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Abstract

To accurately chart the dynamic brain developmental trajectories in infants, many longitudinal 

neuroimaging studies prefer having a complete dataset. Unfortunately, missing data at certain time 

points are unavoidable in longitudinal datasets. To better use incomplete longitudinal data, we 

propose a novel method to estimate the subject-specific vertex-wise cortical thickness maps at 

missing time points, by using a customized regression forest, Dynamically-Assembled Regression 

Forest (DARF). DARF ensures spatial smoothness of the estimated cortical thickness maps and 

also the computational efficiency. The proposed method can fully exploit the available information 

from the subjects both with and without missing scans. Our method has been applied to estimate 

the missing cortical thickness maps in a longitudinal infant dataset, which includes 31 healthy 

subjects, with each having up to 5 scans. The experimental results indicate that our method can 

accurately estimate missing cortical thickness maps, with the average vertex-wise error less than 

0.23 mm.
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1 Introduction

In recent years, longitudinal neuroimaging analysis of early postnatal brain development has 

received increasing attention [1–5], because this can capture both the subject-specific and 

population-averaged dynamic developmental trajectories of the cerebral cortex. This will 

help better understand the relationship between normal structural and functional 

development of the cerebral cortex [6–9], and will also provide important references for 

understanding of many neurodevelopmental disorders, which are likely caused by the 

abnormal early brain development [1, 10]. To accurately chart the dynamic early brain 

developmental trajectories, many studies prefer using the subjects with complete 

longitudinal scans. However, in longitudinal studies, as shown in Fig. 2(a), missing data at 

certain time points are unavoidable due to various reasons, such as subject absence from 

scheduled scans or poor imaging quality. Directly using incomplete longitudinal data would 

introduce biases and also reduce precision and power in statistical analysis, while discarding 

subjects with missing data would cause a terrible waste of potentially useful information and 

also the considerable cost for data acquisition. Owing to the highly dynamic and nonlinear 
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development of the infant brain, a simple linear interpolation or regression cannot accurately 

estimate the missing data. Although several other methods have been proposed to estimate or 

complete the missing data for general purpose [11, 12], their effectiveness reduces with the 

increase of the portion of missing data. To deal with large portion of missing data, the low 

rank matrix completion methods have been proposed [13, 14]; however, they work well only 

if the missing data are distributed randomly and uniformly. Thus, the existing methods are 

not suitable for estimation of regionally-heterogeneous and longitudinally-dynamic cortical 

thickness map in infant brain studies.

To bridge this critical gap, in this paper, we unprecedentedly propose a novel general 

learning-based framework for subject-specific estimation of the vertex-wise cortical 
thickness map at the missing time point(s) in longitudinal infant brain studies. Of note, 

cortical thickness is an important macroscopic morphological measure of the cerebral cortex 

in MRI studies, and changes of CT are found in normal development, aging, and brain 

disorders, indicating differential underlying microstructural changes of the cortex in 

different states [10]. Technically, we propose a Dynamically-Assembled Regression Forest 

(DARF), a customized version of random forest, as our core regression tool. By sharing 

decision trees with neighboring forests, DARF ensures spatial smoothness of the vertex-wise 

regression/estimation result and also greatly reduces the training time, compared to the 

conventional regression forest. Hereafter, we refer the vertex-wise cortical thickness maps at 

missing time points as missing data. To fully exploit the information of both the subjects 

with complete longitudinal data and the subjects with missing data, our method contains two 

major stages. In the first stage, to use as many training subjects as possible, the missing data 

at each time point of each subject is estimated multiple times based on the data at different 

available time points independently, and then these estimated results are averaged as the 

initial estimation. In the second stage, to better capitalize on longitudinal information and 

make the estimations temporally consistent, the missing data at each time point of each 

subject is refined based on both the real data and the initially estimated missing data at all 

the other time points jointly. As shown in the experiments, our method can accurately 

estimate the subject-specific cortical thickness map at missing time points in longitudinal 

infant studies, with the average vertex-wise error less than 0.23 mm.

2 Methods

In this section, we first introduce our regression model, namely Dynamically-Assembled 

Random Forest (DARF), and then describe how to use this regression model for subject-

specific estimation of vertex-wise cortical thickness map at the missing time point(s) in 

longitudinal infant studies. Of note, before the estimation of missing data, the longitudinal 

cortical surfaces of all infants were reconstructed [15] and warped onto the same spherical 
space to establish both intra-subject and inter-subject cortical correspondences, and 

subsequently all cortical surfaces were resampled to have the same triangular mesh 

configuration using a method similar to [16]. Cortical thickness and sulcal depth were 

computed for each vertex on each cortical surface [15, 16].
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2.1 Dynamically-Assembled Regression Forest

Motivation—We adopt regression forest [17] as our core regression tool. However, using 

only one conventional regression forest (CRF) cannot accurately estimate vertex-wise 

cortical thickness maps, because cortical thickness and its developmental patterns are both 

regionally heterogeneous. An intuitive way to solve this issue is to first divide the cortical 

surface into a set of small regions of interest (ROIs), and then train a specific regression 

forest for each ROI. However, this will lead to spatially unsmooth estimation results around 

the boundaries of neighboring ROIs, since the cortical thicknesses of the vertices near to the 

ROI boundary are estimated using two completely different regression forests, which are 

trained independently with different training samples. Although using the highly overlapped 

ROIs could produce relatively smooth estimation results, it requires a large set of ROIs to 

uniformly cover the whole cortex, and thus leads to large computational workload. To 

address these issues, we proposed a Dynamically-Assembled Regression Forest (DARF). By 

sharing large portions of trees with the neighboring forests, DARF can make the estimation 

result as smooth as the real data, and also greatly reduce the training time.

Training & Testing—In the training stage, an individual binary decision tree is trained at 

each vertex on the spherical surface. Specifically, as shown in Fig. 1(a), for a given vertex, 

all its nearby vertices in a specified neighborhood (i.e., red region) on the spherical cortical 

surface are used as training samples. For each training sample i, we have a feature vector Xi 

∈ ℝd and a regression response yi ∈ ℝ. The feature vector Xi consists of a set of features 

(see Section 2.2) extracted from the local cortical attribute (e.g., cortical thickness and sulcal 

depth) maps at input time points, and the regression response yi is the cortical thickness 

value at the target time point. In the testing stage, to estimate the cortical thickness at a given 

vertex, as shown in Fig. 1(b), all the nearby individual trees trained for vertices in a specified 

neighborhood (i.e., green region) are grouped together to form a DARF. Then the feature 

vector of the given vertex is fed to the DARF to estimate the cortical thickness at the target 

time point.

Smoothness—DARF is able to produce spatially very smooth estimations, because 1) the 

DARFs of neighboring vertices are very similar, as they share a large number of trees, and 2) 

the features of neighboring vertices are also similar.

2.2 Feature Computation on Spherical Surface

For each vertex i, its feature vector Xi ∈ ℝd includes two types of features: local features and 

context features. Herein, local features provide localized information at each vertex, while 

context features provide rich neighboring information. In our implementation, local features 

are the cortical thickness and sulcal depth. The context features are a set of randomly 

defined Haar-like features, which provide two types of context information: (1) the mean 

attributes (i.e., cortical thickness and sulcal depth) in a small cortical region, and (2) the 

difference between mean attributes in two small regions. The computation of Haar-like 

features on spherical surfaces is shown in Fig. 1(c). Specifically, given a vertex (ui,vi), where 

ui and vi are respectively the latitude and longitude coordinates, two blocks A and B are 

randomly selected in the neighborhood [ui ±uθ,vi ±vθ], and their sizes are also randomly 

chosen from the interval [r1, r2], where uθ, vθ, r1, and r2 are the user-defined parameters. Let 
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Sa and Sb denote the sets of all the vertices in blocks A and B, respectively, and then the 

Haar-like features at the vertex (ui,vi) can be mathematically formulated as:

(1)

where M(u,v) is the value of cortical morphological attributes (i.e., cortical thickness and 

sulcal depth) at vertex (u, v), and λ is a random coefficient that can only be 0 or 1. In the 

case of λ = 0, Haar-like feature is the mean value of the cortical attribute within the block A. 

In the case of λ = 1, Haar-like feature is the difference betweenthe mean values of the 

cortical attribute in the block A and block B.

2.3 Estimation of Cortical Thickness Maps at Missing Time Points

Fig. 2(a) shows the longitudinal infant dataset with missing data used in this paper, which 

includes 31 subjects (with 15 subjects having missing data), each subject with up to 5 time 

points in the first postnatal year. Intuitively, using the data at multiple available time points 

to estimate the missing ones is better than using the data at just one available time point, 

because multiple time points capture more information of the nonlinear longitudinal cortex 

development in infants. However, owing to the missing data, as shown in Fig. 2(a), the more 

time points we use, the less subjects can be used as training subjects. To fully capitalize on 

the information of all time points and all subjects, we propose a two-stage method, including 

(Stage 1) pair-wise estimation between different time points to form a pseudo-complete data, 

and (Stage 2) joint refinement based on the pseudo-complete data, as shown in Fig. 2(b).

In Stage 1, to capitalize on as many training subjects as possible, the cortical thickness map 

of a subject at each missing time point is estimated using the data at each of other available 

time points independently, and then these independent estimations are averaged together to 

obtain an initial estimation. For example, to obtain the initial estimation at 6-months-old, we 

first use the subjects with available data at both 1- and 6-months-old as training subjects to 

train a set of decision trees, for estimating the data at 6-months-old based on the data at 1-

month-old. Then, after training, for the subjects with available data at 1-month-old but 

without data at 6-months-old, those trained decision trees are locally assembled as forests to 

estimate the missing data at 6-months-old. Similarly, we can also obtain the estimation of 

the missing data at 6-months-old, respectively, based on the available data at each of the 3-, 

9-, and 12-months-old. In this way, all available data at all other time points can contribute 

to the estimation of missing data at 6-months-old. Finally, we average all those estimations 

(contributed from different time points) as the initial estimation. Similarly, for the missing 

data at 1-, 3-, 9-, and 12-months-old, the same process can be performed to obtain their 

initial estimations. After Stage 1, all the missing data of all subjects will be approximately 

recovered, thus providing a pseudo-complete longitudinal dataset.

In Stage 2, to take advantage of the longitudinal information and also to make the estimation 

temporally consistent, the missing data at each time point of each subject is further refined 

using all the data at all other time points jointly. For example, to obtain the final estimation 

of the missing data at 6-months-old, we use all the subjects that have real data at 6-months-
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old as training subjects to train a set of decision trees, which can estimate the missing data at 

6-months-old based on the given data at 1-, 3-, 9-, and 12-months-old jointly. Note that we 

do not require each training/testing subject to have real data at 1-, 3-, 9-, and 12-months-old. 

If a training/testing subject has missing data at 1-, 3-, 9-, or 12-months-old, its initial 

estimation that has been estimated in Stage 1 can be used. Thus, after training for each 

subject with missing data at 6-months-old, the trained decision trees can be locally 

assembled as forests to estimate its missing data. Similarly, for the missing data at other time 

points, the same process can be conducted to obtain their final estimations. It is worth noting 

that, using the above two stages, our method leverages information from all time points of 

all subjects for missing data estimation.

3 Results

The dataset we used in the experiments are illustrated in Fig. 2(a), including 31 healthy 

infants (with 15 infants having missing data), in which each subject was scheduled to be 

scanned at 1, 3, 6, 9, and 12 months of age. To evaluate our regression model DARF, we 

conducted an experiment of using cortical thickness and sulcal depth at one time point to 

estimate cortical thickness at another time point. The motivation to use sulcal depth for 

helping estimation of cortical thickness is that these two cortical attributes are highly related 

[18].

To better demonstrate the effectiveness of DARF, we compared it with other three 

representative methods, including linear regression (LR), global regression forest (GRF), 

and sparse linear regression (SLR). LR method learned a linear relationship between cortical 

thickness at a known time point and cortical thickness at missing time point for each vertex 

on the cortical surface. GRF method trained a single forest for the entire surface, and used 

spherical location of each vertex as features, in addition to the Haar-like features. SLR is a 

popular and effective method for high- dimensional data analysis [19, 20]. By setting the 

coefficients of irrelevant feature elements as zero, SLR is able to extract the most useful 

features from a highdimensional feature representation, making it a reasonable competitor of 

DARF. Specifically, given the target vector Y=[y1, y2, …, yn]T ∈ ℝn and the feature matrix 

X=[X1, X2, …, Xn] ∈ ℝd×n, SLR method finds the optimal coefficients A = [a1, a2, …, ad]T 

∈ ℝd by solving Eq. 2 below, with the constraint that the number of non-zero elements in A 
is no more than L.

(2)

To make the comparison fair, we used the same training data with the same features for both 

SLR and DARF, and we also optimally set L=12 and, λ=0.001 based on a grid search, which 

was performed on a subset of the training data.

To quantitatively evaluate the estimation results, we employed two metrics: mean absolute 

error (MAE = |Te − Tt|/N) and mean relative error (MRE = |(Te − Tt)/Tt|/N), where Tt and Te 

are respectively the ground-truth and estimated values of cortical thickness, and N is the 
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number of vertices. Fig. 3 provides a comparison of LR, GRF, SLR, and DARF for 

estimation of vertex-wise cortical thickness map at 9 months of age using cortical attributes 

at 1 month of age on a representative subject. As we can see, DARF estimated more accurate 

cortical thickness maps than all the other methods, especially in some highlighted 

challenging regions, such as the frontal pole, rostral middle frontal gyrus, and supramarginal 

gyrus. For comprehensive comparisons, we repetitively estimated the cortical thickness 

maps at 3-, 6-, 9-, and 12 months of age using the data at 1 month of age for all the available 

subjects, and performed a leave-one-out cross validation for each target time point. As 

reported in Table 1. Hence, we can conclude that DARF performs significantly better than 

the other three methods in estimating vertex-wise cortical thickness maps.

To evaluate the proposed missing data estimation method, we tested our method by 

recovering the data of cortical thickness at 5 missing time points. Specifically, from our 

longitudinal dataset (Fig. 2a), we randomly selected 5 subjects that had complete data at all 

5 time points as the reference subjects. For each of these reference subjects, we manually 

deleted the data at one time point, and then put it back to the dataset. We run our missing 

data estimation method to recover the missing data, and then compared it with the ground 

truth. This experiment was repeated 12 times, with each time using 5 different subjects as 

reference subjects. We also performed paired t-test to statistically compare the results of 

pairwise estimation (Stage 1) and joint refinement (Stage 2). Fig. 4 shows the results of our 

method for estimation of cortical thickness at 1, 3, 6, 9, and 12 months of age on a typical 

infant. The complete quantitative evaluation is reported in Table 2, from which we can 

conclude that: (1) our method can effectively estimate the missing cortical thickness maps 

with the average error less than 0.23 mm; and (2) joint refinement significantly improves the 

results of pairwise estimation. Note that among all time points the estimations were 

relatively less accurate at around 6 months of age, due to the extremely low image contrast 

and exceptionally rapid cortex development during this stage [15]. Of note, Table 2 shows 

better results than Table 1, because only the 1-month-old data was used for estimation in 

Table 1, while all available time-point data was used in Table 2. We further reported the 

estimation errors in 35 cortical ROIs, as shown in Fig. 5. We can see that in all ROIs, the 

joint refinement clearly improves the results, with particularly large improvement in the 

cingulate cortex, cuneus cortex, orbitofrontal cortex, middle temporal gyrus, pars orbitalis, 

pericalcarine cortex, and superior frontal gyrus.

4 Conclusion

This paper has two major contributions. First, we proposed DARF to ensure the spatial 

smoothness of regression results and also the computational efficacy, by sharing decision 

trees with neighboring forests. Second, we proposed a two-stage method to unprecedentedly 

estimate subject-specific vertex-wise cortical thickness maps at the missing time point(s) in 

longitudinal infant study, by fully exploiting the available information from all subjects. Of 

note, our method is very generic and not limited to estimate only cortical thickness, as it can 

be extended to estimate other cortical anatomical attributes, such as surface area, sulcal 

depth, and local cortical gyrification [21].
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Fig. 1. 
Illustration of training and testing stages of DARF, and also the computation of Haar-like 

features on a spherical surface. In (a), the red region is the neighborhood, where all the 

vertices are used as training samples. In (b), the green region is the neighborhood, where all 

trained individual trees are assembled as a forest. Note that the red and green regions can be 

in different sizes. In (c), the white and black blocks are the two randomly selected regions 

for computing Haar-like features.
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Fig. 2. 
Overview of our longitudinal infant dataset and the proposed missing data estimation 

method. In (a), each column indicates a subject, and each row indicates a time point, where 

the black blocks indicate the missing data at particular time points. In (b), each box with a 

time-point number stands for the data at the corresponding time point. The directed edges 

represent the processes of missing data estimation at the target time points (pointed by the 

arrowhead) by using the data at the available time points (at the tail side). The bidirectional 

edges in Stage 1 mean that the estimation is performed bidirectionally by exchanging the 

input time point and the target time point. The circles in Stage 2 mean using multiple time 

points jointly.
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Fig. 3. 
Estimation of the cortical thickness map at 9 months of age using the data at 1 month of age 

for a typical infant. (a) shows the cortical thickness maps in mm at 1 and 9 months of age, 

and the estimation results using different methods, i.e., LR, GRF, SLR, and DARF. (b) 

shows the vertex-wise error maps in mm by different methods.
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Fig. 4. 
Estimation of the missing cortical thickness maps (mm) for a typical infant.
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Fig. 5. 
Errors of estimation of the missing cortical thickness maps at 9 months of age in 35 ROIs.
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