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Abstract. The well known Aristotelian syllogistic system S consists of 256
moods. We have found earlier that 136 moods are distinct in terms of equal truth
ratios that range in s = [0,1]. The truth ratio of a particular mood is calculated by
relating the number of true and false syllogistic cases that the mood matches.
The introduction of (n − 1) fuzzy existential quantifiers, extends the system to
fuzzy-syllogistic systems n

S, 1 < n, of which every fuzzy-syllogistic mood can
be interpreted as a vague inference with a generic truth ratio, which is deter-
mined by its syllogistic structure. Here we introduce two new concepts, the
relative truth ratio rs = [0,1] that is calculated from the cardinalities of the
syllogistic cases of the mood and fuzzy-syllogistic ontology (FSO). We
experimentally apply the fuzzy-syllogistic systems 2

S and 6
S as underlying logic

of a FSO reasoner (FSR) and discuss sample cases for approximate reasoning.
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1 Introduction

Multi-valued logics were initially introduced by Łukasiewicz [13], as an extension to
propositional logic, which was then generalised by Zadeh using fuzzy sets [22] to fuzzy
logic. After he had introduced approximate reasoning [23], he proposed fuzzy-
syllogistic reasoning as a theory of common sense [24] and discussed fuzzy quantifiers
again in the context of fuzzy logic [25]. However, these initial fuzzifications of syl-
logistic moods were experimentally applied to only a few true moods and did not cover
all moods systematically, in terms of the four syllogistic figures. Only fuzzy quan-
tifications based on interval arithmetic [6] comply to some extend with traditional
figures [12]. The first systematic application of multi-valued logics on syllogisms were
intermediate quantifiers and their reflection on the square of opposition [17]. However
only set-theoretic representation of moods as syllogistic cases allow analysing the
fuzzy-syllogistic systems n

S mathematically exactly, such as by calculating truth ratios
of moods [8] and their algorithmic usage in fuzzy inferencing [9]. Here we present a
sample application of n

S for fuzzy-syllogistic ontology reasoning.
Learning from scratch can be modelled probabilistically, as objects and their

relationships need to be first synthesised from a statistically significant number of
perceived instances of similar objects. This leads to probabilistic ontologies [4, 14, 18],
in which attributes of objects may be synthesised also as objects.
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There are more probabilistic ontology reasoners than fuzzy or possibilistic ones and
most of them reason with probabilist ontologies [10]. Several ontology reasoners
employ possibilistic logic and reason with fuzzy ontologies. The most popular rea-
soning logic being hyper-tableau, for instance in HermiT [15]. Other experimental
reasoning logics are also interesting to analyse, such as fuzzy rough sets and
Łukasiewicz logic [3] in FuzzyDL [1], Zadeh and Gödel fuzzy operators in DeLorean
[2], Mamdani inference in HyFOM [21] or possibilistic logic in KAON [18].
Fuzzy-syllogistic reasoning (FSR) can be seen as a generalisation of both, fuzzy-logical
and possibilistic reasoners.

A fuzzy-syllogistic ontology (FSO) extends the concept of ontology with the
quantities that led to the ontological concepts. A FSO is usually generated proba-
bilistically, but does not preserve any probabilities like probabilistic ontologies [14] or
probabilistic logic networks [7] do. A FSO can be a fully connected and bidirectional
graph.

Several generic reasoning logics are discussed in the literature, like probabilistic,
non-monotonic or non-axiomatic reasoning [20]. Fuzzy-syllogistic reasoning in its
basic form [26] is possibilistic, monotonic and axiomatic.

Syllogistic reasoning reduced to the proportional inference rules deduction,
induction and abduction are employed in the Non-Axiomatic Reasoning System
(NARS) [19]. Whereas FSR uses the original syllogistic moods and their fuzzified
extensions [27].

There is one implementation mentioned in the literature that is close to the concept
of syllogistic cases: Syllogistic Epistemic REAsoner (SEREA) implements
poly-syllogisms and generalised quantifiers that are associated with combinations of
distinct spaces, which are mapped onto some interval arithmetic. Reasoning is then
performed with concrete quantities, determined with the interval arithmetic [16].

First the fuzzy-syllogistic systems n
S are discussed, thereafter fuzzy-syllogistic

reasoning is introduced, followed by its sample application on a fuzzy-syllogistic
ontology and the introduction of relative truth ratios rs.

2 Fuzzy-Syllogistic Systems

The fuzzy-syllogistic systems n
S, with 1 < n fuzzy quantifiers, extend the well known

Aristotelian syllogisms with fuzzy-logical concepts, like truth ratio for every mood and
fuzzy quantifiers or in general fuzzy sets. We discuss first the systems n

S and introduce
them further below as the basic reasoning logic of FSR.

2.1 Aristotelian Syllogistic System S

The Aristotelian syllogistic system S consists of inclusive existential quantifiers w, i.e.
I includes A and O includes E as one possible case:
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Universal affirmative w ¼ A : All S are P : fxj S� P ¼ [ ^ x 2 S \ Pg

Universal negativew ¼ E :All S are not P : fxj x 2 S� P ^ P \ S ¼ [g

Inclusive existential affirmativew ¼ I : Some S are P :

A [ fxj x 2 S \ P _ ðx 2 S \ P ^ P� S ¼ [Þg , A [ fxj x 2 S \ P _ P� S ¼ [g

Inclusive existential negativew ¼ O : Some S are not P :

E[fxj x 2 S� P _ ðx 2 S� P ^ P� S ¼ [Þg , E[fxj x 2 S� P _ P� S ¼ [g

A categorical syllogism w1w2w3F is an inference schema that concludes a quanti-
fied proposition U3 = Sw3P from the transitive relationship of two given quantified
proportions U1 = {Mw1P, Pw1M} and U2 = {Sw2M, Mw2S}:

w1w2w3F ¼ U1 ¼ Mw1P; Pw1Mf g; U2 ¼ Sw2M; Mw2Sf g; U3 ¼ Sw3Pð Þ

where F = {1, 2, 3, 4} identifies the four possible combinations of U1 with U2, namely
syllogistic figures. Every figure produces 43 = 64 moods and the whole syllogistic
system S has 4 � 64 = 256 moods.

2.2 Syllogistic-Cases

Syllogistic cases are an elementary concept of the fuzzy-syllogistic systems n
S, for

calculating truth ratios [8] of the moods algorithmically [9].
For three sets, 7 distinct spaces di, i = [1, 7] are possible, which can be easily

identified in a Venn diagram (Table 1). There are in total j = 96 distinct combinations
of the spaces Dj = d1d2d3d4d5d6d7, j = [1,96] [27], which constitute the universal set of
syllogistic moods. Within that universe, we determine for every mood true and false
matching space combinations (Fig. 1).

Table 1. Binary coding of the 7 possible distinct spaces for three sets.
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2.3 Fuzzy-Syllogistic Moods

We extend the ancient binary truth classification of moods, to a fuzzy classification
with truth values in [0,1]. For this purpose, first the above set-theoretical definitions of
the quantifiers of a particular mood are compared against the set of all syllogistic cases
Dj, j = [1,96], in order to identify true and false matching cases:

True syllogistic cases :Kt ¼ j¼1 [ 96Dj 2 UD
1 \UD

2

� � ! Dj 2 UD
3

False syllogistic cases :Kf ¼ j¼1 [ 96Dj 2 UD
1 \UD

2

� � ! Dj 62 UD
3

where Kt and Kf is the set of all true and false matching cases of a particular mood,
respectively (Fig. 1) and UD is a proposition in terms of its true and false matching
syllogistic cases. For instance, the two premisses U1 and U2 of the mood IAI4 of the
syllogistic system S, match the 10 syllogistic cases Kt = {D4, D19, D67, D24, D43, D46,
D68, D74, D48, D76}, which are all true for the conclusion U3 as well. Thus the mood has
no false cases Kf = Ø.

The truth ratio of a mood is then calculated by relating the amounts of the two sets
Kt and Kf with each other. Consequently the truth ratio becomes either more true or
more false s 2 {sf, st}:

Fig. 1. 9 syllogistic cases Dj of the mood 2/1IA1I4 of the fuzzy-syllogistic systems 2
S.
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More true : st ¼ 1� jKf =ðj jKt þj jKf Þ ¼ 0:545; 1½ � forj jKf \j jKtj

More false : sf ¼ jKt =ðj jKt þj jKf Þ ¼ 0; 0:454½ � forj jKt \j jKf j

where |Kt| and |Kf| are the numbers of true and false syllogistic cases, respectively.
A fuzzy-syllogistic mood is then defined by assigning an Aristotelian mood w1w2w3F
the structurally fixed truth ratio s:

Fuzzy-syllogisticmood : w1w2w3F; sð Þ

The truth ratio identifies the degree of truth of a particular mood, which we will
associate further below in fuzzy-syllogistic reasoning with generic vagueness of
inferencing with that mood.

The analysis of the Aristotelian syllogistic system S with these concepts reveals
several interesting properties, like S has 136 distinct moods, 25 true moods s = 1, of
which 11 are distinct, and 25 false moods s = 0, of which 11 are distinct, and that S is
almost point-symmetric on syllogistic cases and truth ratios of the moods [11, 27].

2.4 Fuzzy-Syllogistic System 2
S

In the fuzzy-syllogistic system (FSS) 2
S, the universal cases A and E are excluded from

the existential quantifiers I and O, respectively:

Exclusive existential affirmative : Some S are P :w ¼ I : xj x 2 S\P _ P� S ¼ [f g

Exclusive existential negative : Some S are not P :w ¼ O : xj x 2 S� P _ P� S ¼ [f g

For instance the mood IAI4 of S, becomes 2/1IA1I4 in 2
S. Because of the exclusive

existential quantifier 2/1I, the case D46 is no more matched by the first premiss U1 and
the conclusion U3 becomes false for the case D19 (Fig. 1).

The analysis of the FSS 2
S shows that 2

S has 70 distinct moods, 11 true moods
s = 1, of which 5 are distinct, and 40 false moods s = 0, of which 13 are distinct, and
that 2

S is not point-symmetric [11, 27].

2.5 Fuzzy-Syllogistic System n
S

By using (n − 1) fuzzy-existential quantifiers, the total number of fuzzy-syllogistic
moods of the FSS n

S increases to (2n)3. For instance the mood IAI4 of S can be
generalised in n

S to n/k1IAk2I4, k1, k2 = [2, n]. n/k1IAk2I4 consists of (n − 1)2

fuzzy-moods, all having the very same 9 syllogistic cases (Fig. 1).
Same linguistic terms used in different FSSs do not necessarily equal each other.

For instance, “most” may have different value ranges in the FSSs 3
S, 4

S, 5
S, 6

S and
therefore are in general not equal 3/2I 6¼ 4/3I 6¼ 5/3I 6¼ 6/4I, respectively. Likewise for
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“half” in 4
S and 6

S the quantifiers may not exactly equal 4/2I 6¼ 6/3I, respectively
(Table 2).

3 Fuzzy-Syllogistic Ontology

A fuzzy-syllogistic ontology (FSO) is an extended semantic network, whose concept
relationships consist of possibly multiple bi-directional fuzzy quantifiers w. A FSO may
be obtained in two ways, by extending an existing crisp ontology or by extending a
probabilistically learned ontology. Here we provide a definition for FSO and discuss
learning FSOs, along with some distinguishing properties of FSOs.

3.1 Definition

A FSO consists of concepts, their relationships and assertions on them, whereby all
quantities are given with fuzzy quantifications:

Fuzzy-syllogistic ontology : FSO ¼ k C; R; Að Þ

where C is the set of all concepts, R is the set of all binary relationships between the
concepts, A is the set of all assertions and k is a particular FSS k

S, k = [2, n]. A FSO is
in compliance with a particular FSS k

S, if all quantifiers w of the FSO comply with k
S

(Fig. 2).

3.2 Learning Fuzzy Quantifiers

Although existing learning approaches generate ontological concepts and their rela-
tionships through probabilistic analysis of domain data [4, 14, 18], the quantities that

Table 2. Value ranges of affirmative fuzzy quantifiers# of n fuzzy-syllogistic systems n
S
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actually imply the concepts and relationships, are not preserved in probabilistic
ontologies [10]. Exactly this data, ie the quantities of the samples, needs to be pre-
served in the learning phase of a FSO, as they imply the fuzzy quantifiers w of the
fuzzy moods (w1w2w3F, s).

For any two concepts ci and ci+1 of a FSO, all binary relationships have to be stored
with the FSO. Hence, all possible bi-directional binary relationships between all
concepts of a FSO constitute a poly-bi-directional graph (Fig. 2):

Poly-uni-directional binary relationships :

Rci;ciþ 1 ¼ r1 ci; ciþ 1ð Þ; . . . ; ri;iþ 1 ci; ciþ 1ð Þ� �
; 2\i� o

Poly-bi-directional binary relationships : Rci;ciþ 1 [Rciþ 1;ci; 2\i� o

Since the data may imply for any three concept multiple bi-directional relation-
ships, multiple ternary relationships may be generated for those concepts. Every ternary
relationship of a FSO = k(C, R, A) may be interpreted as a fuzzy-syllogistic mood:

Ternary relationships=fuzzy-syllogisticmoods :

w1w2w3F; sð Þ ¼ w12 ri;iþ 1 ci; ciþ 1ð Þ; riþ 1;i ciþ 1; cið Þ� ��

w22 riþ 1;iþ 2 ciþ 1; ciþ 2ð Þ; riþ 2;iþ 1 ciþ 2; ciþ 1ð Þ� �
w3 ¼ ri;iþ 2 ci; ciþ 2ð Þ; s�

Ones concepts and relationships of a FSO = k(C, R, A) are learned, the final step is
to determine the most appropriate fuzzy quantifier system, i.e. FSS, kS. This is achieved
by matching the average quantity distributions between all concepts of the FSO to the
closest FSS k

S.
Since fuzzy quantifiers are calculated by accumulating samples, new samples can

continuously be learned by cumulatively updating the quantifiers. The most appropriate
FSS k

S out of n
S, k = [2, n] can be re-calculating, if necessary. For instance, in case of

significant amounts of quantifier updates, which change the quantity distributions.

Fig. 2. Poly-bi-directional fuzzy-quantified binary concept relationships of a fuzzy-syllogistic
ontology (FSO).
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3.3 Relative Truth Ratio

Relative truth ratios are calculated from the exact quantities of all syllogistic cases of a
particular mood, rather than from just the amount of the cases:

Relative true :rst ¼ kf=ðkf þ ktÞ for kf\kt

Relative false :rsf ¼ kt=ðkt þ kfÞ for kt\kf

Fig. 3. Sample fuzzy-syllogistic ontology with affirmative relationships and the best matching
fuzzy-syllogistic moods from the syllogistic Figs. 1 and 2.

Fig. 4. Sample fuzzy-syllogistic ontology with affirmative relationships and the best matching
fuzzy-syllogistic moods from the syllogistic Figs. 3 and 4.

176 B.İ. Kumova



where kt ¼j¼1
PjKtj jDt

jj and kf ¼j¼1
PjKfj jDf

j j is the total number of elements accu-
mulated over all true and false syllogistic cases, respectively. Where |Kt| and |Kf| is the
number of true and false cases of the mood, respectively. Accordingly, we re-define the
truth of a fuzzy-syllogistic mood in terms of relative truth ratio rs:

Fuzzy-syllogisticmoodwith relative truth ratio : w1w2w3F;
r sð Þ

The structural truth ratio s of a particular mood represents the generic vagueness of
the mood and is constant, whereas the relative truth ratio rs adjusts s by weighting
every case of the mood with its actual quantity.

The concept of a relative truth ratio is a set-theoretic representation of a weighted
logic, which is not new in the literature [5].

3.4 Mood Semantics

Truth ratios s, rs of a mood provide solely structural evaluations for any propositions
loaded on the mood. The semantics of a mood for given sample propositions can be
determined with following two principle approaches:

• Top-down: Specifying from existing knowledge; possibilistic.
• Bottom-up: Learning from data sources; probabilistic.

In either approach the objective is to determine for reasonable concepts {M, P, S},
reasonable propositions U12{Mw1P, Pw1M}, U22{Sw2M, Mw2S} with reasonable
fuzzy quantifiers w1, w2, w3 and to find the most reasonable concluding proposition
U3 = (S, P), which is the one with the highest truth ratio (Fig. 5).

Fig. 5. Learning fuzzy syllogistic ontologies (FSO) from various sources and fuzzy-syllogistic
reasoning with FSOs.
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The specification of a sample FSO is sketched for the below discussed reasoning
examples (Figs. 3 and 4). The quantifier distributions of the FSO represent personal
perceptions from that domain. Therefore relative truth ratios cannot be calculated for
the moods.

In bottom-up approaches, concepts and their relationships are synthesised from
probability distributions that are calculated from source data. Such a process is typi-
cally associated with learning ontologies [10, 14]. In case of statistically sufficient
numbers of samples found in the source data for ever concept and every concept
relationship, we can assume that a learned FSO sufficiently represents the domain. and
that uncertainties become increasingly more tolerable and eventually neglectable. Since
source data is available in this approach, relative truth ratios rs can be calculated for the
moods.

Thus mood semantics of FSOs are learned from the source data. The semantic of a
sample syllogism is determined by the FSR, by searching for the fuzzy mood with the
highest truth ratio s.

4 Fuzzy-Syllogistic Reasoning

The fuzzy-syllogistic systems S, 2S and 6
S are currently implemented experimentally as

the reasoning logic of the fuzzy-syllogistic reasoner (FSR), for reasoning over FSOs
[26]. Our objective is to generalise the logic of the reasoner to n

S and to use it as a
cognitive primitive for modelling other cognitive concepts within a cognitive archi-
tecture. We now sketch the algorithmic design of the FSR.

4.1 Sample Reasoning Processes

For any directly connected ternary concept relationship of the FSO, seven distinct
relationships are possible (Table 1). FSR is concerned with identifying for any given
concept c2C, all possible ternary concept relationships r2R, r = {M,P,S}, of a given
FSO = k(C, R, A) and to reason with the most appropriate fuzzy-syllogistic moods of
the FSS k

S, k = [2, n]. Whereby associated assertions a2A may be used for exem-
plifying a particular reasoning.

For instance, for the concept c = Bicycle, multiple ternary relationships
r = {Bicycle, Child, Sports} exist in the sample FSO = 6(C, R, A) (Fig. 3). The rea-
soner iterates for all moods of the FSS 6

S and matches the moods with the closest
fuzzy-syllogistic quantities of relationships r. As best match the mood 6/k1IAk2I4,
0 < k1,k2 < 6 is found for this particular relationship r.

In the below example with S, I in U3 may include A and therefore is less true.
Whereas in 3

S, 3/1I in U3 is still too general. The best matching quantifiers are found in
6
S (Fig. 4).
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4.2 Reasoning Algorithm

For a FSO = k(C, R, A) and any given directly connected three concepts c1, c2, c32C,
the FSR searches all fuzzy moods for the highest matching truth ratio s. That mood is
determined as the most reasonable syllogism for the given ternary concepts.

The steps of the reasoning algorithm are as follows:

4.3 Less Reasonable FSOs

For the sample domain (Figs. 3 and 4), the FSSs S and 3
S are less reasonable than 6

S,
because their quantifiers cover a too broad range or the coverage of the quantifiers of 6S
are closer to the domain data.

In the Aristotelian system S, the existential quantifier I may include A, thus in the
below example, the proposition U1 is wrong for the A case. U1 is further wrong for all
bicycles having larger wheel sizes than those sizes more suitable for children.

The below example is based on 3
S. The quantifier 3/2I = Most of the proposition U1

expresses a closer quantity representation of the domain data than I = Some, since it
excludes the above mentioned quantity ranges. Although, the quantity 3/2I = Several in
U3, covers the domain quantity closer than I = Some, it matches weaker than 6/4I =
Few of 6

S. Here we assume that in reality only few sports are actually suitable for
children, ie most spots become suitable for children only in simplified versions.

In general, the closer a particular FSS k
S to the quantity distributions of the domain

data, the more realistic conclusions can be expected from the FSR.

4.4 Cognitive Primitive

The FSS n
S serves as the underlying logic of the FSO and the FSR. The current

implementation of the components comprises further learning FSOs, which is also
based on the same logic (Fig. 4).
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Learning FSOs is the emergent component of the symbolic FSR. Therefore, the
depicted architecture is a hybrid cognitive architecture, in which the FSS serves as a
cognitive primitive logic.

5 Conclusion

The FSS n
S was introduced as the fundamental logic of the FSR and its application to

approximate reasoning on FSOs was shown on the sample FSSs 2
S and 6

S. The relative
truth ratio rs of a mood was introduced, which adapts the structural truth ratio s of a
mood to the cardinalities of the syllogistic cases of the mood. FSR with FSOs has been
proposed as a generic possibilistic reasoning approach, since the underlying logic n

S is
structurally generic. We have further proposed learning mood semantics statistically.

Currently we are generalising the FSS analysis tool, such that all reasonable sys-
tems n

S can be exploited algorithmically for realistic numbers of quantifiers [2, n]. That
will enable us to implement a comprehensive FSR. Currently we are further developing
applications for learning FSOs from English text sources and from robotic sense-act
data relationships. Our ultimate goal is to employ the components learning FSOs and
FSR.
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