms in calls to Search. However, it is not true in general that S(Zn+1) ≥
S(Zn). Checking if a particular output Zn is actually an improvement over Z0

or Zn−1 requires extra work.



In artificial general intelligence (AGI) it is desirable to have intelligent sys-
tems with the ability to make autonomous improvements to themselves [14]. If
an AGI system such as an AIXI approximation [10] already uses a 0

′ algorithm
Z to compute the universal distribution m, we can give the system the ability
to improve Z over time by devoting some of its computational resources to run-
ning Improve. This yields a general agent whose environment prediction ability
tends toward optimality.

4 Future Work

We would like to be able to practically use expected-reward analysis with vari-
ous parameter values, probability measures, and discount functions, on both ter-
minating and non-terminating algorithms. Particularly, we would like to know
whether 0′ algorithms may be practically analyzed. It may be possible to develop
general mathematical tools and techniques to enhance the practicality of these
methods, such as exist for traditional analysis; this is a broad and open-ended
research goal.
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