Ferrés D, Marimon M, Saggion H, AbuRa'ed A. YATS: Yet Another Text Simplifier. In: Métais E, Meziane F, Saraee
M, Sugumaran V, Vadera S, editors. Natural Language Processing and Information Systems. 21st International
Conference on Applications of Natural Language to Information Systems, NLDB 2016; 2016 Jun 22-24; Salford, UK.
Cham (Switzerland): Springer; 2016. 335-42. (LNCS, no. 9612).DOI: 10.1007/978-3-319-41754-7_32

YATS: Yet Another Text Simplifier

No Author Given

No Institute Given

Abstract. We present a text simplifier for English that has been built
with open source software and has both lexical and syntactic simpli-
fication capabilities. The lexical simplifier uses a vector space model
approach to obtain the most appropriate sense of a given word in a
given context and word frequency simplicity measures to rank synonyms.
The syntactic simplifier uses linguistically-motivated rule-based syntac-
tic analysis and generation techniques that rely on part-of-speech tags
and syntactic dependency information. Experimental results show good
performance of the lexical simplification component when compared to
a hard-to-beat baseline, good syntactic simplification accuracy, and ac-
cording to human assessment, improvements over the best reported re-
sults in the literature for a system with same architecture as YATS.

1 Introduction

Automatic text simplification is a research field which studies methods and tech-
niques to simplify textual content. Text simplification methods should facilitate
or at least speed up the adaptation of available and future textual material,
making accessible information for all a reality. Text simplification has also been
suggested as a potential pre-processing step for making texts easier to handle by
generic text processors such as parsers, or to be used in specific information ac-
cess tasks such as information extraction, summarization, or question answering.
The interest in automatic text simplification has grown in recent years and in
spite of the many approaches and techniques proposed, there is still an incredible
space for improvement. The growing interest in text simplification is evidenced
by the number of languages and users which are targeted by researchers around
the globe. Simplification systems and simplification studies do exist for many
languages: English [7], Brazilian Portuguese [1], and Spanish [21] just to name a
few. In automatic text simplification, the algorithms can involve either or both
lexical and syntactic simplifications. Lexical simplification is the task of identify-
ing and substituting complex words for simpler ones in given contexts. Syntactic
simplification is the task of reducing the grammatical complexity of a sentence
while keeping the original information and meaning. An example involving both
lexical and syntactic simplifications is given in (1), where the passive voice is
changed into active and complex words are substituted for simpler synonyms.

(1) a. The poem was composed by the renowned artist.

b. The famous artist wrote the poem.

In this paper we present YATS, a text simplifier for English that has been
built with the aim to improve text readability and understandability in order

tmpcc13
Rectángulo

to help people with intellectual disabilities. The system, however, is highly con-
figurable and adaptable and the resources used can easily be changed to meet
the needs of people with other conditions and special demands.! As we will
show in this paper, our system achieves state-of-the-art performance in several
evaluations.

After this introduction, Section 2 presents an overview of related work on
automatic simplification, Section 3 describes our system, Sections 4 discusses
the evaluation and the results we achieved and, finally, Section 5 concludes.

2 Related work

While automation of text simplifications has just recently become an established
field of NLP, there is an active research in this field and several approaches have
been proposed for lexical and syntactic automatic simplifications.

There are two main differing approaches in automatic syntactic simplifica-
tion: those that use manually created rules and those that apply data-driven
methodologies.

Early work on text simplification relied on hand-crafted rules to perform
syntactic simplifications. Chandrasekar et al. [8] developed a linear pattern-
matching hand-crafted rule system that simplified a few specific constructions,
namely relative clauses, appositions, and coordinated clauses. In a second ap-
proach, Chandrasekar and Srinivas [9] induced simplification rules from a com-
parison of the structures of the chunked parses of an aligned corpus of sen-
tences and their hand-simplified forms. Then, Siddharthan [23] described a rule-
based system that peformed syntactic simplifications in three phases: (1) anal-
ysis, which used chunking and PoS tagging, followed by pattern-matching, (2)
transformation, which applied a few rules for dis-embedding relative clauses,
splitting conjoined clauses and making new sentences out of appositives, and (3)
regeneration, which fixed mistakes by generating referring expressions, select-
ing determiners, and preserving discourse structure with the goal of improving
cohesion of the simplified text. More recent hand-crafted systems made use of
transfer rules that operated on the output of a parser; De Belder and Moens [13],
for instance, used the phrasal parse tree produced by the Stanford parser, and
Siddharthan [24] presented a framework based on applying transformation rules
to a typed dependency representation produced by the Stanford parser. This is
the approach that has been mostly followed in non-English projects [2, 15, 5].

Using aligned sentences of English Wikipedia and Simple English Wikipedia
[10], other works have been from a data-diven prespective, mostly building upon
methodologies (and evaluation measures) traditionally used in machine trans-
lation. Zhu et al. [30] learned a simplification model inspired by syntax-based
SMT, consisting of a translation model, a language model, and a decoder, which
was able to perform four rewriting operations, namely substitution, reordering,
splitting and deletion. Coster and Kauchak [10] and Wubben et al. [28] viewed

L If the paper is accepted links to the resources developed will be made available with
the final version of the paper.

simplification as a monolingual translation task and they applied phrase based
MT to the text simplification augmented with a phrasal deletion model [10] and
a post-hoc reranking procedure that ranked the output [28]. Siddharthan and
Angrosh [25] presented a hybrid system that combined manually written syn-
chronous grammars for syntactic simplificatins with an automatically acquired
syncronous grammar for lexicalised constructs.

Work on lexical simplification began in the PSET project [14]. The authors
used WordNet to identify synonyms and calculated their relative difficulty using
Kucera-Francis frequencies in the Oxford Psycholinguistic Database. De Belder
and Moens [13] combined this methodology with a latent words language model
which modeled both language in terms of word sequences and the contextual
meaning of words. Wikipedia has also been used in lexical simplification studies.
Biran et al. [3] used word frequencies in English Wikipedia and Simple English
Wikipedia to calculate their difficulty, and Yatskar et al. [29] used Simple English
Wikipedia edit histories to idenfify the simplify operations of the form =z — y
extracted when a page has just been changed from x in a version to y in the
next version of the page. 2

3 The YATS System

The YATS system has been built with open source software and has both lexical
and syntactic simplification capabilities. The lexical simplifier uses a vector space
model approach to obtain the most appropriate sense of a given word in a given
context (similar to [3] or [5]) and word frequency simplicity measures to rank
synonyms [7]. The syntactic simplifier uses rule-based analysis and generation
techniques that rely on PoS tags and dependency trees, which allows a broad
coverage of common syntactic simplifications with a small hand-crafted rules.

3.1 Lexical Simplification in YATS

The lexical simplifier is composed of the following phases, executed sequentially:
(i) Document analysis, (ii) Complex words detection, (iii) Word sense disam-
biguation, (iv) Synonyms ranking, and (v) Language realization.

The document analysis phase extracts the linguistic features from the docu-
ments. It uses the GATE? [12] NLP API and some processing resources from its
ANNIE pipeline [11] to perform: tokenization, sentence splitting, part-of-speech
(PoS) tagging, lemmatization, named entity recognition and classification, and
co-reference resolution.

The automatic complex word detection is done using frequency thresholding
over psycholinguistic resources. The procedure identifies a word as complex when

2 The information extracted by wusing thes approach is avalable at
http://www.cs.cornell.edu/home/llee/data/simple/ and can be used to extract the
actual simplification rules.

3 http://gate.ac.uk

the frequency count of the word in a given psycholinguistic database is in a range
determined by two threshold values (i.e. w is complex if min < Wrequency <
mazx). The two psycholinguistic resources that can be used separately in our
lexical simplification system are: Age-of-Acquisition norms* [19] and Kucera-
Francis ° frequency counts [18]. The second resource is a set of frequency counts
extracted from the Brown Corpus (1,014,000 words). This corpus consists of five
hundred samples of about two thousand words each, which are assigned to fifteen

categories or genres.

Since words may have more than one meaning, a Word Sense Disambiguation
(WSD) phase is applied in order to select the most appropriate word replacement
out of a list of “synonyms”. The WSD algorithm used is based on the Vector
Space Model [27] approach for lexical semantics which has been previously used
in Lexical Simplification [3]. The WSD algorithm uses a word vector model
derived from a large text collection from which a word vector for each word in
WordNet-3.16 is created by collecting co-occurring word lemmas of the word in
N-window contexts (only nouns, verbs, adjectives, and adverbs) together with
their frequencies. Then, a common vector is computed for each of the word senses
of a given target word (lemma and PoS). These word sense vectors are created
by adding the vectors of all words (e.g. synonyms, hypernyms) in each sense
in WordNet. When a complex word is detected the WSD algorithm computes
the cosine distance between the context vector computed from the words of the
complex word context (at sentence or document level) and the word vectors of
each sense from the model. The word sense selected is the one with the lowest
cosine distance (i.e. greater cosine value) between its word vector in the model
and the context vector of the complex word in the sentence or document to
simplify. Two data structures were produced following this procedure: 1) one
that contains 81,242 target words and 135,769 entries, 2) another version that
uses only synonyms to create the word sense vectors and has 63,649 target words
and 87,792 entries. The plain text of the Simple English Wikipedia” (which
had 99,943 documents in the dump we used®) has been extracted using the
WikiExtractor? tool. The FreeLing 3.1'° [20] NLP API has been used to analyze
and extract the lemmas and the PoS tags. These lemmas were extracted from
a 11-word window (5 lemmas are extracted to each side of the target words).
Where synonym ranking is concerned, we rank synonyms in the selected sense by
their simplicity and find the simplest and most appropriate synonym word for the
given context [26]. The simplicity measure implemented is word frequency (i.e.
more frequent is simpler) [7]. Several frequency lists were compiled for YATS,
however for the experiments to be described here the Simple English Wikipedia

4 http://crr.ugent.be/archives/806

® http://www.psych.rl.ac.uk/kf.wds

5 http://wordnet.princeton.edu/

" http:/ /simple.wikipedia.org

8 simplewiki-20140204 dump version.

9 http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
10 http://nlp.cs.upc.edu/freeling/

frequency list was used.

The final step, language realization, generates the correct inflected forms of the
final selected synonym word substitutes in the contexts. The SimpleNLG [16]
Java API is used to perform this task considering the context and the PoS tag
of the complex word. The default lexicon of the SimpleNLG is currently used
for the morphological realisation.

3.2 Intrinsic Evaluation of the YATS Lexical Simplification
Component

Horn et al. [17] have produced a dataset for evaluation of lexical simplification
system containing 500 examples. Each example contains a sentence and a target
word, randomly sampled from alignments between sentences in pairs of articles
from English Wikipedia and Simple English Wikipedia produced by [10]. Fifty
Mechanical Turkers'! provided simplifications (i.e. lexical substitutes) for each
sentence in the dataset. Moreover, counts for the lexical substitutes proposed
were obtained so as to produce a frequency-based rank for the set of replace-
ments. One example of the evaluation dataset is shown below:

Sentence: A haunted house is defined as a house that is believed to be a center for super-
natural occurrences or paranormal phenomena.

Replacements: events (24); happenings (12); activities (2); things (2); accidents (1); ac-

tivity (1); acts (1); beings (1); event (1); happening (1); instances (1); times (1); situations
1

The example shows: (i) a sentence where the target word to simplify is un-
derlined (i.e. occurrences) and (ii) its possible replacements, together with the
number of annotators selecting the replacement (e.g. the word events was cho-
sen 24 times as simpler synonym for occurrences). We have carried out a hard
intrinsic evaluation of the lexical simplification system using the above dataset.
We have used the YATS lexical simplifier to select the most appropriate and
simpler synonym of each target word in the dataset. Note that this is not a
real application scenario of our lexical simplifier, since we already know which
target word to simplify and therefore the task is somehow simpler. As a baseline
for comparison purposes we have decided to use two approaches: (i) the system
proposed by [6] and replicated in [22] which simply selects the most frequent
synonym of the target word ignoring the possible polysemy of the target word
(i.e. no WSD), and (ii) the rules induced by the system proposed by [29] which
are freely available (see Section 2). The frequency-based baseline uses the same
resources as YATS, that is, WordNet for finding synonyms, and same file for
lemma frequencies used in YATS.

In order to carry out the evaluation some transformations have to be applied
to the dataset: (i) all replacements have to be lemmatized and counts merged
for replacements with the same lemma (e.g. in the example above activities
and activity have to be collapsed under activity with count 1+ 2 = 3); (ii) for
evaluating both YATS and the frequency-based baseline only replacements (i.e.

" https://www.mturk.com

System Oracle| YATS |Frequency|Rules
Lex.Simp.Acc.| 0.81 | 0.21 0.19 0.11

Table 1. Average lexical simplification accuracy of three systems and an oracle on the
Horn et al.’s lexical simplification dataset [17].

lemmas) appearing as synonyms of the target word are considered (e.g. in the
example above occurrence has only 3 possible synonyms in our lexical resource:
happening, presence, and event, therefore all other listed replacements will not
be considered since they can not be produced by the considered system). We use
lexical simplification accuracy as a metric defined for a sentence S, target word
T, a set of weighthed replacements Replacements(S,T) of T in S, and Syno: the
synonym chosen by the system, as follows:

ZREReplacements(s,T) Match(R, Syno, Ry,)

Lex_Simp_Acc(S,T, Syno) =
ZReReplacements(S,T) Ry,

where R,, is the number of annotators who have chosen R as replacement,
Match(R, Syno, R;,) is R, if R = Syno and 0 otherwise. That is, the system
wins as many points as annotators have chosen Syno as replacement. The de-
nominator of the formula is a normalization factor which indicates how many
annotators have provided replacements for the target word. As an example, if
for the instance above a system selects “event” as a subtitute of “occurrences”,
then it will obtain 24 (=23+1)points. Given k pairs of sentences and target
words < S, T >, the overall lexical simplification accuracy of a system will be
its average lexical simplification accuracy. The results of evaluating the three
systems: YATS, frequency-based baseline, and rules are shown in Table 1. We
also include the maximum possible lexical simplification accuracy a system could
obtain (i.e. an oracle), that is, the accuracy of a system which always selects the
replacement which gives the maximum benefit.

Results indicate a good performance of the YATS system, overtaking both
a hard to beat baseline and rule-based system which rules were induced from
corpora. Morover, YATS was able to provide valid replacements for 146 sentences
while the frequency-based baseline provided 141 replacements and the rule-based
system only 71 (half YATS’s coverage).

3.3 Syntactic Simplification in YATS

In syntactic simplification, complicated structures are detected in the sentence
and replaced by other linguistic constructions that are easier to read. YATS sim-
plifies the following syntactic structures: appositive phrases, adverbial clauses,
coordinated clauses, coordinated correlatives, passive constructions, relative clauses,
and subordinated clauses. The syntactic simplification is organized as a two-
phase process: document analysis, which identifies the syntactic structures to be
simplified, and sentence generation, which produces the simplified structures.

The document analysis phase uses three main resources to identify complex syn-
tactic structures: (i) the GATE/ANNIE analysis pipeline used for lexical simpli-
fication; this step performs tokenization, sentence splitting and NE recognition,
(ii) the Mate Tools dependency parser [4], which adds a dependency labels to
sentence tokens, and (iii) a set of GATE JAPE (Java Annotation Patterns En-
gine) grammars which detect and label the different kind of syntactic phenomena
appearing in the sentences.

Rules were manually developed in an iterative process by using dependency-
parsed sentences from Wikipedia which were indexed using the ANNIC system
available in GATE. The process resulted in a set of JAPE rules able to recog-
nize and analyze the different kinds of syntactic phenomena appearing in the
sentences (those stated above). Each rule is composed of a left-hand-side (LHS)
and a right-hand-side (RHS). The LHS of the rules consist of an annotation
pattern description while the RHS consists of annotation manipulation state-
ments. Annotations matched on the LHS of a rule may be referred to on the
RHS by means of labels that are attached to pattern elements. These rules rely
on dependency trees, which allows a broad coverage of common syntactic simpli-
fications with a small hand-crafted rules. Given the complex problem at hand,
it is not enough to perform pattern matching and annotation of the matched
elements, also the different annotations matched instantiating the patterm have
to be properly annotated and related to each other. This process is carried with
Java code in RHS of each rule. JAPE rules can be organized in grammars which
when compiled can be used to perform transduction over annotations based on
regular expressions. Each syntactic phenomena dealt with in the system has a
dedicated grammar (i.e., set of rules). These grammars are organized in a main
file which specifies the order in which the grammars have to be applied to the
text. The complete rule-based system is composed of: one rule for appositive
constructions, 17 rules for relative clause identification, 10 rules for coordination
of sentences and verb phrases, 4 rules for coordinated correlatives, 8 rules for
subordination (concession, cause, etc.), 12 rules for adverbial clauses, and 14
rules for passive constructions. Figure 1 shows one of the 17 JAPE rules dealing
with relative clauses. Only the regular pattern (LHS) is shown which will match
a dependency-parsed sentence.

The result of the rule application can be appreciated in Figure 2 (the GATE
Graphical User Interface) where the relative clause has been identified together
with the antecedent(Ewva) of the relative pronoun (whose). Such rule together
with the Java text-to-text generation programs would produce the simplifica-
tion Ewva is the daughter of Augustine St. Clare. Eva’ s real name is Evangeline
St. Clare. The following simplification priority order is applied when several syn-
tactic phenomena of these types are detected in the sentence: Apposition - Rel-
ative Clauses - Coordination - Coordinated Correlatives - Passive Constructions
- Adverbial Clauses - Subordinated Clauses. The system recursively simplifies
sentences until no more simplifications can be applied.

The sentence generation phase uses the information provided by the analysis
stage to generate simple structures. It applies a set of rules which are specific for

Rule: NonRestrRC_SbjPossWh
(({!Token.category ==~ "(WDT|WP)"})*
({Token}) :antecedent_end

) :antecedent

(
({Token.string ==
(({Token.lemma ==

","}):rc_start
"whose"}) :rprn

((({Token.category == "RB"})?

{Token.category

"VBN", Token.func == "NMOD"})

| (({Token.category == "RB"} | {Token.category == "JJS"})?
{Token.category == "JJ", Token.func == "NMOD"})
| (({Token.category == "JJ"})? {Token.category == "NN", Token.func == "NMOD"})
)7
{Token.func == "SBJ"})
(({Token.string == ","})?({Token.category == "RB"}|(({Token.category == "IN"} |
{Token.category == "T0"}) ({Token})+))?({Token.string == ","})?)
({Token.category ==~ "VB([DPZ])?|MD", Token.func == "NMOD"}):rc_hd
):rc
-->
{

// Java Code

Fig. 1. JAPE regular pattern over dependencies to identify a non-restrictive relative
clause with possesive subject.

|G/ GATE Developer 8.0 build 4825
File Options Tools Help

|| 2 % 3 |8 & (%

[E=8{ECE 5

GATE
?@" Applications

i RELATIVE

- {i# APPOSITIVE

@ Language Resources
R uchak v1_documd
~#& REL

~#& APPOS

- &’ kauchak_v1_docum
%} Processing Resources
""" RELATIVE

T APPOSITIVE
ﬁ Datastores

Messages @ kauchak_v1_docu... ‘ @ kauchak_v1_docu...

[Annulaliun Se'ls] lAnnolaﬁons Lisl] Annotations Stack Co-reference Editor Q

Eva , whose real name is Evangeline St. Clare , is the daughter of Augustine St.
Clare .

-
AntecedentRC
[] FirstPerson

] Lookup

[’] Person
RelativeClause
[’} Sentence

[SpaceToken
[Split

] Token

[mh

Type Set Start End Id Features

AntecedentRC| | 0 3| 58fantCat=NNP, antHead=eva, antHeadld=0, rule=NonRe

RelativeClause] | 4 45 58 {nounld=8, relPron=whose, relPronFunc=subject, relPror

< i J »

2 Annotations (0 selected) Select:

D 1t Editor | Initialisation P;

Fig. 2. JAPE relative clause grammar applied to the sentence Fva, whose real name

is Fvangeline St.

Clare, is the daughter of Augustine St. Clare.

each phenomenon. These rules rules perform the common simplification opera-
tions, namely sentence splitting, reordering of words or phrases, word susbtitu-
tion, verbal tense adaption, personal pronouns transformation, and capitalization
and de-capitalization of some words.

Grammar num.sents| fired| right|wrong|ignored
Appositions 100[100%| 79%| 21% 0%
RCs 100| 93%| 79%| 14% 7%
Coordination 100| 62%| 56%| 6%| 38%
Subordination 100 97%| 72%| 25% 3%
Passives 100| 91%| 85%| 6% 9%
Total 500] 89%[74.2%]14.4%]| 11.4%

Table 2. Evaluation of the JAPE grammars. The first column lists the syntactic phe-
nomena, the second column indicates the number of sentences used which contained
the sought syntactic phenomena, the third column indicates the number of times the
grammar fired, the fourth column indicates the precision of the rule, the fith column
is the percent of wrong rule applications, and finally the last column is the percent of
times the grammar did not fire.

System |Fluency|Adequacy|Simplicity
SW (Human)| 4.58 3.76 3.93
S&A (Automatic)| 3.73 3.70 2.86
YATS (Automatic)| 3.98 4.02 2.86

Table 3. Average results of the human evaluation with eight human judges.

3.4 Intrinsic Evaluation of the YATS Syntactic Simplification
Component

We have carried out an intrinsic evaluation of the rule-based systems in terms of
precision. We have collected 100 sentence examples (not used for system devel-
opment) per syntactic phenomena we target. Each grammar was then applied to
the set of sentences the grammar was covering so as to analyze the performance
of the rules on unseen examples. Results are presented on Table 2. In the Table,
right means that the rule has recognized and annotated all necessary informa-
tion for generation, wrong means that some the annotations required or part
only part of them have not been produced, and ignored means that the rules
were not fired for the sentece (i.e. a miss).

Most rules are rather precise, except perhaps those dealing with coordination
which is a very difficult phenomena to recognize given its ambiguity. An analysis
of the errors showed us that the JAPE rules produced errors due to the lack
of coverage of certain structures, e.g. coordination of anchors, coordination of
antecedents, or coordination of main verbs taking a subordinated clause. Some of
the errors produced by the dependency parser were: the parser assigned a wrong
PoS tag, the parser assigned a wrong function (e.g. the anchor was identified
with a wrong token, the relative pronoun got a wrong function) or a wrong
dependency (e.g. the subordinated clause depended on a wrong head, the parser
did not identify all the dependents of a head or it analysed as dependents tokens
which were not), the parser analysed a syntactic structure wrongly (e.g. the
second conjunct in coordinated NPs was analysed as an apposition).

4 Human Evaluation of YATS

Current evaluation of automatic text simplification reported in the literature
tend to be based on human judgments, specially when the system is targeted
to specific populations. We performed manual evaluation relying on eight hu-
man judges,'? who assessed our system w.r.t. fluency, adequacy, and simplicity,
using the evaluation set used by Siddharthan and Angrosh [25], from which
we randomly selected 25 sentences. Participants were presented with the source
sentence from the English Wikipedia followed by three simplified versions from
Simple Wikipedia (SW) (i.e. a sentence from Simple Wikipedia aligned to the
sentence in English Wikipedia), the system developed by Siddharthan and An-
grosh [25] (S&A), and YATS, in a randomisd order, and they were asked to
rate each of the simplified version w.r.t. the extend to which it was grammatical
(fluency), the extend to which it had the same meaning as the complex sentence
(adequacy), and the extend to which it was simpler than the complex and thus
easier to understand (simplicity). We used a five point rating scale where high
numbers indicated better performance.

Table 3 shows the results for the complete data set. As can be observed,
our system achieved the same mean score for simplicity as Siddharthan and
Angrosh’s [25], and is slightly better at fluency and adequacy, though not sta-
tistically significant. Both automatic systems are comparable to the Simple
Wikipedia version.

5 Conclusion

Automatic text simplification is a key enabler in making texts more accessible
in the information society. Here, we have presented YATS, a text simplifier for
English with lexical and syntactic simplification capabilities. The lexical simpli-
fier uses a vector space model approach to obtain the most appropriate sense
of a given word in a given context and word frequency simplicity measures to
rank synonyms. We have shown that our lexical simplifier outperforms a hard-to-
beat baseline procedure based on frequency and a rule-based system highly cited
in the literature. The syntactic simplifier, which is linguistically motivated and
based on peer-reviewed work, uses rule-based syntactic analysis and generation
techniques that rely on part-of-speech tags and dependency trees. Experimental
results of human assessment of the system output showed improvements over the
best reported results in the literature. Future research includes experiments to
better assest the performance of the system (e.g, lexical simplification in other
available datasets), improve the coverage of the syntactic simplifier by re-training
the parser, and extending the scope of the lexical simplifier relying on more ad-
vanced vertor representations (e.g. embeddings). Finally we intend to port our
systems to other languages such as Spanish.

12°All of them were proficient in English. None of them had participated in the devel-
opment of the simplifier.

References

10.

11.

12.

13.

. Aluisio, S.M., Gasperin, C.: Fostering Digital Inclusion and Accessibility: The Por-

Simples Project for Simplification of Portuguese Texts. In: Proceedings of the
NAACL HLT 2010 Young Investigators Workshop on Computational Approaches
to Languages of the Americas. pp. 46-53. YIWCALA ’10, Association for Compu-
tational Linguistics, Stroudsburg, PA, USA (2010)

. Barlacchi, G., Tonelli, S.: Ernesta: A sentence simplification tool for childrens sto-

ries in Italian. In: A. Gelbukh (Ed.) Computational Linguistics and Intelligent
Text Processing, series Lecture Notes in Computer Science, vol. 7817. pp. 476—
487. Springer Berlin Heidelberg (2013)

Biran, O., Brody, S., Elhadad, N.: Putting it simply: A context-aware approach to
lexical simplification. In: Proceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language Technologies: Short Papers
- Volume 2. pp. 496-501. HLT ’11, Association for Computational Linguistics,
Stroudsburg, PA, USA (2011)

Bohnet, B.: Very High Accuracy and Fast Dependency Parsing Is Not a Contra-
diction. In: Proceedings of the 23rd International Conference on Computational
Linguistics (COLING 2010). pp. 89-97. Stroudsburg, PA, USA (2010)

Bott, S., Rello, L., Drndarevic, B., Saggion, H.: Can Spanish Be Simpler? LexSiS:
Lexical Simplification for Spanish. In: Proceedings of 24th International Conference
on Computational Linguistics (COLING 2012). pp. 357-374. Mumbai, India (2012)
Carroll, J., Minnen, G., Canning, Y., Devlin, S., Tait, J.: Practical simplification
of English newspaper text to assist aphasic readers. In: Proceedings of the AAAI98
Workshop on Integrating Al and Assistive Technology. pp. 7-10 (1998)

Carroll, J., Minnen, G.M., Pearce, D., Canning, Y., Devlin, S., Tait, J.: Simplifying
Text for Language-Impaired Readers. In: Proceedings of the 9th Conference of the
European Chapter of the Association for Computational Linguistics (EACL 1999).
pp. 269-270. Bergen, Norway (1999)

Chandrasekar, R., Doran, C., Srinivas, B.: Motivations and methods for text sim-
plification. In: Proceedings of the 16th International conference on Computational
linguistics (COLING 1996). pp. 1041-1044 (1996)

Chandrasekar, R., Srinivas, B.: Automatic induction of rules for text simplification.
Knowledge-Based Systems 10, 183-190 (1997)

Coster, W., Kauchak, D.: Learning to simplify sentences using Wikipedia. In: Pro-
ceedings of the Workshop on Monolingual Text-To.Text Generation, 49th Annual
Meeting of the Association for Computational Linguistics. pp. 1-9. Portland, Ore-
gon, USA (2011)

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
In: Proceedings of the 40th Anniversary Meeting of the Association for Computa-
tional Linguistics (ACL 2002). Philadelphia, PA, USA (2002)

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, 1.,
Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M.A.,
Saggion, H., Petrak, J., Li, Y., Peters, W.: Text Processing with GATE (Version
6) (2011)

De Belder, J., Moens, M.F.: Text simplification for children. In: Proceedings of
the SIGIR Workshop on Accessible Search Systems, SIGIR workshop on accessible
search systems, Geneva. pp. 19-26 (2010)

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Devlin, S., Tait, J.: The Use of a Psycholinguistic Database in the Simplification
of Text for Aphasic Readers. In: Linguistic Databases. pp. 161-173 (1998)
Gasperin, C., Maziero, E., Alusio, S.M.: Challenging choices for text simplification.
In: T.A.S. Pardo et al. (Rds.) PROPOR 2010 LNAI 6001. pp. pages 40-50. Springer
Berlin Heidelberg (2010)

Gatt, A., Reiter, E.: SimpleNLG: A Realisation Engine for Practical Applications.
In: Proceedings of the 12th European Workshop on Natural Language Generation.
pp- 90-93. ENLG ’09, Association for Computational Linguistics, Stroudsburg, PA,
USA (2009)

Horn, C., Manduca, C., Kauchak, D.: Learning a lexical simplifier using Wikipedia.
In: Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics, ACL 2014 - Proceedings of the Conference. pp. 458-463 (2014)
Kucera, H., Francis, W.N.: Computational analysis of present-day American En-
glish. Brown University Press, Providence, RI (1967)

Kuperman, V., Stadthagen-Gonzalez, H., Brysbaert, M.: Age-of-acquisition ratings
for 30,000 English words. Behavior Research Methods 44(4), 978-990 (2012)
Padré, L., Stanilovsky, E.: FreeLing 3.0: Towards Wider Multilinguality. In: Pro-
ceedings of the Language Resources and Evaluation Conference (LREC 2012).
Istanbul, Turkey (2012)

Saggion, H., Gémez-Martinez, E., Etayo, E., Anula, A., Bourg, L.: Text simplifi-
cation in Simplext: Making text more accessible. Revista de la Sociedad Espafiola
para el Procesamiento del Lenguaje Natural 47 (2011)

Shardlow, M.: Out in the open: Finding and categorising errors in the lexical
simplification pipeline. In: Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC’14). Reykjavik, Iceland (may 2014)
Siddharthan, A.: Syntactic simplification and text cohesion. In: Proceedings of
Language Engineering Conference (LEC 2002). pp. 64-71 (2002)

Siddharthan, A.: Text Simplification using Typed Dependencies: A Comparision
of the Robustness of Different Generation Strategies. In: Proceedings of the 13th
European Workshop on Natural Language Generation. 13th European Workshop
on Natural Language Generation. Nancy, France (2011)

Siddharthan, A., Angrosh, M.: Hybrid text simplification using synchronous de-
pendency grammars with hand-written and automatically harvested rules. In: Pro-
ceedings of the 14th Conference of the European Chapter of the Association for
Computational Linguistics (EACL 2014). Gothenburg, Sweden (2014)

Specia, L., Jauhar, S.K., Mihalcea, R.: SemEval-2012 Task 1: English Lexical Sim-
plification. In: First Joint Conference on Lexical and Computational Semantics.
pp. 347-355. *SEM 2012, Montréal, Canada (2012)

Turney, P.D., Pantel, P.: From frequency to meaning: Vector space models of se-
mantics. J. Artif. Int. Res. 37(1), 141-188 (2010)

Wubben, S.; van den Bosch, A., Krahmer, E.: Sentence Simplification by Mono-
lingual Machine Translation. In: Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics (ACL 2012): Long Papers - Volume 1.
pp. 1015-1024. Jeju Island, Korea (2012)

Yatskar, M., Pang, B., Danescu-Niculescu-Mizil, C., Lee, L.: For the sake of sim-
plicity: Unsupervised extraction of lexical simplifications from Wikipedia. In: Hu-
man Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics (2010)

Zhu, Z., Bernhard, D., Gurevych, I.: A Monolingual Tree-based Translation Model
for Sentence Simplification. In: Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010). pp. 1353-1361. Beijing, China (2010)

