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Abstract. Gender recognition has applications in human-computer interaction, 

biometric authentication, and targeted marketing. This paper presents an imple-

mentation of an algorithm for binary male/female gender recognition from face 

images based on a shunting inhibitory convolutional neural network, which has 

a reported accuracy on the FERET database of 97.2%. The proposed hard-

ware/software co-design approach using an ARM processor and FPGA can be 

used as an embedded system for a targeted marketing application to allow real-

time processing. A threefold speedup is achieved in the presented approach com-

pared to a software implementation on the ARM processor alone. 

Keywords: real-time · embedded system · computer vision · FPGA · neural 

network · co-design · hardware acceleration 

1 Introduction 

Gender recognition has important applications for developing computer systems that 

are better able to identify and interact with humans, from biometric authentication to 

targeted marketing and advertising. However, this is a non-trivial task as there are many 

variations in facial features to recognise, as well as other environmental conditions that 

can make accurate characterisation difficult and increase the computational complexity. 

Even for humans, accurate gender recognition can be challenging as elements of phys-

ical appearance derived from genetic makeup, such as bone structure, may not be accu-

rate indicators of gender or gender preference, and can lead to erroneous identification. 

A targeted marketing application is our focus, where we aim to determine certain 

demographic characteristics of the individuals at an intersection where they can see a 

digital billboard, so that the digital billboard can show the most appropriate advertise-

ment for the audience. In this application, a real-time embedded system implementation 

is required; images must be processed in real-time so that the right advertisement is 
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shown to the current audience, but because it is an embedded implementation, power 

consumption and system cost should also be minimised. 

The detection of human faces through computer vision is well established. However, 

we often need more information about the audience; gender recognition is one step 

towards more intelligent applications. There are a number of gender recognition algo-

rithms in the literature. One of them is an algorithm developed by Tivive and Bou-

zerdoum [1], which uses a shunting inhibitory convolution neural network [2] to 

identify faces in images and classify them as male or female. The neuron model used 

in the neural network is based on excitatory and inhibitory weights, which is a 

biologically plausible explanation for how the brain processes visual images [3]. The 

network is also structured to allow for a certain degree of shift and distortion invariance; 

critical for processing real-world images that may not be as controlled as researchers 

would like them to be. This algorithm achieved a reported accuracy on the Facial 

Recognition Technology (FERET) [13] database of 97.2%. 

This paper focuses on the gender recognition part of the algorithm presented in [1], 

which was developed and trained in MATLAB, and investigates the feasibility and 

performance of implementation in an embedded system. Therefore, the first step is to 

implement the algorithm in C. To satisfy the real-time constraints on an embedded 

platform and reduce the design time, a HW/SW co-design approach has been adopted 

in our implementation. A Terasic DE1-SoC development board featuring an Altera 

Cyclone V FPGA which includes a dual-core ARM Cortex-A9 processor is used as our 

implementation platform. 

The remainder of the paper is organised as follows; Section II discusses the 

motivating application in more depth and Section III investigates some of the related 

work in this area. Section IV describes the steps taken to implement the algorithm and 

the portions of the algorithm targeted for hardware acceleration on the FPGA fabric, 

Section V presents the experimental results, and Section VI discusses areas for future 

work. 

2 Motivating Application 

At a busy intersection, a digital billboard is mounted on one of the buildings so that it 

is visible to approaching vehicles. The advertisement on the billboard changes once 

every ten seconds; however, at this stage, the billboard cycles through a predefined set 

of advertisements. Decades of research have shown that there are differences in con-

sumer behaviour and preferences between the two main gender types, male and female 

[4]. Marketers are therefore interested in targeting their advertisements towards specific 

genders; showing the wrong advertisement is a waste of time and money, and results in 

an inefficient advertising spend. 

A camera could be placed above the billboard, scanning the faces of front-seat oc-

cupants of approaching vehicles and pedestrians. Using a real-time gender recognition 

algorithm, the percentage of males and females (the gender distribution) currently look-

ing at the billboard can be determined. An appropriate advertisement can be selected 

that better targets that particular audience, turning the passive billboard into a more 



active advertising medium. This notion of a “smart billboard” is an example of intelli-

gent systems; adding computing capabilities to an otherwise static system. Addition-

ally, by counting the number of faces, client companies could be billed more accurately 

for the number of actual impressions made. 

In order to achieve this, the gender distribution of the audience must be identified in 

real-time. This is not difficult for a single face, but more challenging when there are 

many faces, changing at high speed as vehicles move through the intersection. As the 

faces are moving, there may also be blurring effects that make some images unusable, 

so gender recognition may need to be performed on the same face multiple times in 

different positions and orientations in order to achieve accurate identification. 

During peak times, assuming the vehicles are not currently stopped at a traffic light, 

a busy intersection could have as many as a hundred unique individuals travelling 

through the intersection, or in marketing terms, a hundred impressions, every ten sec-

onds. This means that, assuming that the extraction of faces is dealt with by another 

processor, a gender recognition embedded system in this application should achieve at 

least ten successful identifications per second in order to provide an accurate gender 

distribution to inform advertisement selection. 

3 Related Works 

Ng et al. [5] presented a comprehensive survey of vision-based human gender recogni-

tion, which shows a large amount of activity in this area. They report that a human can 

achieve roughly 95% accuracy in male/female binary gender recognition. In computer 

vision, 99.8% accuracy has been achieved in controlled environments [6], while in un-

controlled environments the accuracy is up to 95% [7]. Ng et al. also describe potential 

applications, in particular demographic classifiers for customer relationship and mar-

keting systems, which require the ability to process 15-20 images per second. 

In the embedded context, there have been a few implementations of gender recogni-

tion algorithms. Perhaps the most significant is Azarmehr et al. [8], which uses a Sup-

port Vector Machine (SVM) and Radial Basis Function (RBF) Classifier on a 1.7GHz 

quad-core Snapdragon 600 SoC to characterise gender in 2.3ms per image with 95% 

accuracy. Their algorithm also detects faces and characterises age, with an average per-

formance of 15 to 20 frames per second. 

Irick et al. briefly report in [9] an SVM algorithm implemented purely on an FPGA, 

achieving only 88% accuracy but processing a massive 1,100 images per second at 

100MHz. Irick et al. also reported in a separate paper [10] an artificial neural network 

(ANN) based system implemented on an FPGA that achieves an accuracy of 83.3%, 

processing roughly 30 images per second. Ratnakar and More [11] report an FPGA-

based system that achieves 78% accuracy with a “propagation delay” of 1.9 seconds. 

However, there are few implementations in the existing literature bringing these two 

paradigms together – utilising a hard processor core to better implement floating point 

arithmetic and maintain precision and accuracy while leveraging the FPGA fabric to 

improve throughput in order to meet real-time requirements. An important example is 



Gudis et al. [12], but in general there are gaps in the literature. There are also few im-

plementations of gender classification using ANNs in an embedded context. While 

many gender recognition algorithms use SVMs for higher accuracy and modelling flex-

ibility, the ANN can characterise multiple outputs based on multiple input factors or 

features, and is more suited for fixed hardware implementations that seek to avoid un-

used capacity or reliance on dynamic reconfiguration. To our knowledge, this paper 

describes the first implementation of an ANN-based gender recognition algorithm in 

an embedded system using both a hard core processor and FPGA fabric. 

4 Algorithm Implementation 

To improve the real-time performance of the software implementation of the gender 

recognition algorithm, one option is a hardware-only implementation using a hardware 

description language. However, this requires a large amount of development time and 

may use a lot of hardware resources for certain operations, such as floating point cal-

culations. Considering the availability of FPGA chips which have hard core processors 

as well as configurable FPGA resources, HW/SW co-design can be a better approach. 

The DE1-SoC development board is used as the target platform with a Cyclone V 

5CSEMA5F31C6 device which has a dual-core ARM Cortex A9 (as hard processor 

system or HPS) and FPGA logic cells, DSP blocks, and memory resources. This allows 

a developer to easily segment an application, leveraging the flexibility of higher-level 

programming of the hard processor system as well as the reconfigurability and paral-

lelism provided through the FPGA resources. 

To compare the performance of the algorithm in an embedded context, two versions 

of the code are developed; one that executes purely on the ARM processor (i.e. in soft-

ware), and one that executes on the ARM processor with some parts offloaded to the 

FPGA (i.e. software-hardware co-design). The original algorithm uses a number of 

built-in MATLAB functions, such as imfilter, which have to be rewritten from first 

principles in C. After the software-only implementation is complete, execution profil-

ing is used to identify the bottlenecks, which are suitable candidates for hardware ac-

celeration on the FPGA fabric. 

The implemented algorithm has three main stages, as depicted in Figure 1, where 

each stage implements one layer of the ANN, depicted in Figure 2. The first layer (fil-

tering) uses Gabor filters for multi-scale oriented feature extraction (the circular and 

regular Gabor filters have the same steps and structure but different coefficients), the 

NAKA-Rushton equation for contrast enhancement, and local averaging for smoothing. 

The hidden layer (feature detection) uses adaptive masks and activation functions based 

on the shunting inhibition neuron model [2], whose weights are learned from training 

data. The output layer (gender classification) filters the outputs of the previous stage by 

a set of trained weights to determine the likelihood that the face is male and the likeli-

hood that the face is female. The outputs of the classifier are scaled to the range -1 to 

1, where -1 to 0 indicates female and 0 to 1 indicates male. 



 
Fig. 1. Flowchart of the gender recognition algorithm 

As shown in Table 1, execution profiling using GNU gprof revealed that the primary 

bottleneck is the Gabor filters. Figure 3 shows how the Gabor filter uses a 5x5 window 

with real and imaginary components and therefore has a computational complexity of 

Θ(50N) for each pass (plus sum and absolute value operations), where N is the number 

of pixels in the image. 
 This is especially significant as the first stage of the algorithm requires 44 passes of 
the filter with various sets of coefficients for each image. This operation became the 
primary target for hardware acceleration, as the operations on the individual pixels can 
be executed in parallel in a single logical cycle using combinational circuits, reducing 
the computation time to Θ(N) (plus sum and absolute value operations). However, it is 
important to note that this introduces data transmission overheads between the hard core 
processor and the FPGA fabric, so the cost must be weighed against the benefits. 



 
Fig. 2. A three layer binary-connected Shunting Inhibitory Convolutional Neural 

Network (SICoNNet), from [1] 

 

Table 1. Execution profiling of the algorithm on the ARM Processor,  

executed over 62 iterations/images 

Function Time per call (ms) # of calls Total Time (s) Time (%) 

Circular Gabor 

and Gabor Filters 
2.4 2728 6.56 73.87 

Adaptive Mask 

Filter 
0.33 4960 1.66 18.69 

2x2 Local 

Averaging 
0.04 7440 0.29 3.27 

NAKA-Rushton 

Equation 
0.06 2480 0.14 1.58 

Normalisation 0.05 2480 0.12 1.35 

Activation 

Function 
0.01 4960 0.06 0.68 

Activation 

Weighting 
0.01 4960 0.04 0.45 

  



 

Fig. 3. Diagram of Gabor filter operation 

 

Fig. 4. Computer architecture of dual-core HPS-FPGA system 

 The filter described in VHDL is a kernalised correlation filter designed to complete 
part of the imfilter function from MATLAB. When passed a set of imaginary and real 
coefficients (which are stored in memory as fixed point numbers), the filter does the 
required multiplication operations, sums the products, and then calculates the absolute 
value by determining the magnitude of the imaginary and real sums. The filter is simu-
lated in Modelsim and tested. 
 After implementing the filter in VHDL, the challenge becomes passing the data be-
tween the hard processor and the FPGA in an efficient manner. Iterating through the 
image is controlled by the HPS (i.e. ARM Cortex A9), with pixel and coefficient values 
passed to the FPGA. The HPS-FPGA bridge, which uses the AMBA AXI bus protocol, 
can at times be the bottleneck, as the handshaking required to retrieve data from the HPS 



memory and pass it to the FPGA is non-negligible. A number of steps are taken to miti-
gate this issue; firstly, the coefficient values and pixel values are concatenated as much 
as possible to use the full 32-bit bus (also known as data packing), and a shifting window 
(or sliding window) is used on the filter to minimise the number of data transfers required 
between the HPS and the FPGA fabric. 
 Finally, the dual-core nature of the HPS is leveraged by dividing the algorithm into 
two threads, each responsible for the computations of half of the processing units, run-
ning independently to ensure no race conditions. This also utilises two identical filters 
on the FPGA to calculate output values independently. The overall architecture is pre-
sented in Figure 4. Using this approach, the computation time of the algorithm can be 
significantly reduced by using a processor with a larger number of cores in order to run 
more threads in parallel.  

5 Results 

Two test systems are set up: a desktop PC running Cygwin in Windows 7 on a 3.60GHz 

i7 processor, and a DE1-SoC development board with Cyclone V FPGA 

(5CSEMA5F31C6) from Altera, which has a dual-core ARM Cortex-A9 processor run-

ning Linux at 400MHz and FPGA logic running at 100 MHz.  

A test set of 62 cropped images from the FERET database [13], with 30 male images 

and 32 female images, is used on each platform. This test set was provided in the 

demonstration code for [1], allowing a fair comparison of performance. The images are 

resized to 32x32 pixels and converted to greyscale before the processing begins, then 

pre-loaded into memory for the purposes of testing the algorithm speed. As shown in 

Table 2, the final implementation using two threads with a shifting window filter 

achieves a threefold speedup in comparison to the implementation that uses a single 

core on the HPS only. The performance of each iteration of the system is also included 

to show how each optimisation improves the performance. In each case the software 

optimisation from the gcc compiler is left at the default -O0. 

Table 2. Execution times for all 62 test images, and per image 

Implementation  Total Execution 

Time (s) 

Execution Time per 

Image (ms) 

Desktop PC – MATLAB 8.50 137.10 

Desktop PC – C 0.58 9.35 

ARM Processor (HPS) Only 

(single core)  
8.88 143.23 

Unoptimised HPS-FPGA 

Implementation 
27.03 435.97 

Shifting Window HPS-FPGA 

Implementation 
6.08 98.06 

Dual-core Shifting Window HPS-

FPGA Implementation 
2.99 48.23 

 



The actual speed of the image processing is less important than the speed-up; images 

can be processed faster with higher clock frequencies or more cores, but it is important 

that a significant speed-up can be achieved by leveraging intelligently implemented 

hardware acceleration on an FPGA with relatively low development time and cost 

(compared to pure hardware implementation of the algorithm). With an execution time 

of 3 seconds per image, using this implementation we can process 20 faces per second, 

which is double the rate required for the motivating application.  

As shown in Table 3, the speed-up is largely attributable to the fact that the Gabor 

Filter calculations are now performed in hardware. As the filter on the FPGA fabric is 

implemented combinationally, results are available one logical clock cycle after all in-

puts are provided, i.e. 10ns in a 100MHz system. The bottleneck becomes the data 

transmission between the HPS and FPGA rather than the computation itself. As men-

tioned previously, the overhead of the HPS-FPGA bridge is significant. This is a good 

place to start for future optimisations. However, it is important to note that the propor-

tion of the total execution time that is spent on the filter operation is similar for both 

the Desktop PC (65.52%) and final embedded implementation (65.89%). 

Importantly, the loss of precision when moving from the MATLAB algorithm to the 

HPS+FPGA implementation is small and in many cases negligible. In order to save on 

computation resources and memory on the FPGA, some of the floating point operations 

were converted to fixed point. 

Table 3. Execution times for the Gabor Filters in Stage 1 of the algorithm 

Implementation Filter Total Time (s) Filter Execution Time (%) 

Desktop PC – C 0.38 65.52 

ARM Processor (HPS) Only 

(Single core) 
6.56 73.87 

Unoptimised HPS-FPGA 

Implementation 
24.68 91.31 

Shifting Window HPS-FPGA 

Implementation 
3.77 62.01 

Dual-core Shifting Window 

HPS-FPGA Implementation 
1.97 65.89 

 

As shown in Figure 5, for cases where the gender is more certain (i.e. the absolute 

value for the score of the detected gender is larger than 0.9), the loss of precision is in 

the order of 1% or less. As the gender becomes less certain, the error increases and can 

be as high as 10%. Overall, the accuracy of the algorithm remains 96-97%. Also as 

shown in Figure 5, the algorithm is capable of working on a variety of image conditions, 

with different face orientations/poses and lighting, as well as artefacts such as glasses 

and beards. However, when the image is not cropped properly, and contains either part 

of a single face or part of more than one face, then the ability of the algorithm to make 

a robust characterisation of gender decreases (e.g. the last example). 

 



 

Fig. 5. A sample of face images and MATLAB / Embedded gender scores – scores larger than 0 

are male, scores less than 0 are female. Note that the model has low confidence where the absolute 

value of the gender score is lower than 0.8, such as in the last two examples. This is usually when 

part of the face has been obscured, or there are in fact multiple faces in the image. 

6 Future Work 

Future development can consider new applications as well as further improving the 

performance and energy efficiency of the algorithms. Further investigation should be 

done into improving the data transmission rate between the HPS and FPGA fabric, as 

this has become a significant bottleneck in the system. For example, the FPGA could 



be given access to the main memory as done in [12], and simply passed an address from 

the HPS, so that the FPGA can then retrieve 25 or 50 contiguous values directly from 

memory. Alternatively, a point-to-point connection could be used between the HPS and 

FPGA fabric. 

An important application of this work may be in facial recognition systems; if an 

algorithm is attempting to match a face found in an image to a database of known faces, 

then determining the gender first as a top-level characteristic can greatly reduce the 

search space which may result in saving time and energy. This can be combined with 

other facial characteristics such as age category and hair or skin colour or tone to greatly 

speed up facial recognition in large databases. However, there is an important limita-

tion; since the original neural network was trained with mostly up-right frontal face 

images, the gender detection algorithm may fail in situations where the camera has an 

oblique or side view of the face. Since faces in the real world cannot be constrained to 

always be facing the camera, the algorithm should potentially be retrained to include 

faces in different orientations. Alternatively, multiple networks can be trained depend-

ing on the view of the face, with the weights of the neurons stored in the HPS memory. 

If a face detector can also determine the orientation of the face, then we can follow the 

same procedure as described in this paper, but loading different weights as required. 

As discovered through implementing the algorithm in two threads, the algorithm is 

highly parallelisable as each individual neuron could be computed independently, i.e. 

there are no dependencies between neurons. In this paper we have not considered map-

ping the ANN structure directly to the FPGA fabric. More parts of the algorithm could 

be shifted to the FPGA or more cores could be used to leverage more parallelism. How-

ever, this should be done only if the performance gain of hardware acceleration is larger 

than the overhead loss of transmitting data between the HPS and FPGA. 

7 Conclusion 

In this paper, we have presented an embedded implementation of real-time gender 

recognition for a targeted marketing application, where the efficacy of a billboard can 

be improved by determining the gender distribution of the audience. A software-hard-

ware co-design approach is taken to optimise the throughput of a convolutional neural 

network-based gender recognition algorithm while maintaining a high level of accuracy 

so that it can operate in real-time. After porting the algorithm from MATLAB to C, the 

main bottleneck is identified using execution profiling. By moving the Gabor filter into 

hardware on the FPGA and performing further optimisations such as data packing and 

using a shifting window, a threefold speedup is achieved compared to a software im-

plementation on an ARM processor alone. This allows 20 faces to be processed per 

second on an embedded platform, double the throughput required in the motivating 

application. This implementation satisfies the embedded requirements of the target ap-

plication. 
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