Software Variability Composition and
Abstraction in Robot Control Systems

Davide Brugali', Mauro Valota!

University of Bergamo, Dalmine, Italy, brugaliQunibg.it, m.valota@studenti.unibg.it

Abstract. Control systems for autonomous robots are concurrent, dis-
tributed, embedded, real-time and data intensive software systems. A
real-world robot control system is composed of tens of software compo-
nents. For each component providing robotic functionality, tens of dif-
ferent implementations may be available.

The difficult challenge in robotic system engineering consists in selecting
a coherent set of components, which provide the functionality required
by the application requirements, taking into account their mutual depen-
dencies. This challenge is exacerbated by the fact that robotics system
integrators and application developers are usually not specifically trained
in software engineering.

Current approaches to variability management in complex software sys-
tems consists in explicitly modeling variation points and variants in soft-
ware architectures in terms of Feature Models.

The main contribution of this paper is the definition of a set of models
and modeling tools that allow the hierarchical composition of Feature
Models, which use specialized vocabularies for robotic experts with dif-
ferent skills and expertise.

1 Introduction

Control systems for autonomous robots are concurrent, distributed, embedded,
real-time and data intensive software systems. The computational hardware of
an autonomous robot is typically interfaced to a multitude of sensors and actua-
tors, and has severe constraints on computational resources, storage, and power.
Computational performance is a major requirement, especially for autonomous
robots, which process large volumes of sensory information and have to react in
a timely fashion to events occurring in the human environment.

In recent years, a variety of software frameworks have been specifically de-
signed for developing robot control systems that are designed as (logically) dis-
tributed component-based systems (see [9] for a survey). Currently, the Robot
Operating System [1] is the most widely used robotic framework in research
and development. It offers mechanisms for real-time execution, synchronous and
asynchronous communication, data flow and control flow management.

A real-world robot control system is composed of tens of components. For
each component providing a robot functionality, tens of different implementa-
tions may be available. The initial release of ROS in year 2010 already contained



hundreds of open source packages (collections of nodes) stored in 15 repositories
around the world [1].

Clearly, building complex control applications is a matter of system integra-
tion more than of capabilities implementation. The difficult challenge consists
in selecting a coherent set of components that provide the required functionality
taking into account their mutual dependencies.

In previous papers [14}|15] we have presented the HyperFlex Model-driven
toolchain and approach for the design of software product lines for autonomous
robotic systems.

The key characteristics of HyperFlex are the support to the design and com-
position of architectural models of component-based functional subsystems, the
possibility to symbolically represent the variability of individual functional sub-
systems using the Feature Models formalism, and the automatic configuration of
functional subsystems according to selected features. The HyperFlex approach
builds on our experience in developing software architectures for robotic control
systems in the context of the EU FP7 BRICS project [7].

The novel contribution of this paper is the description of the new functionality
of the HyperFlex toolchain and the definition of a set of guidelines that enable
the composition and abstraction of the variability models of individual functional
subsystems and of the integrated control system.

Feature models usually don’t scale up when the number of variation points
and variants becomes substantial, because a single and huge feature model is
too complex to maintain and to be understood and processed by humans. Our
aim is to simplify the system configuration phase by supporting the definition
of feature models at multiple levels of abstraction using specialized vocabularies
for each expert involved in system configuration.

System configuration is a crucial phase, which requires to select, integrate,
and fine tune the robot functionalities (developed by domain experts) according
to the available resources (requiring maintenance by qualified engineers), the
environment conditions (often beyond the control of the application engineer),
and the task to be performed (often specified by unskilled users).

The paper is structured as follows. Section [1.1| presents the background in-
formation about the HyperFlex approach and toolchain by means of a simple
example. Section [2] reports on the related works. Section [3] presents the novel
contribution of this paper. It extends the previous example with two case stud-
ies of variability composition and illustrates the new models and meta-models
of the HyperFlex toolchain. The relevant conclusions are presented in Section [4

1.1 The HyperFlex Approach and Toolchain

HyperFlex is a Model-driven engineering (MDE) [21] environment (available
open source on GitHub [2(15]) that supports the development of flexible and
configurable robotic control systems. It builds on state-of-the-art approaches
in software variability modeling and resolution as described in Section [2| and
consists in a set of Eclipse plugins for the definition and manipulation of three
types of software models:



Local-nav

! ‘ TrajectoryGenerator = ’ i ‘
4
m |

PropertiesCompariment
4 PropertiesCompartment

-
:
' Robot Pose ’Tnl ﬁ“m‘

— PropertiesCompartment 1

Fig. 1: The architectural model of the Local Navigation system

— Architectural Models represent the structure of control systems in terms
of component interfaces, component implementations, and component con-
nectors. The HyperFlex approach promotes the design and composition of
domain-specific software architectures for common robotic functionality (e.g.
robot navigation), which capture the variability in robotic technologies (e.g.
various algorithms for trajectory generation).

— Feature Models symbolically represent the variant features of a control
system; symbols may indicate individual robot functionality (e.g. marker-
based localization) or concepts that are relevant in the application domain,
such as the type of items that the robot has to transport (e.g. liquid, fragile,
etc.), which affect the configuration of the control system.

— Resolution Models define model-to-model transformations, which allow to
automatically configuring the architecture and functionality of a control
system based on required features. Eventually, the configured architectural
model is used to deploy the control system on a specific robotic platform.

As an example, Figure [I] represents the architectural model of the Local
Navigation system of an autonomous mobile robot. Local navigation is the set
of functionality that allow the robot to autonomously move from its current posi-
tion towards a goal position, while avoiding collisions with unexpected obstacles
(i.e. moving people) in an indoor environment such as a hospital or a museum.

Architectural components define provided and required interfaces (depicted
respectively as yellow and cyan squares), which can be connected by means
of registers (green rectangles) according to the topic-based publish/subscriber
paradigm supported by the ROS framework.

The TrajectoryGenerator receives as input a robot path and produces as
output a trajectory, which specifies linear and angular velocity for each one of



L] [ ®
Trajectory Trajectory Kinematic
Generation Adaptation Model

1..1 1...1 1...1
: Diff.
T E i
= nergy DWA VHF Omni Drive

Fig. 2: The Feature Model of the Local Navigation system

its waypoints. The TrajectoryAdapter receives as input the generated trajectory
and produces as output a modified trajectory that avoids unexpected obstacles
detected by the robot sensors. The TrajectoryFollower receives as input a trajec-
tory and implements a feedback control loop that periodically reads the current
robot pose and generates a twist (i.e. linear and angular velocities along the
three axis) to minimize the distance to the path.

Figure 2] represents the Feature Model of the Local Navigation System, where
the selected features are marked in green. The algorithms for Trajectory Gen-
eration are usually named by the function that is optimized, namely: minimum
jerk or minimum time. The algorithms for Trajectory Adaptation are classified
as reactive, i.e. they use only sensor data to generate robot control commands,
such as the Vector Field Histogram (VFH), or as deliberative, i.e. they evalu-
ate alternative paths and choose the best in terms safe distance to obstacles and

minimum distance to the original path, such as the Dynamic Windows Approach
(DWA).

The robot kinematics (Differential Drive or Omnidirectional) affects the im-
plementation of all the three functionality.

Figure [3] represents the Resolution Model for the Local Navigation System.
As an example, the selection of feature DWA triggers the four transformations
that are indicated by the red arrow. They create the connections between the
ports of the TrajectoryAdapter component that implements the DWA algorithm
and the rest of the system.



.| ) Resource Set
v EMplatform: /resource/)SS%20V2 /ObjectDetector.resolutionmodel
¥ EM Resolution Model Object Detector Resolution Model
¥ RE Resolution Element Root

» Rzq ROS Required Elements
¥ RE Resolution Element DWA selected F
¥ TC ROS Transf Connection

TC ROS Topic Connection
TC ROS Topic Connection
TC ROS Topic Connection
TC ROS Topic Connection
F=q ROS Required Elements

Selection Parent | List Tree| Table | Tree with Columns

Problems EJ Properties 32 HF Instance View HF Constrair

Fig.3: A portion of the Resolution Model of the Local Navigation system

2 Related Works

The following subsections illustrates the related works in three areas: (i) ap-
proaches to variability modeling, (ii) approaches to Feature Models composition,
and (iii) variability modeling approaches in robotics.

2.1 MDE for software variability management

Hyperflex follows a common approach to model the variability of a software
system, which consists in defining four models: (a) the architectural model de-
fines the software architecture of the system in terms of implementation modules
(classes, aspects, agents, components) and their interconnections; (b) the vari-
ability model describes the functional variability of the system using a symbolic
representation (e.g. feature models or the OMG CVL language [17]); (c)
the resolution model defines the mapping between the symbols of the variabil-
ity model and the implementation modules of the architectural model; (d) the
configuration model consists in a specific set of variants for the variation points
defined in the variability model.

In our approach the first three models are completely orthogonal, i.e. they
can vary independently, while the configuration model is an instance of the
variability model.

The Talents approach aims at modeling and composing reusable func-
tional features for configuring the behavior of a software system. A graphical



environment simplifies feature composition. The Talents approach models func-
tional features at the level of instances of a class in an object-oriented program-
ming language. In contrast, HyperFlex models functional features at the level of
software components and component-based systems and thus is more adequate
to model variability in robotic control systems.

In GenArch [10] the variability model and the configuration model are rep-
resented using the same meta-model, while in OMG CVL [17] the variability
model and the resolution model are not explicitly separated.

The approach described in [16] defines three modeling categories, i.e. Com-
monality, Variability, and Configuration. The Commonality describes the archi-
tecture of a system, in terms of components, sub-components, ports and connec-
tors. These architectural elements can be enriched with variation points, which
represent the Variability and define how the common parts can be configured.
For example, a variant for a component variation point can specify that a new
sub-component has to be included in the component. Finally, the Configuration
describes the selection of variants for all the variation points. The architectural
model and the configuration conform to the MontiArc meta-model. Differently
from HyperFlex, this approach condenses all the information in a single model.

2.2 Feature Models composition

A survey of recent papers that propose techniques for Feature Model composition
can be found in [5]. The surveyed approaches mostly focus on model composition
techniques that are dedicated to support semantics preserving model composi-
tion. HyperFlex is a complementary approach, as it focuses on the automatic
generation of Feature Model instances in a tree of variability models that are
assumed to be semantically coherent and correct.

The approach described in [20] defines a set of composition constraints that
specify how the features of the lower level feature models have to be selected
according to the configuration of the higher level feature model. Differently from
our approach, they don’t adopt a component model for the architecture.

The Compositional Variability [4] approach supports the hierarchical com-
position of architectural models and feature models. The associations between
a high-level feature model and a low level feature models are defined by means
of the so called Configuration Links, which are similar to the feature dependen-
cies defined in the HyperFlex Refinement Model. Differently from HyperFlex,
this approach defines an abstract component model and does not provide the
capabilities for modeling domain-specific component-based systems.

2.3 Variability Modeling Approaches in Robotics

In recent years, several model-driven approaches and tools for the development
of robotic systems have been proposed, such as OpenRTM |[6], Proteus [12], and
Smartsoft [18].

In particular, the SmartSoft model-driven approach supports robotics vari-
ability management by modeling functional and non-functional properties of



robot control system. The approach addresses two orthogonal levels of variabil-
ity by means of two domain specific languages: (a) the variability related to
the operations required for completing a certain task and (b) the variability
associated to the quality of service.

These two variability levels are more related to the execution of a specific
application (in the paper the example is a robot delivering coffee), while the
HyperFlex approach supports modeling the variability of functional systems and
the variability of the family of applications resulting from the composition of
these functional systems.

3 Variability Composition and Abstraction with
HyperFlex

HyperFlex allows structuring a complex control system as a hierarchical com-
position of functional systems. As an example, Figure [f] shows the architecture
of the Robot Navigation composite system, which integrates the Local-nav sub-
system described in the previous section, with either the Marker-nav subsystem
or the Map-nav subsystem. These components implement two strategies (map-
based and marker-based) for generating the robot path between a start position
and a goal position that is passed to the Local-nav subsystem.

If a geometric map of the environment is available, the robot is able to plan
a geometric path in the free space. This strategy requires the robot to estimate
its current position with respect to the map reference frame accurately. On the
contrary, if artificial visual markers have been placed on the floor or on the walls,
a camera mounted on the robot can detect them and the robot can navigate by
following a path defined by a specific sequence of visual markers. In this case,
the robot needs only to estimate its relative position with respect to the next
visual marker. Figure [ represents the situation where the Local-nav subsystem
receives the robot path from the Marker-nav subsystem.

An interesting challenge that needs to be faced when using feature models
to represent the variability of a software product line is the definition of an
appropriate vocabulary for naming variation points and variants.

The clear separation of the symbolic representation of the system variability
from its architectural model allows the definition of multiple Features Models
for the same software system that are meaningful for system integrators with
different needs and expertise.

In this context, HyperFlex allows the composition of Feature Models accord-
ing to two different strategies, that we call Bottom-up functionality composition
and Top-down specification refinement. These two composition strategies are
meant for two types of stakeholders in software development for robotics:

— The community of researchers, who keep implementing new algorithms for
common robot functionalities as open source libraries, need tools that sim-
plify the configuration of robotic control systems during test trials in various
operational conditions.



Robot-Navigation

=-py .
" = = .

u m | [ ]

o N

Fig. 4: The Architectural Model of the composite Navigation system

— System integrators, who are expert in specific application domains, need
tools for the configuration of robot control systems according to specific
application requirements.

3.1 Bottom-up Functionality Composition

Typically, the expert in robotic functionalities is interested in a representation
of the control system variability that highlights the different algorithms imple-
mented in the robot control system. For example, in we have analyzed the
variability in software library that implement motion planning algorithms. In
this context, the relevant features are the type of bounding-box used by the
collision-detection algorithm, the sampling strategy, and the type of kinematic
model (e.g. single chain, multiple end-effectors).

Feature Models can be hierarchically composed to reflect the composition
of functional systems. At each level the feature names abstract the relevant
concepts of the corresponding functional system composition level.

For example, Figure [f] shows three Feature Models that represent the vari-
ability of the composite Navigation system depicted in Figure [l In particular,
the Feature Model of Figure[5] A has two leaf features, namely Marker Navigation
and Map Navigation, that represent two alternative variants of the Navigation
Strategy variation point.

When the system engineer selects the Marker Navigation feature, the Hyper-
Flex tool creates a new instance of the corresponding Feature Model depicted in
Figure [5}C. Subsequently, the system engineer can select features of lower-level
Feature Models for specific configuration properties. For example, in Figure [p]C
the manual selection of Feature Aruco triggers a model-to-model transformation
that configures the architectural connectors of the component implementing the



» =

Local Navigation
Navigation Strategy yd
Path Localizer Lol Image Filter Marker Locator
Planner
/110 N Map Marker 110
/ \ Navigation Navigation

%;‘e"‘ed ‘ ;RT ‘ Ah’/I’CL ‘ SI.}-’\M ARTk ’
Fig.5: The Feature Models of the (A) composite Navigation system, (B) the
Marker-based Navigation subsystem, and (C) the Map-based Navigation System

Aruco algorithm for marker localization. The approach is not limited to two
levels but can be hierarchically extended. Systems made of subsystems can be
further composed in order to design more complex systems.

3.2 Top-down Specification Refinement

The application domain expert is interested in a representation of the system
variability that specifies the application requirements supported by the robot
control system more than its specific functionality. Figure [6] depicts the feature
model of a robot control system for logistics applications. It is structured around
three main dimensions of variability in application requirements, namely the type
of environment, the type of load that the robot should handle, and the available
equipment.

For this purpose, HyperFlex supports the composition of Feature Diagrams
representing variability ad different level of abstractions. At each level the feature
names abstract the relevant concepts of the specific domain: low-level names
represent functional and technical terms while high level names are closer to the
application requirements. This approach ensures that the terminology is well
known by the system integrators that operates on a specific level.

During the variability resolution process, the application domain expert op-
erates only on the highest-level Feature Model and the selected features trigger
the automatic selection of features in the lower levels Feature Models.

For example, the robot operational environment could be a space with narrow
passages and only static obstacles (see feature Warehouse in Figure @ or pop-
ulated by moving obstacles in crowded areas (see feature Airport in Figure @
According to the operational environment, the robot should be configured with
different algorithms: a slow and complete motion planner is adequate for mov-
ing among static obstacles in narrow passages; instead, a fast and approximate
motion planner is needed for dynamic environments.



[ Fragile ] ‘ Perishable ‘ [ Warehouse ‘ Airport

- .
AT

J
[ Kuka youBot ] ‘FestoRobotino‘ ‘ Kuka youBot H Mantis ‘ Kinect ‘ BumbleBee ‘

/

Fig. 6: The Feature Models of the Logistics application

HyperFlex provides a tool that allows to specify that the feature Warehouse
in the Logistics FM is linked to the feature QuadTree in the Map Navigation
FM of Figure ] B, while the feature Airport is linked to feature RRT.

If the logistic task consists in transporting objects, the system integrator
should select one of the available rovers. Here, the selection of feature Kuka
youbot in the Local Navigation FM will trigger the selection of feature Omni in
Logistics FM of Figure 2] A, which corresponds to the algorithms for omnidirec-
tional rovers. Similarly, if the feature Fragile is selected in the FM of Figure @
then the feature Jerk is automatically selected in the FM of Figure [2JA.

Clearly, the system integrators can focus on the specification of the appli-
cation requirements and should not be concerned with the functionality that
implement them.

3.3 Refinement Model

In this section we illustrate the models, meta-models, and tools that allow the
composition of Feature Models and the automatic generation of their instances
according to the composition strategies described in the previous section.

The proposed appraoch consists in defining a new transformation model
(called Refinement Model) that specifies links between the features of a par-
ent Feature Model and the features of its child Feature Models. Figure [7] shows
an example, where FM_A is a parent Feature Model and FM_B and FM_C are
child Feature Models.

This approach does not require to modify the meta-model defined for Feature
Models and thus promotes the reuse of existing Feature Models.



FM_A al

(b2 ] [b3] [b4]

Fig. 7: The links between the features of different Feature Models

Figure [§| depicts the metamodel that we have defined for creating Refine-
ment Models. The top level class is the FeatureRefinementModel, which has a
link to the parent Feature Model and encapsulates a list of instances of class
FeatureRefinementPolicy, one for each child Feature Model.

A Feature refinement policy is a collection of FeatureRefinementElement,
which store the links between a feature of the associated parent Feature Model
and a set of features of the associated child Feature Models. The proposed meta-
model imposes the following rules to the definition and use of Feature Refinement
Models.

When a new istance of the parent Feature Model is created, the istances of the
child Feature Models should be empty, i.e. none of the features is selected. This
condition allows to create instances of the child feature models incrementally.

When a feature of the parent FM is selected, all the linked features should
be included in the istance of the child FM. This means that it is not possible to
define FeatureRefinementFElements that remove a previously inserted feature.

If a feature of the parent FM (e.g. feature a5 in Fig. [7)) needs to be linked
to several features of different child FMs (e.g. features b4 and c3), one Fea-
tureRefinementFElement should be created for each child FM and added to the
corresponding FeatureRefinementPolicy.

Several features of the parent FM (e.g. features a2 and a5 in Fig. [7)) can
be linked to the same feature of a child FM (e.g. feature b4) by creating a
FeatureRefinementElement for each feature of the parent FM and adding all of
them to the same FeatureRefinementPolicy associated to the child FM.



Feature Refinement Model

FeatureRefinementModel

name : EString

Feature Model
fatherFeatureModel

L1 FeatureModel

childFeature Model
1.1

1..1 | model

0..* | policies

FeatureRefinementPolicy

name : EString

[
1..1 | policy

0..* | elements

fatherFeature
FeatureRefinementElement [ 1 Feature

1 childFeatures
i

Fig.8: The Feature Refinement Meta-Model

This set of rules allows to minimize the amount of memory used by the
feature refinement tool, which needs to load only two Feature Models at a time
(the parent FM and one child FM) during the feature refinement process. The
tool takes as input an instance of the parent FM (created with the HyperFlex
editor) and a FeatureRefinementModel associated to it to generate an instance
of each child FM automatically.

It should be noted that some features of the parent FM (e.g. feature a6 in
Fig. |7) might not be linked to any feature of the child FMs and vice versa (e.g.
feature b3).

The former case corresponds to the situation where the parent FM is used
to configure directly some variation points of a functional subsystem as in the
example of Section In this case, feature b3 would be associated to a model
to model transformation of the subsystem architecture as described in Section
The latter case requires manual selection of some features of the child FM
as in the example of Section

Feature Models can include constraints that limit the set of possible combi-
nations of selected features. For examples, features ¢3 and ¢/ in Figure [7] are
mutually exclusive. It is not necessary to replicate the constraint in the parent
Feature Model (i.e. FM_A), becuase the HyperFlex tool is able to report con-
straint violations in child FM to the user with the indication of the selected
features in the parent FM that caused them.



Fig.9: The composition of Feature Refinement Models (A) and the Feature Re-
finement Tree (B)

The HyperFlex toolchain includes an Eclipse Wizard that supports the model
designer in defining the FeatureRefinementModels by means of a set of intuitive
Eclipse Forms.

3.4 Refinement Language

The Feature Refinement Model described in the previous section defines a tree
structure between a parent Feature Model and a set of child Feature Models.
Starting from a manual selection of features in the parent FM, the HyperFlex
tool generates instances of the child Feature Models automatically.

This structure can be extended to trees with an arbitrary number of levels
by connecting Feature Refinement Models hierarchically. Here, the hierarchy im-
poses an order according to which the Feature Refinement Models are processed
in order to create an instance of each intermediate and leaf Feature Model.

Figure @A illustrates a simple example with six Feature Models (FM_A, ...,
FM_F) and three Feature Refinement Models (FRM_1, ..., FRM_3). Figure[9B
shows the hierarchical dependencies between Feature Refinement Models.

The refinement process starts when an instance of Feature Model FM_A
is created manually. The HyperFlex tool processes the FeatureRefinementPolicy
and the FeatureRefinementElement defined in FRM_1 and generates an instance
of FM_B and FM_C. These instances are then used as input for processing the
Feature Refinement Models FRM_2 and FRM_3 and generating an instance of
the Feature models FM_D, FM_E, and FM_F.

Figure [10| shows the Xtext [3] grammar of the language used to define the
tree structure of Feature Refinement Models. The keyword Node has an identifier
(ID), a content, and a list of children nodes. The keyword Content indicates that
each node of the tree can embed a Feature Refinement Model, a sub-tree, or the
path (URI) to a file that stores a sub-tree. The keyword Tree indicates that there
is the possibility to specify the algorithm for traversing its children nodes. Here,



grammar org.hyperflex.featurerefinementmodels.xtext.editor.FeatureRefinementLanguage
with org.eclipse.xtext.common.Terminals
generate featureRefinementLanguage

"http://waw . hyperflex. org/featureref inementmodels/xtext /edit oxr/FeatureRefinementLanguage "

FRL_Root :
aliases += (Alias)* 'ROOT’ rootTree = Tree trees += Treex;

Alias : Model | FRL_File;

Model : 'FEATURE_REFINEMENT_MODEL’ name = ID importURI = STRING;
FRL_File :
' FEATURE_REF INEMENT_LANGUAGE’ name = ID importURI = STRING;
Tree :
*TREE’ name = ID ':' mode = ('BFS' | 'DFS’ | 'SUB') ’'=' (rootNode = Node
multiNode ?= ' {’'ROQT’' rootNode = Node nodes += (Node)x ’}’);
Child : '=>' node = [Necde] ;
Node :
NODE’ name = ID ' (* ({(content = Content ’)’) | (empty ?= ’)’)) childNodes += (Child)* ;
Content :
(modelContent ?= 'MODEL’ ':’ model = [Model] | treeContent ?= ‘TREE’ ':’ tree = [Tree]
| frlContent ?= ‘FRL’ f:’ file = [FRL_File] );

Fig. 10: Xtext Grammar for the Feature Refinement Language

BF'S stands for Breadth-first search and DFS stands for Depth-first search. The
third modality (i.e. SUB) is used for sub-trees and indicates that it should be
used the search algorithm of the parent tree. Figure [[T] exemplifies the use of the
Feature Refinement Language to build a tree of five nodes.

4 Conclusions and future works

In this paper, we presented the functionality, models, and metamodels of the
HyperFlex model-driven toolchain for composing Feature models according to
different composition strategies. HyperFlex has been conceived for simplifying
configuration and deployment of complex control systems of autonomous robots.
Nevertheless, the proposed approach to variability modeling and composition can
be applied to any application domain.

Our current work aims at exploiting the approach presented in this paper to
develop dynamically adaptive robotic systems. Robotic engineers can define sev-
eral variation points (resources, algorithms, control strategies, coordination poli-
cies, cognitive mechanisms and heuristics, etc.). Depending on the context, the
system dynamically chooses suitable variants to realize those variation points.
These variants may provide better quality of service (QoS), offer new services
that did not make sense in the previous context, or discard some services that
are no longer useful.

References

1. ROS: Robot Operating System. http://wuw.ros.org, 2007.
2. The HyperFlex Toolchain. http://robotics.unibg.it/hyperflex/, 2014.


http://www.ros.org
http://robotics.unibg.it/hyperflex/

@

10.

11.

12.

kel File_structure.frl &2 = 0
FEATURE_REFINEMENT_MODEL modell "../frm/modell.featurerefinementmodel”

FEATURE_REFINEMENT_MODEL mod *../frm/model2. featurerefinementmodel”

FEATURE_REFINEMENT_MODEL model3 "../frm/model3.featurerefinementmodel”
FEATURE_REFINEMENT_MODEL model4 "../frm/model4.featurerefinementmodel”
FEATURE_REFINEMENT_LANGUAGE filel "subfilel.frl"

//Root Tree

ROOT TREE Root : BFS = NODE Node 1 (TREE : First Tree)

/* Another tree */

TREE First Tree : SUB = {
ROOT NODE Node A (MODEL : modell) => A
=> N
NODE Node B (MODEL : model2) => Node [

NODE Node C (MODEL : model3)
NODE Node D (MODEL : model4)

NODE Node E (FRL : filel)
}

Fig.11: An example of Feature Refinement Tree

Eclipse Xtext. https://eclipse.org/Xtext/}, 2016.

A. Abele, H. Lonn, M.-O. Reiser, M. Weber, and H. Glathe. Epm: a prototype
tool for variability management in component hierarchies. In Proc. of the 16th Int.
Software Product Line Conference-Volume 2, pages 246—249. ACM, 2012.

M. Acher, P. Collet, P. Lahire, and R. France. Comparing approaches to implement
feature model composition. In Modelling Foundations and Applications, pages 3—
19. Springer, 2010.

. N. Ando, S. Kurihara, G. Biggs, T. Sakamoto, H. Nakamoto, and T. Kotoku.

Software deployment infrastructure for component based rt-systems. Journal of
Robotics and Mechatronics, 23(3):350-359, 2011.

R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraetzschmar, H. Bruyninckx,
P. Soetens, M. Haegele, A. Pott, P. Breedveld, et al. Brics-best practice in robotics.
In Robotics (ISR), 2010 41st International Symposium on and 2010 6th German
Conference on Robotics (ROBOTIK), pages 1-8. VDE, 2010.

D. Brugali, W. Nowak, L. Gherardi, A. Zakharov, and E. Prassler. Component-
based refactoring of motion planning libraries. In Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ Int. Conference on, pages 4042-4049. IEEE, 2010.

D. Brugali and P. Scandurra. Component-based robotic engineering (part
i)[tutorial]. Robotics & Automation Magazine, IEEE, 16(4):84-96, 2009.

E. Cirilo, U. Kulesza, and C. Lucena. A product derivation tool based on
model-driven techniques and annotations. Journal of Universal Computer Science,
14(8):1344-1367, 2008.

E. Cirilo, I. Nunes, U. Kulesza, and C. Lucena. Automating the product derivation
process of multi-agent systems product lines. Journal of Systems and Software,
85(2):258-276, 2012.

S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane. Robotml, a domain-
specific language to design, simulate and deploy robotic applications. In Sim-
ulation, Modeling, and Programming for Autonomous Robots, pages 149-160.
Springer, 2012.


https://eclipse.org/Xtext/

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

S. Garrido-Jurado, R. Muoz-Salinas, F. Madrid-Cuevas, and M. Marn-Jimnez. Au-
tomatic generation and detection of highly reliable fiducial markers under occlu-
sion. Pattern Recognition, 47(6):2280 — 2292, 2014.

L. Gherardi and D. Brugali. An eclipse-based feature models toolchain. In 6th
Italian Workshop on Eclipse Technologies (EclipseIT 2011), 2011.

L. Gherardi and D. Brugali. Modeling and Reusing Robotic Software Architec-
tures: the HyperFlex toolchain. In IEEE International Conference on Robotics
and Automation (ICRA 2014), Hong Kong, China, May 31 - June 5 2014. IEEE.
A. Haber, H. Rendel, B. Rumpe, I. Schaefer, and F. Van Der Linden. Hierar-
chical variability modeling for software architectures. In Software Product Line
Conference (SPLC), 2011 15th International, pages 150-159. IEEE, 2011.

O. Haugen, A. Wasowski, and K. Czarnecki. Cvl: Common variability language.
In Proceedings of the 17th International Software Product Line Conference, SPLC
"13, pages 277277, New York, NY, USA, 2013. ACM.

A. Lotz, J. F. Inglés-Romero, C. Vicente-Chicote, and C. Schlegel. Managing run-
time variability in robotics software by modeling functional and non-functional be-
havior. In Enterprise, Business-Process and Information Systems Modeling, pages
441-455. Springer, 2013.

J. Ressia, T. Grba, O. Nierstrasz, F. Perin, and L. Renggli. Talents: an environ-
ment for dynamically composing units of reuse. Software: Practice and Experience,
44(4):413-432, 2014.

M. Rosenmiiller and N. Siegmund. Automating the configuration of multi software
product lines. In VaMoS, pages 123-130, 2010.

D. Schmidt. Guest editor’s introduction: Model-driven engineering. Computer,
39(2):25-31, 2006.

M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of variability realization
techniques. Softw., Pract. Ezper., 35(8):705-754, 2005.



	Software Variability Composition and Abstraction in Robot Control Systems
	Introduction
	The HyperFlex Approach and Toolchain

	Related Works
	MDE for software variability management
	Feature Models composition
	Variability Modeling Approaches in Robotics

	Variability Composition and Abstraction with HyperFlex
	Bottom-up Functionality Composition
	Top-down Specification Refinement
	Refinement Model
	Refinement Language

	Conclusions and future works


