Skip to main content

PRIMER – A Regression-Rule Learning System for Intervention Optimization

  • Conference paper
  • First Online:
Book cover Rule Technologies. Research, Tools, and Applications (RuleML 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9718))

  • 2284 Accesses

Abstract

We introduce intervention optimization as a new area of exploration for data mining research. Interventions are events designed to impact a corresponding time series. The task is to maximize the impact of such events by training a model on historical data. We propose PRIMER as a new regression-rule learning system for identifying sets of event features that maximize impact. PRIMER is for use when domain experts with knowledge of the intervention can specify a transfer function, or the form of the expected response in the time series. PRIMER’s objective function includes the goodness-of-fit of the average response of covered events to the transfer function. Incorporating domain knowledge in this way makes PRIMER robust to over-fitting on noise or spurious responses. PRIMER is designed to produce interpretable results, improving on the interpretability of even competing regression-rule systems for this task. It also has fewer and more intuitive parameters than competing rule-based systems. Empirically, we show that PRIMER is competitive with state-of-the-art regression techniques in a large-scale event study modeling the impact of insider trading on intra-day stock returns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ftp://ftp.sec.gov/edgar/Feed/.

  2. 2.

    https://wrds-web.wharton.upenn.edu/wrds/.

References

  1. Box, G.E.P., Tiao, G.C.: Intervention analysis with applications to economic and environmental problems. J. Am. Stat. Assoc. 70(349), 70–79 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brookhouse, J., Otero, F.E.B.: Discovering regression rules with ant colony optimization. In: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO Companion 2015, pp. 1005–1012. ACM, New York (2015)

    Google Scholar 

  3. Clark, P., Niblett, T.: The CN2 induction algorithm. Mach. Learn. 3(4), 261–283 (1989)

    Google Scholar 

  4. Coleman, T.F., Li, Y.: A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM J. Optim. 6(4), 1040–1058 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dembczyński, K., Kotłowski, W., Słowiński, R.: Solving regression by learning an ensemble of decision rules. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 533–544. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  7. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1 (2010)

    Article  Google Scholar 

  8. Fürnkranz, J.: Separate-and-conquer rule learning. Artif. Intell. Rev. 13(1), 3–54 (1999)

    Article  MATH  Google Scholar 

  9. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer Science & Business Media, Heidelberg (2012)

    Book  MATH  Google Scholar 

  10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  11. Ho, C.-H., Lin, C.-J.: Large-scale linear support vector regression. J. Mach. Learn. Res. 13(1), 3323–3348 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Holmes, G., Hall, M., Prank, E.: Generating rule sets from model trees. In: Foo, N.Y. (ed.) AI 1999. LNCS, vol. 1747, pp. 1–12. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Janssen, F., Fürnkranz, J.: A re-evaluation of the over-searching phenomenon in inductive rule learning. In: SDM, pp. 329–340. SIAM (2009)

    Google Scholar 

  14. Janssen, F., Fürnkranz, J.: Separate-and-conquer regression. In: Proceedings of LWA 2010: Lernen, Wissen, Adaptivität, Kassel, Germany, pp. 81–89 (2010)

    Google Scholar 

  15. Janssen, F., Fürnkranz, J.: Heuristic rule-based regression via dynamic reduction to classification. In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol. 22, p. 1330 (2011)

    Google Scholar 

  16. Li, E.X., Ramesh, K.: Market reaction surrounding the filing of periodic SEC reports. Acc. Rev. 84(4), 1171–1208 (2009)

    Article  Google Scholar 

  17. Možina, M., Demšar, J., Žabkar, J., Bratko, I.: Why is rule learning optimistic and how to correct it. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 330–340. Springer, Heidelberg (2006)

    Google Scholar 

  18. Quinlan, J., Cameron-Jones, R.: Oversearching and layered search in empirical learning. Breast Cancer 286, 2–7 (1995)

    Google Scholar 

  19. Seber, G.A.F., Wild, C.J.: Nonlinear Regression. Wiley, New York (1989)

    Book  MATH  Google Scholar 

  20. You, H., Zhang, X.J.: Financial reporting complexity and investor underreaction to 10-K information. Rev. Acc. Stud. 14(4), 559–586 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by Chevron USA, Inc. under the joint project Center for Interactive Smart Oilfield Technologies (CiSoft), at the University of Southern California.

We would also like to thank Dr. Frederik Janssen for providing support with the SeCoReg and Dynamic Reduction to Regression algorithms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Harris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Harris, G., Panangadan, A., Prasanna, V.K. (2016). PRIMER – A Regression-Rule Learning System for Intervention Optimization. In: Alferes, J., Bertossi, L., Governatori, G., Fodor, P., Roman, D. (eds) Rule Technologies. Research, Tools, and Applications. RuleML 2016. Lecture Notes in Computer Science(), vol 9718. Springer, Cham. https://doi.org/10.1007/978-3-319-42019-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42019-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42018-9

  • Online ISBN: 978-3-319-42019-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics