Skip to main content

Improving the ANN Classification Accuracy of Landsat Data Through Spectral Indices and Linear Transformations (PCA and TCT) Aimed at LU/LC Monitoring of a River Basin

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9787))

Abstract

In this paper an efficient Artificial Neural Networks (ANN) classification method based on LANDSAT satellite data is proposed, studying the Cervaro river basin area (Foggia, Italy). LANDSAT imagery acquisition dates of 1984, 2003, 2009 and 2011 were selected to produce Land Use/Land Cover (LULC) maps to cover a time trend of 28 years. Land cover categories were chosen with the aim of characterizing land use according to the level of surface imperviousness. Nine synthetic bands from the PC, Tasseled Cap (TC), Brightness Temperature (BT) and vegetation indices (Leaf area Index LAI and the Modified Soil Adjusted Vegetation Index MSAVI) were identified as the most effective for the classification procedure. The advantages in using the ANN approach were confirmed without requiring a priori knowledge on the distribution model of input data. The results quantify land cover change patterns in the river basin area under study and demonstrate the potential of multitemporal LANDSAT data to provide an accurate and cost effective means to map and analyze land cover changes over time that can be used as input for subsequent hydrological and planning analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Naik, P.K., Tambe, J.A., Dehury, B.N., Tiwari, A.N.: Impact of urbanization on the groundwater regime in a fast growing city in central India. Environ. Monit. Assess. 146, 339–373 (2008)

    Article  Google Scholar 

  2. Sharma, R., Joshi, P.: Monitoring urban landscape dynamics over Delhi (India) using remote sensing (1998–2011) inputs. J. Indian Soc. Remote Sens. 41, 641–650 (2013)

    Article  Google Scholar 

  3. Park, S., Hepcan, Ç.C., Hepcan, Ş., Cook, E.A.: Influence of urban form on landscape pattern and connectivity in metropolitan regions: a comparative case study of Phoenix, AZ, USA, and Izmir, Turkey. Environ. Monit. Assess. 186, 6301–6318 (2014)

    Article  Google Scholar 

  4. Sallustio, L., Munafò, M., Riitano, N., Lasserre, B., Fattorini, L., Marchetti, M.: Integration of land use and land cover inventories for landscape management and planning in Italy. Environ. Monit. Assess. 188, 1–20 (2016)

    Article  Google Scholar 

  5. Gioia, A., Manfreda, S., Iacobellis, V., Fiorentino, M.: Performance of a theoretical model for the description of water balance and runoff dynamics in Southern Italy. J. Hydrol. Eng. 19(6), 1113–1123 (2013)

    Article  Google Scholar 

  6. Manfreda, S., Samela, C., Gioia, A., Consoli, G.G., Iacobellis, V., Giuzio, L., Cantisani, A., Sole, A.: Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Nat. Hazards 79(2), 735–754 (2015)

    Article  Google Scholar 

  7. Iacobellis, V., Castorani, A., Di Santo, A.R., Gioia, A.: Rationale for flood prediction in karst endorheic areas. J. Arid Environ. 112, 98–108 (2015)

    Article  Google Scholar 

  8. Iacobellis, V., Claps, P., Fiorentino, M.: Climatic control on the variability of flood distribution. Hydrol. Earth Syst. Sci. Discuss. 6(2), 229–238 (2002)

    Article  Google Scholar 

  9. Yousefi, S., Khatami, R., Mountrakis, G., Mirzaee, S., Pourghasemi, H.R., Tazeh, M.: Accuracy assessment of land cover/land use classifiers in dry and humid areas of Iran. Environ. Monit. Assess. 187, 1–10 (2015)

    Article  Google Scholar 

  10. Lasaponara, R., Lanorte, A.: Satellite time-series analysis. Int. J. Remote Sens. 33(15), 4649–4652 (2012)

    Article  Google Scholar 

  11. Lasaponara, R.: Geospatial analysis from space: advanced approaches for data processing, information extraction and interpretation. Int. J. Appl. Earth Obs. Geoinf. 20, 1–3 (2013)

    Article  Google Scholar 

  12. Zhou, W.: Verification of the nonparametric characteristics of backpropagation neural networks for image classification. IEEE Trans. Geosci. Remote Sens. 37, 771–779 (1999)

    Article  Google Scholar 

  13. Aitkenhead, M., Aalders, I.: Classification of landsat thematic mapper imagery for land cover using neural networks. Int. J. Remote Sens. 29, 2075–2084 (2008)

    Article  Google Scholar 

  14. Tarantino, E., Novelli, A., Aquilino, M., Figorito, B., Fratino, U.: Comparing the MLC and JavaNNS approaches in classifying multi-temporal LANDSAT Satellite Imagery over an ephemeral river area. Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 6(4), 83–102 (2015)

    Article  Google Scholar 

  15. Sehgal, S.: Remotely sensed LANDSAT image classification using neural network approaches. Int. J. Eng. Res. Appl. 2, 43–46 (2012)

    Google Scholar 

  16. Xu, H.: Extraction of urban built-up land features from Landsat imagery using a thematic oriented index combination technique. Photogram. Eng. Remote Sens. 73, 1381–1391 (2007)

    Article  Google Scholar 

  17. Patel, N., Mukherjee, R.: Extraction of impervious features from spectral indices using artificial neural network. Arab. J. Geosci. 8, 3729–3741 (2015)

    Article  Google Scholar 

  18. Erbek, F.S., Özkan, C., Taberner, M.: Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities. Int. J. Remote Sens. 25, 1733–1748 (2004)

    Article  Google Scholar 

  19. Li, F., Zheng, J., Wang, H., Luo, J., Zhao, Y., Zhao, R.: Mapping grazing intensity using remote sensing in the Xilingol steppe region, Inner Mongolia. China Remote Sens. Lett. 7, 328–337 (2016)

    Article  Google Scholar 

  20. Roy, D.P., Ju, J., Kline, K., Scaramuzza, P.L., Kovalskyy, V., Hansen, M., Loveland, T.R., Vermote, E., Zhang, C.: Web-Enabled Landsat Data (WELD): landsat ETM + composited mosaics of the conterminous United States. Remote Sens. Environ. 114, 35–49 (2010)

    Article  Google Scholar 

  21. Chander, G., Markham, B.: Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Trans. Geosci. Remote Sens. 41, 2674–2677 (2003)

    Article  Google Scholar 

  22. Gao, F., Anderson, M.C., Kustas, W.P., Houborg, R.: Retrieving leaf area index from landsat using MODIS LAI products and field measurements. IEEE Geosci. Remote Sens. Lett. 11, 773–777 (2014)

    Article  Google Scholar 

  23. Aquilino, M., Novelli, A., Tarantino, E., Iacobellis, V., Gentile, F.: Evaluating the potential of GeoEye data in retrieving LAI at watershed scale. In: SPIE Remote Sensing, pp. 92392B-92392B-92311. International Society for Optics and Photonics (2014)

    Google Scholar 

  24. Balacco, G., Figorito, B., Tarantino, E., Gioia, A., Iacobellis, V.: Space–time LAI variability in Northern Puglia (Italy) from SPOT VGT data. Environ. Monit. Assess. 187, 1–15 (2015)

    Article  Google Scholar 

  25. Tarantino, E., Novelli, A., Laterza, M., Gioia, A.: Testing high spatial resolution WorldView-2 imagery for retrieving the leaf area index. In: Third International Conference on Remote Sensing and Geoinformation of the Environment, p. 95351N-95351N-95358. International Society for Optics and Photonics (2015)

    Google Scholar 

  26. De Jong, S.M.: Derivation of vegetative variables from a Landsat TM image for modelling soil erosion. Earth Surf. Proc. Land. 19, 165–178 (1994)

    Article  Google Scholar 

  27. Qi, J., Chehbouni, A., Huete, A., Kerr, Y., Sorooshian, S.: A modified soil adjusted vegetation index. Remote Sens. Environ. 48, 119–126 (1994)

    Article  Google Scholar 

  28. Zhang, C., Pan, Z., Dong, H., He, F., Hu, X.: Remote estimation of leaf water content using spectral index derived from hyperspectral data. In: First International Conference on Information Science and Electronic Technology (ISET 2015). Atlantis Press (2015)

    Google Scholar 

  29. Crist, E.P., Laurin, R., Cicone, R.C.: Vegetation and soils information contained in transformed Thematic Mapper data. In: Proceedings of IGARSS 1986 Symposium, pp. 1465–1470. European Space Agency Publications Division Paris (1986)

    Google Scholar 

  30. Canty, M.J.: Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for ENVI/IDL and Python. CRC Press, Boca Raton (2014)

    MATH  Google Scholar 

  31. Muthulakshmi, A., Natesan, U., Ferrer, V.A., Deepthi, K., Venugopalan, V., Narasimhan, S.: A novel technique to monitor thermal discharges using thermal infrared imaging. Environ. Sci. Process. Impacts 15, 1729–1734 (2013)

    Article  Google Scholar 

  32. Ozelkan, E., Bagis, S., Ozelkan, E.C., Ustundag, B.B., Ormeci, C.: Land surface temperature retrieval for climate analysis and association with climate data. Eur. J. Remote Sens. 47, 655–669 (2014)

    Article  Google Scholar 

  33. Tarantino, E.: Monitoring spatial and temporal distribution of sea surface temperature with TIR sensor data. Ital. J. Remote Sens. 44, 97–107 (2012)

    Article  Google Scholar 

  34. Labbi, A., Mokhnache, A.: Derivation of split-window algorithm to retrieve land surface temperature from MSG-1 thermal infrared data. Eur. J. Remote Sens. 48, 719–742 (2015)

    Article  Google Scholar 

  35. Novelli, A., Tarantino, E.: The contribution of Landsat 8 TIRS sensor data to the identification of plastic covered vineyards, p. 95351E-95351E-95359 (2015)

    Google Scholar 

  36. Novelli, A., Tarantino, E.: Combining ad hoc spectral indices based on LANDSAT-8 OLI/TIRS sensor data for the detection of plastic cover vineyard. Remote Sens. Lett. 6, 933–941 (2015)

    Article  Google Scholar 

  37. Bruzzone, L., Roli, F., Serpico, S.B.: An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection. IEEE Trans. Geosci. Remote Sens. 33, 1318–1321 (1995)

    Article  Google Scholar 

  38. Ingram, J.C., Dawson, T.P., Whittaker, R.J.: Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks. Remote Sens. Environ. 94, 491–507 (2005)

    Article  Google Scholar 

  39. Jensen, J., Qiu, F., Ji, M.: Predictive modelling of coniferous forest age using statistical and artificial neural network approaches applied to remote sensor data. Int. J. Remote Sens. 20, 2805–2822 (1999)

    Article  Google Scholar 

  40. Haykin, S.: Neural Network-a Comprehensive Foundation; a Computational Approach to Learning and Machine Intelligence. Macmillan, New York (1994)

    MATH  Google Scholar 

  41. Lloyd, R.: Spatial Cognition: Geographic Environments. Springer, Netherlands (1997)

    Book  Google Scholar 

  42. Demuth, H., Beale, M., Hagan, M.: Neural network toolbox™ 6 user’s guide (2008)

    Google Scholar 

  43. Dorofki, M., Elshafie, A.H., Jaafar, O., Karim, O.A., Mastura, S.: Comparison of artificial neural network transfer functions abilities to simulate extreme runoff data. Int. Proc. Chem. Biol. Environ. Eng. 33, 39–44 (2012)

    Google Scholar 

  44. Møller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6, 525–533 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eufemia Tarantino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Novelli, A., Tarantino, E., Caradonna, G., Apollonio, C., Balacco, G., Piccinni, F. (2016). Improving the ANN Classification Accuracy of Landsat Data Through Spectral Indices and Linear Transformations (PCA and TCT) Aimed at LU/LC Monitoring of a River Basin. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9787. Springer, Cham. https://doi.org/10.1007/978-3-319-42108-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42108-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42107-0

  • Online ISBN: 978-3-319-42108-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics