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Abstract. Peer assessment is the most common approach to evaluating scien-
tific work, and it is also gaining popularity for scaling evaluation of student work
in large and distributed classes. The key idea is that each peer reviewer or grader
rates a relatively small subset of the items, and that some method of manual, semi-
automatic, or fully-automatic aggregation of all assessments defines the eventual
rating of all items – the grade in peer grading, or whether to accept or reject a sci-
entific manuscript. In this paper, we explore in how far a Bayesian Ordinal Peer
Assessment (BOPA) method can provide additional decision support when mak-
ing acceptance/rejection decisions for a scientific conference. Using data from the
2015 ACM Conference on Knowledge Discovery and Data Mining (KDD), where
this system was deployed, we discuss the potential merit of the BOPA approach
compared to conventional decision support offered by the Microsoft Conference
Management System (CMT).
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1 Introduction

Scientific conferences and large university courses both share the problem of evaluat-
ing large sets of items (e.g. scientific papers, project reports), where the quality of each
item is difficult to evaluate automatically. A common approach is to use peer review-
ing, where each reviewer assesses the quality of a small subset of the items. In such
assessments, reviewers are typically asked to assign numeric scores regarding aspects
and overall quality of the item, justifying each score with a written explanation. While
this approach scales well with the number of items and allows complex criteria under
which to evaluate quality, the key problems lies in aggregating the scores of a large
number of reviewers into a coherent assessment of the items.

For scientific conferences, the final assessment comes down to the decision of whether
to accept or reject a paper. The most widely used approach for aggregating reviewer
scores into an acceptance decisions relies on a hierarchy of reviewers, meta-reviewers,
and program chairs. This is also the approach taken at the 2015 ACM Conference on
Knowledge Discovery and Data Mining (KDD), which will server as a case study in
this paper. Each of the reviewers assessed a small subset of all submissions, providing
an average of 3.9 reviews per paper. Based on these reviews, meta-reviewers were then
asked to make acceptance recommendations for their subset of papers. The program
chairs made the final acceptance decisions based on the meta-reviewers’ recommenda-
tions, oversaw the process, and intervened in the reviewing process where necessary.
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Fig. 1. Information provided to the meta-reviewers and program chairs for three example papers.
In the posterior marginal rank distributions at the right of each panel, the x-axis shows the rank
of the paper and the y-axis shows the probability of the paper placing at this rank. The plots also
show posterior mean and median of the marginal distribution.

Under this decision making approach, both the meta-reviewers and the program
chairs are faced with the problem of interpreting the numeric scores given by the re-
viewers. In particular, some reviewers may be more liberal in their use of “strong ac-
cept” (score +5) than others, and reviewers may disagree in their use of the numeric
scale more generally. Such biases make it problematic to simply average numeric scores
across a small number of reviewers, and using such average scores as a sorting crite-
rion when displaying papers in an online interface may consciously or subconsciously
impact the decision process in an unfair way.

In order to overcome this bias, our aim at KDD 2015 was to provide meta-reviewers
and program chairs (which we jointly refer to as “decision makers”) with more infor-
mation that helps interpret reviewer scores. In particular, the aims were the following:

Mitigate Reviewer Bias We would like to present decision makers with information
that identifies whether a reviewer is more liberal or strict, and an aggregation of the
reviewer scores that is unaffected (or at least less affected) by different reviewer
rating scales.

Communicate Uncertainty Averaging scores provides a point estimate of paper qual-
ity, but does not communicate the uncertainty of this estimate. To communicate
uncertainty more effectively, we aim to provide decision makers with a full poste-
rior distribution of the paper’s predicted quality.

To address the problem of mitigating reviewer bias in using the rating scale, we explore
an alternative method for interpreting reviewer scores [15, 14]. Instead of interpreting
a reviewer’s assessment on an absolute scale, we merely derive an ordering from it.
Using a Bayesian approach to aggregating these ordinal assessments, we infer posterior
distributions of where each paper ranks among the set of all papers. We argue that the
latter provides a very natural way to communicate uncertainty of the quality estimate
on an intuitively meaningful scale. Overall, this provides meta-reviewers and program
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chairs with a more global assessment of each paper (w.r.t. the pool of all papers) that is
not distorted by mismatched monotonic transformations of the assessment scale.

Figure 1 shows the information provided to the meta-reviewers for three example
papers. The left of each panel shows a histogram of the reviewer scores, the middle
shows how the reviewers scored the other papers they reviewed, and the right shows the
marginal posterior distribution of where the paper ranks among all papers according to
the model explored in this paper. The posterior rank distribution of the first paper shows
that virtually all its probability mass is contained on the top 200 ranks. The second paper
has a posterior that is less peaked and communicates that the model is very uncertain
about where it ranks. For the third paper, the model is confident that the paper ranks
below the top 300 submissions.

In the following, we outline our approach to inferring these posterior rank distri-
butions from ordinal reviewer assessment. We first formalize the learning problem and
then adapt a Bayesian aggregation model that was originally developed for peer grading
[14]. We then perform a retrospective analysis of how well the inferred posterior distri-
butions of this model reflect the outcome of the reviewing process, and how presentation
biases interact with the predictions of the model.

1.1 Peer Assessment Approaches

In the standard reviewing process of computer science conferences, we are faced with
the following peer assessment problem. Given is a set of |D| papersD = {d1, ..., d|D|}
for each of which we need to make a decision yd whether to accept or reject. The
assessment is performed by a set of |G| reviewers G = {g1, ..., g|G|}. Each reviewer g
receives a subset of papers Dg ⊂ D to assess. As feedback, each reviewer g provides a
score y(g)d for each of the papers in Dg .

In KDD 2015, there were |G| = 595 reviewers and |D| = 752 for which we pro-
vided decision support analytics. Each reviewer gi received a subset Dg of average size
4.9. This provided on average 3.9 cardinal assessments for each papers. The assess-
ment scale was “Strong Reject”, “Reject”, “Weak Reject”, “Weak Accept”, “Accept”,
“Strong Accept”. Based on these reviews, 68 meta-reviewers were then asked to make
acceptance recommendations for a subset of on average 11.1 papers.

1.2 Cardinal Peer Assessment

The traditional approach of aggregating assessment scores for each paper that is embed-
ded in the CMT Conference Management System is to assign a numeric score y(g)d to
each level of the assessment scale, and then average the numeric scores to get a quality
estimate for each paper d

ŝd =
1

|{g : d ∈ Dg}|
∑

g:d∈Dg

y
(g)
d (1)

We refer to this aggregation method as score averaging. This average score can then be
used by the meta-reviewers to sort the papers for triage. However, it is also likely to bias
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G, g Set of all reviewers, Specific reviewer
D, d Set of all papers, Specific paper
Dg Set of items graded by reviewer g
σ(g) Ranking feedback (with possible ties) from g
ηg Predicted reliability of reviewer g
r
(σ)
d Rank of paper d in ordering σ (rank 1 is best)

d2�σ d1 d2 is preferred/ranked higher than d1 (in σ)
π(A) Set of all rankings over A ⊆ D
σ1 ∼ σ2 ∃ way of resolving ties in σ2 to obtain σ1

σ̂ Estimated ordering of papers
σ∗ (Latent) True ordering of papers

Table 1. Notation overview and reference.

how the meta-reviewers perceive the quality of a paper. In particular, it depends on the
mapping of assessment levels to scores. Following past years and given the arbitrari-
ness of this mapping, the Program Chair decided to keep the mapping y(g)d of “Strong
Reject”=-5, “Reject”=-2, “Weak Reject”=-1, “Weak Accept”=1, “Accept”=2, “Strong
Accept”=5.

1.3 Ordinal Peer Assessment

An alternative to assigning scores to levels is to merely interpret these scores in an ordi-
nal way. In particular, we can derive a weak ordering σ(g) of the papers in Dg for each
g. This avoids mapping the assessment levels to (arbitrary) scores and abstract from dif-
ferent interpretations of the assessment scale by the reviewers. A possible downside is
some loss of information, since different assessments may lead to the same ranking. In
order to mitigate this information loss and “anchor” the ordinal scale, we add a fictitious
“borderline” paper dborderline to each reviewer setDg , which is given a fictitious rating
between “weak reject” and “weak accept” that only this one paper receives. This mod-
els that every reviewer has an acceptance threshold by comparing the assigned papers
to a fictitious paper that they consider to be right on the acceptance threshold.

Given a collection of rankings from reviewers σ(g) for subsets Dg , we aim to esti-
mate an overall ranking of all papers in D. We argue that an overall ranking provides
an easy to understand and intuitive way to communicate paper quality, more so than the
average of somewhat arbitrary scores as in Score Averaging. Furthermore, in order to
achieve our goal of communicating uncertainty, we go beyond a single point estimate
of the ranking as in [15] and provide a Bayesian posterior distribution of the rankings.

2 Bayesian Ordinal Peer Assessment (BOPA)

The goal in Bayesian Ordinal Peer Assessment (BOPA) is to infer a posterior distribu-
tion

P (σ|{σ(g);∀g}) = P ({σ(g);∀g}|σ)P (σ)∑
σ′∈π(D) P ({σ(g);∀g}|σ′)P (σ′)
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of the true quality ranking of papers σ∗ from the set of peer rankings σ(g). Following
[14], we select the data likelihood P ({σ(g);∀g}|σ) and a prior P (σ) as follows.

For the prior P (σ), we make the natural choice of using the uniform distribution
over all rankings, since any other choice would lead to an unfair assessment.

For the data likelihood P ({σ(g);∀g}|σ), there is a whole range of possible options.
Several extensions of classical models such as the Mallows and Bradley-Terry model
are explored in [15]. We focus on the Mallows-based method for its simplicity and
good performance in [15] and [14]. The Mallows-based model defines a distribution
over rankings in terms of the Kendall-Tau distance [7] from the true ranking σ∗ of
assignments.

Definition 1. The Kendall-τ Distance δK between rankings σ1 and σ2 is the number
of incorrectly ordered pairs between the two rankings and is given by

δK(σ1, σ2) =
∑

d1�σ1d2

I[[d2 �σ2
d1]]. (2)

Given the reviewer orderings σ(g), we can define the data likelihood (if the overall
ranking was σ) as

P ({σ(g);∀g}|σ) =

∏
g∈G

∑
σ′∼σ(g)e−δK(σ,σ′)

ZM (|Dg|)

 , (3)

where the normalization constant ZM is easy to compute as it only depends on the
ranking length.

ZM (k)=

k∏
i=1

(
1+e−1+· · ·+e−(i−1)

)
=

k∏
i=1

1− e−i

1− e−1
(4)

Note that in Equation 3, ties in the grader rankings are modeled as indifference (i.e.,
agnostic to either ranking), which leads to the summation in the numerator is over all
total orderings σ′ consistent with the weak ordering σ(g).

Under the uniform prior, the posterior distribution of the inferred rankings σ i.e.,
P (σ|{σ(g);∀g}) is defined as

P (σ|{σ(g);∀g}) = P ({σ(g);∀g}|σ)∑
σ′∈π(D) P ({σ(g);∀g}|σ′)

. (5)

With the posterior distribution in hand, we can derive the desired marginal rank distri-
butions of each assignment, or we can predict a single ranking that minimizes posterior
expected loss.

However, exact computations with this posterior are infeasible given the combina-
torial number of possible orderings of all assignments. To help us ascertain informa-
tion from the posterior, we will employ MCMC based sampling as previously used
for Ordinal Peer Grading of student assessments in [14]. Markov Chain Monte Carlo
(or MCMC in short) are a set of techniques for sampling from a distribution by con-
structing a Markov Chain which converges to the desired distribution asymptotically.
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Algorithm 1 Sampling from Mallows Posterior using Metropolis-Hastings
1: Input: Grader orderings σ(g), Grader reliabilities ηg and MLE ordering σ̂.
2: Pre-compute xij ←

∑
g∈G ηgI[di �σ(g) dj ]−

∑
g∈G ηgI[dj �σ(g) di[

3: σ0 ← σ̂ . Initialize Markov Chain using MLE estimate
4: for t = 1 . . . T do
5: Sample σ′ from (MALLOWS) jumping distribution: JMAL(σ

′|σt−1)

6: Compute ratio rt = P (σ′|{σ(g);∀g})
P (σt−1|{σ(g);∀g}) using Equation 7

7: With probability min(rt, 1), σt ← σ′ else σt ← σt−1

8: Add σt to samples (if burn-in and thinning conditions met)

Metropolis-Hastings is a specific MCMC algorithm which is particularly common when
the underlying distribution is difficult to sample from (as is the case here) especially for
multi-variate distributions.

Thus to help us estimate the posterior we will design a Markov Chain whose sta-
tionary distribution is the distribution of interest: P (σ|{σ(g);∀g}). Along with the theo-
retical guarantees accompanying these methods, an added advantage is the fact that we
can control the desired estimation accuracy (by selecting the number of samples).

This results in a simple and efficient algorithm, shown in Algorithm 1. To begin,
we pre-compute statistics of the net cumulative weighted total each assignment di is
ranked above another assignment dj . We then initialize the Markov Chain using the
MLE estimate of the ordering: σ̂. While computing the Maximum-Likelihood Estimator
(MLE) of Equation 3 is NP-hard [6], several simple and tractable approximations that
are shown to work well in practice are presented in [15].

At each timestep, to propose a new sample σ′ given the previous sample σt−1, we
sample from a jumping distribution (Line 5). In particular, we use a Mallows-based
jumping distribution:

JMAL(σ
′|σ) ∝ e−δK(σ′,σ). (6)

This is a simple distribution to sample from and can be done efficiently in |D|log|D|
time. Furthermore, as this is a symmetric jumping distribution (i.e., JMAL(σ

′|σ) =
JMAL(σ|σ′)), the acceptance ratio computation is simplified.

When it comes to computing the (acceptance) ratio rt (Line 6), we can rely on the
pre-computed statistics to do so efficiently. In particular, we can simplify the expression
for the ratio to:

P (σa|{σ(g);∀g})
P (σb|{σ(g);∀g})

=
∏
g∈G

eδK(σ(g),σb)−δK(σ(g),σa)

=
∏
i,j

exij(I[di�σadj ]−I[di�σbdj ]) (7)

This expression is again simple to compute and can be done in time proportional to the
number of flipped pairs between σa and σb, which in the worst case isO(|D|2). Overall,
the algorithm has a worst-case time complexity of O(T |D|2).

The resulting samples produced by the algorithm can be used to estimate the pos-
terior distributions including the marginal posterior of the rank of each assignment i.e.,
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P (rd|{σ(g);∀g}, as well as statistics such as the entropy of the marginal, the posterior
mean and median etc.

In order to improve the quality of the resulting estimates, we ensure proper mixing
by targeting a moderate acceptance rate and by thinning samples (in our experiments
we thin every 10 iterations). Furthermore we draw samples once the chain has started
converging i.e., we use a burn-in of around 10,000 iterations. In total we used 50,000
samples drawn from the Markov Chain in this manner.

We also derive a Metropolis-Hastings based extension of the Mallows model with
reviewer reliabilities. Following [15, 14], reviewer reliability can be included into the
model via

P ({σ(g);∀g}|σ, {ηg}) =

∏
g∈G

∑
σ′∼σ(g)e−ηgδK(σ,σ′)

ZM (ηg, |Dg|)

 .

In addition to sampling the orderings, we also sample the reliabilities using a Gaussian
jumping distribution (also symmetric). However the acceptance ratio computation is
now more involved and hence less efficient than that for Algorithm 1, but nonetheless
can be computed fairly efficiently. We omit the precise equation and computations for
the purpose of brevity.

Software and an online service that implements these methods is available at
http://www.peergrading.org/.

2.1 Relation to existing rank aggregation literature

The ordinal peer assessment problem can be viewed as a specific kind of rank aggre-
gation problem. It is closely related to the ordinal peer grading problem as discussed
in [15, 14], with only one main difference. In peer grading it is equally important to
estimate the rank of an assessment anywhere in the ranking, while for ordinal peer
assessment it is more important to get the right order toward the top of the ranking.

More generally, rank aggregation [8] covers a wide class of problems where the goal
is the combination of ordinal (ranking) information from multiple different sources.
Voting Systems (or Social Choice [1]) are one of the most common applications of rank
aggregation techniques. The goal of these systems is to merge the preferences of a set
of individuals. Condorcet voting methods such as Borda count amongst others [6, 10]
are commonly used to tackle these problems. Search Result Aggregation (also known
as Rank Fusion or Metasearch [2]) is perhaps the most well-known rank-aggregation
problem. Given rankings from different sources (typically different algorithms), the
goal is to merge them and produce a single output ranking. Extensions of classical
techniques such as the Mallows model [11] and Bradley-Terry model [3] have become
popular for these problems [9, 4] and have been used to improve ranking performance
in different settings [13, 16, 12]. While our work also extends the classical Mallows
model, a key difference is the fact that unlike other rank aggregation problems, a single
ordering of assignments does not suffice since it does not communicate uncertainty.

Related to this work are also the recent experiments conducted as part of the re-
viewing process of the Neural Information Processing (NIPS) conference [5]. Their
controlled experiment investigated the variability of the acceptance decisions. Their
findings in part motivated our decision to increase the number of reviews per paper.



8

3 Empirical Analysis

We now analyze the BOPA approach outlined above on the reviewing data of KDD
2015. To give some insights into the data, we first outline the reviewing process.

On February 20, 2015, a total of 819 paper were submitted. Reviewer assignments
Dg were made though CMT’s built-in optimizer based on reviewer bids. The Program
Committee included 595 reviewers that produced a total of 2919 reviews. Reviewers
were asked to finish their reviews by March 27, when authors were given the opportu-
nity to write a short response to the reviews. On April 14, Meta-Reviewers were asked
to initiate discussion among the reviewers. The decision recommendations by the Meta-
Reviewers of whether to accept or reject a paper were due on May 1. However, many
Meta-Reviewer submitted their recommendations late, but eventually everybody deliv-
ered well before the author notification on May 12. In the time from May 1 to May
12 the Program Chairs reviewed the Meta-Reviewer recommendations and made final
accept/reject decisions. In many cases, the Program Chairs initiated additional discus-
sions for controversial papers or papers where the meta-reviewer was not confident,
using a variety of strategies to resolve remaining issues (e.g., assigning a second meta
reviewer). In the end, 160 papers were accepted.

On April 15, we took a snapshot of all available reviews at that time and applied
the BOPA model outlined in this paper. We only consider the reviewers answer to the
question

“What is your overall recommendation?”

that is answered on the scale given in Section 1.2. We then distributed the results via
email to the Meta-Reviewers for all papers assigned to them on April 29. The delay
was due to creating the PDFs summarizing the results. This means that most Meta-
Reviewer decisions were made without access to the BOPA results. However, for the
more controversial papers which Meta-Reviewers tend to make decisions on last, the
Meta-Reviewers had access to the BOPA results. However, since access to BOPA results
was outside the CMT system, the summary statistics and ranking that CMT provides
were probably more salient.

The analysis we conduct below is based on a review snapshot from May 4, when
most reviews and meta-reviews were submitted and in their final revision. It convers all
752 papers for which BOPA analytics were provided to the Meta-Reviewers.

3.1 Do aggregated reviewer scores predict the number of accepted papers?

The first aspect we evaluate is in how far BOPA and Score Averaging (with the numeric
scale given in Section 1.2) predict how many papers will be accepted. A natural accep-
tance threshold for Score Averaging is 0. This would predict that 240 papers1 will be
accepted. This substantially exceed the actual number of accepted papers of 160.

For BOPA, it is natural to use the mode of the posterior of the artificial borderline
paper dborderline. The mode is located at 202, with 95% tails spanning the interval

1 Papers with average score of exactly 0 were counted as 0.5 each.
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Table 2. Confusion matrices for predicting paper acceptance using BOPA (left) and Score Aver-
aging (right).

BOPA predict accept predict reject
true accept 123 37
true reject 41 551

Score Averaging predict accept predict reject
true accept 125 35
true reject 36 558

[184, 219]. This is closer to the actual number of accepted papers, but still significantly
high.

Overall, there seems to be a substantial difference in the aggregated opinions of
the reviewers and the final decisions, where papers need to substantially exceed the
aggregate vote threshold of the reviewers in order to be accepted.

3.2 How different are the predictions of BOPA and Score Averaging?

The second question we investigate is whether BOPA and Score Averaging actually
make different predictions. If they did not, then any further analysis and comparison
would be somewhat pointless.

In order to calibrate their acceptance threshold to the actual acceptance number, we
adjust the acceptance threshold of Score Averaging to 0.3. This leads to 161 accepted
papers for Score Averaging.

For BOPA, its probabilistic model makes it straightforward to compute the optimal
decisions. We compute

P (yd = accept|{σ(g);∀g}) = P (rd ≤ 160|{σ(g);∀g}) (8)

and predict a paper to be accepted, if it has a probability of being among the top 160
papers that is greater than 0.5. This predicts that 164 papers are accepted.

Counting the number of papers where Score Averaging and BOPA make different
acceptance decisions leads to 51 papers. This is quite a substantial difference, given
160 accepted papers. As a reference point for the magnitude of this difference, con-
sider score averaging with a different numeric mapping. In particular, instead of using
the scale [−5,−2,−1, 1, 2, 5], consider the scale [−3,−2,−1, 1, 2, 3]. Score Averaging
with this alternative scale differs in only 2 papers from the original scale. This highlight
how different BOPA and Score Averaging are in their predictions (and how pointless it
was for the Program Chairs to agonize over the selection of the mapping scale).

3.3 How closely do review aggregation methods predict acceptance decisions?

As the previous section showed, BOPA and Score Averaging make substantially dif-
ferent predictions. Which of these predictions more accurately reflect the actual ac-
cept/reject decisions?

Table 2 shows the confusion matrices for both methods. Overall, BOPA disagrees
with the actual decisions on 78 papers and Score Averaging disagrees on 71 papers.
The difference between these two disagreement counts is not significant (McNemar’s
test with 0.95 confidence threshold). These relatively high disagreement rates indicate
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Fig. 2. Area under the ROC Curve (AUC) when ranking papers in the same equivalence class by
BOPA’s posterior probability of acceptance. On the left, papers with the same reviewer rating av-
erage are considered equivalent. On the right, papers with identical sets of ratings are considered
equivalent. Only equivalence classes with more than 10 papers are shown.

that many decisions are not clear-cut and that especially the Meta-Reviewers use their
own insights and their interpretation of the review text to make the decisions.

The probabilistic nature of the BOPA model makes it possible to verify, if these
disagreement rates were expected by the model. In particular, BOPA’s predicted error
rate can be computed as

disagreement =
∑
d∈D

min{P (yd = accept|{σ(g);∀g}), P (yd = reject|{σ(g);∀g})}.

(9)
For our data, the disagreement as predicted by BOPA is 65.3, which not far off the
actual disagreement of 78. This provides a first indication that BOPA is able to quantify
the amount of uncertainty in the aggregated reviewer scores. We will further investigate
this in Section 3.5.

3.4 Can BOPA distinguish paper quality between papers with the same reviewer
scores?

The previous section showed that the amount of disagreement of BOPA does not seem
to be better than that of Score Averaging. However, there are biases that may have
influenced that statistic. First, the Score Average was readily available in CMT for
sorting, which may have biased the Meta-Reviewers’ perception of the paper’s qual-
ity. Second, the reviewers acceptance scores are communicated to the authors, but not
the BOPA ranks. Thus, going against the cardinal score average requires effort from
the Meta-Reviewer to justify that recommendation, which disincentivises the Meta-
Reviewer from deviating from the score average.

In order to get results that are unaffected by such biases, we now consider subgroups
of papers that have equal bias. First, Figure 2 (left) shows how BOPA performs for



11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

E
st

im
at

ed
 P

ro
ba

bi
lit

y

Predicted Probability

Fig. 3. Calibration of BOPA posterior acceptance probabilities. Binning is done via quantiles so
that each bin contains roughly 40 papers. The x-axis shows the averaged posterior acceptance
probabilities, and the y-axis the observed fraction of accepted papers per bin (with 95% binomial
confidence intervals).

papers that have the same score average. In particular, for a particular score average
value, we rank all papers with that score average by their probability of acceptance
P (yd = accept|{σ(g);∀g}) as predicted by BOPA. The left plot of Figure 2 shows the
Area under the ROC Curve (AUC) for all score average values that have at least 10
papers and for which the AUC exists. For most values, the AUC is greater than 0.5,
indicating that BOPA sorts the papers better than random. The average AUC over all
score averages weighted by the number of papers in the equivalence class is 0.630,
which is substantially better than 0.5. The right plot in Figure 2 shows the equivalent
results, where the conditioning is not on the score average, but on a particular set of
ratings. The weighted AUC here is 0.627.

This provides evidence that BOPA is indeed able to mitigate the problem of different
reviewer scales, since it is able to identify papers that are more likely to be accepted even
if they have exactly the same ratings. However, an alternative explanation is that this
may also be affected by bias, since Meta-Reviewers were given the BOPA results, even
if late in the decision process. To fully resolve this question beyond doubt, a controlled
trial may be necessary.

3.5 How calibrated are the BOPA acceptance probabilities?

The estimated disagreement rate of BOPA already provided some evidence in Sec-
tion 3.3 that BOPA is able to accurately capture the uncertainty inherent in the review
process. We now investigate more closely, if BOPA indeed produces well-calibrated
probabilities. In particular, we compute P (yd = accept|{σ(g);∀g}) as in Equation (8)
and ask whether a predicted P (yd = accept|{σ(g);∀g}) of value p indeed means that
the paper d has a p-percent probability of being accepted.
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Figure 3 shows a calibration plot, where papers are binned byP (yd = accept|{σ(g);∀g})
falling into specific intervals [p1, p2]. The intervals are selected to include roughly 40
papers each (except the interval closes to 0, which contains 399 papers), and the aver-
age value of P (yd = accept|{σ(g);∀g}) for each bin is plotted on the x-axis. The y-axis
shows the ratio of accepted papers in each bin with 95% binomial confidence intervals.

For perfectly calibrated prediction probabilities, all points should lie on the diag-
onal. Overall, calibration of the BOPA probabilities is remarkably good, especially in
the high-probability region. This verifies that BOPA does indeed convey an accurate
impression of uncertainty, as was desired in our original goals.

3.6 Anecdotal Qualitative Feedback

As mentioned above, the information as illustrated in Figure 1 was emailed to all 68
Meta Reviewer. While we did not ask for a response to this email, 14 Meta Reviewer
responded to this email. The vast majority of these responses indicated strong support
for providing such information, calling it “helpful” and “useful”. No response raised
any concerns or was negative. Several emails included suggestions for how to better
present and layout the information, and how to better integrate it with CMT.

4 Conclusions

We investigated how additional information and aggregation of reviewer information
can provide decision support to Meta-Reviewers and Program Chairs for making ac-
cept/reject decisions. Using data from KDD 2015, we adapted a Bayesian ordinal rank
aggregation method to the problem of estimating posterior rank distributions of submis-
sions. Regarding the goal of providing information about uncertainty, we find that the
BOPA method indeed captures accurately calibrated probabilites. Regarding the goal
of mitigating mismatching reviewer scales, we find evidence that this is also achieved
by BOPA. However, final confirmation about whether Meta-Reviewers and Program
Chairs actually make better decisions using the additional information can only be con-
clusively answered through controlled experiments, which are outside the scope of this
study.
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