Lecture Notes in Computer Science

Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison Lancaster University, Lancaster, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Friedemann Mattern ETH Zurich, Zürich, Switzerland John C. Mitchell Stanford University, Stanford, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel C. Pandu Rangan Indian Institute of Technology, Madras, India Bernhard Steffen TU Dortmund University, Dortmund, Germany Demetri Terzopoulos University of California, Los Angeles, CA, USA Doug Tygar University of California, Berkeley, CA, USA Gerhard Weikum Max Planck Institute for Informatics, Saarbrücken, Germany More information about this series at http://www.springer.com/series/7412

Bjoern Menze · Georg Langs Albert Montillo · Michael Kelm Henning Müller · Shaoting Zhang Weidong Cai · Dimitris Metaxas (Eds.)

Medical Computer Vision: Algorithms for Big Data

International Workshop, MCV 2015 Held in Conjunction with MICCAI 2015 Munich, Germany, October 9, 2015 Revised Selected Papers

Editors Bjoern Menze TU München Munich Germany Sierre Georg Langs Medical University of Vienna Wien Austria USA Albert Montillo University of Texas Southwestern Medical Center Dallas, TX Sydney USA Michael Kelm Siemens AG Erlangen Germany

Henning Müller University of Applied Sciences Western Switzerland (HES-SO) Sierre Switzerland

Shaoting Zhang University of North Carolina Charlotte USA

Weidong Cai University of Sydney Sydney Australia

Dimitris Metaxas State University of New Jersey Rutgers Piscataway, NJ USA

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-319-42015-8 ISBN 978-3-319-42016-5 (eBook) DOI 10.1007/978-3-319-42016-5

Library of Congress Control Number: 2016946962

LNCS Sublibrary: SL6 - Image Processing, Computer Vision, Pattern Recognition, and Graphics

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG Switzerland

Preface

This book includes articles from the 2015 MICCAI (Medical Image Computing for Computer Assisted Intervention) workshop on Medical Computer Vision (MCV) that was held on October 9, 2015, in Munich, Germany. The workshop followed up on similar events in the past years held in conjunction with MICCAI and CVPR.

The workshop obtained 22 high-quality submissions that were all reviewed by at least three external reviewers. Borderline papers were further reviewed by the organizers to obtain the most objective decisions for the final paper selection. Ten papers (45%) were accepted as oral presentations and another five as posters after the authors responded to all review comments. The review process was double-blind.

In addition to the accepted oral presentations and posters, the workshop had three invited speakers. Volker Tresp, both at Siemens and Ludwig Maximilians University of Munich, Germany, presented large-scale learning in medical applications. This covered aspects of image analysis but also the inclusion of clinical data.

Pascal Fua of EPFL, Switzerland, discussed multi-scale analysis using machine-learning techniques in the delineation of curvilinear structures. Antonio Criminisi presented a comparison of deep learning approaches with random forests and his personal experiences in working with and comparing the two approaches.

The workshop resulted in many lively discussions and showed well the current trends and tendencies in medical computer vision and how the techniques can be used in clinical work and on large data sets.

These proceedings start with a short overview of the topics that were discussed during the workshop and the discussions that took place during the sessions, followed by the one invited and 15 accepted papers of the workshop.

We would like to thank all the reviewers who helped select high-quality papers for the workshop and the authors for submitting and presenting high-quality research, all of which made MICCAI-MCV 2015 a great success. We plan to organize a similar workshop at next year's MICCAI conference in Athens.

December 2015

Bjoern Menze Georg Langs Henning Müller Albert Montillo Michael Kelm Shaoting Zhang Weidong Cai Dimitris Metaxas

Organization

General Co-chairs

Bjoern Menze, Switzerland Georg Langs, Austria Albert Montillo, USA Michael Kelm, Germany Henning Müller, Switzerland Shaoting Zhang, USA Weidong Cai, Australia Dimitris Metaxas, USA

Publication Chair

Henning Müller, Switzerland

International Program Committee

Allison Nobel	University of Oxford, UK
Cagatay Demiralp	Stanford University, USA
Christian Barrillot	IRISA Rennes, France
Daniel Rueckert	Imperial College London, UK
Diana Mateus	TU München, Germany
Dinggang Shen	UNC Chapel Hill, USA
Ender Konukoglu	Harvard Medical School, USA
Guorong Wu	UNC Chapel Hill, USA
Hayit Greenspan	Tel Aviv University, Israel
Hien Nguyen	Siemens, USA
Horst Bischof	TU Graz, Austria
Jan Margeta	Inria, France
Juan Iglesias	Harvard Medical School, USA
Jurgen Gall	Bonn University, Germany
Kayhan Batmanghelich	MIT, USA
Kilian Pohl	Stanford University, USA
Le Lu	NIH, USA
Lin Yang	University of Florida, USA
Luping Zhou	University of Wollongong, Australia
Marleen de Bruijne	EMC Rotterdam, The Netherlands
Matthew Blaschko	Ecole Centrale Paris, France
Matthew Toews	Harvard BWH, USA

Matthias Schneider	ETH Zurich, Switzerland
Michael Wels	Siemens Healthcare, Germany
Paul Suetens	KU Leuven, Belgium
Ron Kikinis	Harvard Medical School, USA
Ruogu Fang	Florida International University, USA
Tom Vercauteren	University College London, UK
Vasileios Zografos	TU München, Germany
Yang Song	University of Sydney, Australia
Yiqiang Zhan	Siemens, USA
Yefeng Zheng	Siemens Corporate Research, USA
Yong Xia	Northwestern Polytechnical University, China
Yong Fan	University of Pennsylvania, USA
Yue Gao	UNC Chapel Hill, USA

Sponsors

European Commission 7th Framework Programme, VISCERAL (318068).

Modeling Brain Circuitry over a Wide Range of Scales (Invited Paper)

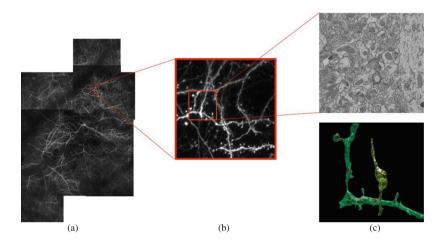
Pascal Fua and Graham Knott

EPFL, 1015 Lausanne, Switzerland Pascal.Fua@epfl.ch, Graham.Knott@epfl.ch http://cvlab.epfl.ch/research

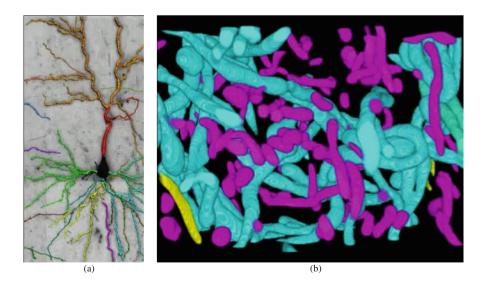
Abstract. We briefly review the Computer Vision techniques we have developed at EPFL to automate the analysis of Correlative Light and Electron Microscopy data. They include delineating dendritic arbors from LM imagery, segmenting organelles from EM, and combining the two into a consistent representation.

Keywords: Brain Connectivity · Microscopy · Delineation · Segmentation · Registration

Overview


If we are ever to unravel the mysteries of brain function at its most fundamental level, we will need a precise understanding of how its component neurons connect to each other. Electron Microscopes (EM) can now provide the nanometer resolution that is needed to image synapses, and therefore connections, while Light Microscopes (LM) see at the micrometer resolution required to model the 3D structure of the dendritic network. Since both the topology and the connection strength are integral parts of the brain's wiring diagram, being able to combine these two modalities is critically important.

In fact, these microscopes now routinely produce high-resolution imagery in such large quantities that the bottleneck becomes automated processing and interpretation, which is needed for such data to be exploited to its full potential.


In our work, we have therefore used correlative microscopy image stacks such as those described in Fig. 1 and we have developed approaches to automatically building the dendritic arborescence in LM stacks [5, 6], to segmenting intra-neuronal structures from EM images [1, 4], and to registering the resulting models [3]. Figure 1 depicts some of these results. In all cases, Statistical Machine Learning algorithms are key to obtaining good results. Therefore, our challenge is now to develop Domain Adaptation

This work was supported in part by ERC project MicroNano and in part by the Swiss National Science Foundation.

techniques that will allow us to retrain them quickly and without excessive amounts of additional annotated data when new image data is acquired [2]. For additional details on this work, we refer the interested reader to the above mentioned publications.

Fig. 1. Correlative Microscopy. (a) Fluorescent neurons in vivo in the adult mouse brain imaged through a cranial window. (b) Image stack at the 1 μ m resolution acquired using a 2-photon microscope. (c) Image slice of a sub-volume at the 5 nm resolution above a reconstruction of a neuron, dendrite, and associated organelles.

Fig. 2. Automated delineation and segmentation. (a) Dendrites from an LM Stack. (b) Mitochondria from an EM stack. The colors denote those that are either within a dendrite or an axon.

References

- 1. Becker, C., Ali, K., Knott, G., Fua, P.: Learning context cues for synapse segmentation. IEEE Trans. Med. Imaging (2013)
- 2. Becker, C., Christoudias, M., Fua, P.: Domain adaptation for microscopy imaging. IEEE Trans. Med. Imaging (2015)
- Glowacki, P., Pinheiro, M., Turetken, E., Sznitman, R., Lebrecht, D., Holtmaat, A., Kybic, J., Fua, P.: Modeling evolving curvilinear structures in time-lapse imagery. In: Conference on Computer Vision and Pattern Recognition (2014)
- Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features. IEEE Trans. Med. Imaging 31 (2), 474–486 (2012)
- Turetken, E., Benmansour, F., Andres, B., Pfister, H., Fua, P.: Reconstructing loopy curvilinear structures using integer programming. In: Conference on Computer Vision and Pattern Recognition, June 2013
- Turetken, E., Benmansour, F., Fua, P.: Automated reconstruction of tree structures using path classifiers and mixed integer programming. In: Conference on Computer Vision and Pattern Recognition, June 2012

Contents

Workshop Overview

Overview of the 2015 Workshop on Medical Computer	
Vision — Algorithms for Big Data (MCV 2015)	3
Henning Müller, Bjoern Menze, Georg Langs, Albert Montillo,	
Michael Kelm, Shaoting Zhang, Weidong Cai, and Dimitris Metaxas	

Predicting Disease

Information-Theoretic Clustering of Neuroimaging Metrics Related to Cognitive Decline in the Elderly	13
Relationship Induced Multi-atlas Learning for Alzheimer's Disease Diagnosis	24

Atlas Exploitation and Avoidance

Hierarchical Multi-Organ Segmentation Without Registration	
in 3D Abdominal CT Images	37
Vasileios Zografos, Alexander Valentinitsch, Markus Rempfler,	
Federico Tombari, and Bjoern Menze	
Structure Specific Atlas Generation and Its Application to Pancreas	
Segmentation from Contrasted Abdominal CT Volumes	47
Ken'ichi Karasawa, Takayuki Kitasaka, Masahiro Oda,	
Yukitaka Nimura, Yuichiro Hayashi, Michitaka Fujiwara,	

Machine Learning Based Analyses

Kazunari Misawa, Daniel Rueckert, and Kensaku Mori

Local Structure Prediction with Convolutional Neural Networks	
for Multimodal Brain Tumor Segmentation	59
Pavel Dvořák and Bjoern Menze	

Automated Segmentation of CBCT Image with Prior-Guided Sequential Random Forest	72
Li Wang, Yaozong Gao, Feng Shi, Gang Li, Ken-Chung Chen, Zhen Tang, James J. Xia, and Dinggang Shen	12
Subject-Specific Estimation of Missing Cortical Thickness Maps in Developing Infant Brains	83
and Dinggang Shen Advanced Methods for Image Analysis	
Calibrationless Parallel Dynamic MRI with Joint Temporal Sparsity Yang Yu, Zhennan Yan, Li Feng, Dimitris Metaxas, and Leon Axel	95
Creating a Large-Scale Silver Corpus from Multiple Algorithmic Segmentations	103
Psoas Major Muscle Segmentation Using Higher-Order Shape Prior Tsutomu Inoue, Yoshiro Kitamura, Yuanzhong Li, Wataru Ito, and Hiroshi Ishikawa	116
Poster Session	
Joint Feature-Sample Selection and Robust Classification for Parkinson's Disease Diagnosis <i>Ehsan Adeli-Mosabbeb, Chong-Yaw Wee, Le An, Feng Shi,</i> <i>and Dinggang Shen</i>	127
Dynamic Tree-Based Large-Deformation Image Registration for Multi-atlas Segmentation <i>Pei Zhang, Guorong Wu, Yaozong Gao, Pew-Thian Yap,</i> <i>and Dinggang Shen</i>	137
Hippocampus Segmentation from MR Infant Brain Images via Boundary Regression	146
A Survey of Mathematical Structures for Extending 2D Neurogeometry to 3D Image Processing	155

Efficient 4D Non-local Tensor Total-Variation for Low-Dose CT Perfusion	
Deconvolution	168
Ruogu Fang, Ming Ni, Junzhou Huang, Qianmu Li, and Tao Li	
Author Index	181