Skip to main content

Analysis of Mitochondrial Hsp70 Homolog Amino Acid Sequences of Amitochondriate Organisms Using Apriori and Decision Tree

  • Conference paper
  • First Online:
Book cover Intelligent Computing Theories and Application (ICIC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9771))

Included in the following conference series:

Abstract

In the endosymbiont hypothesis, the host cell was initially believed to have developed a nucleus and other major characteristics of a eukaryotic cell before taking in the bacteria which in time became mitochondria. This explanation is mainly grounded on existence of early-branching lineages of eukaryote that lack mitochondria. However, an alternative view has gained more support after evolutionary remnants of mitochondria were found in these organisms, where the host cell was yet to evolve the intricacy of eukaryote when the endosymbiosis first began. In this research, we examined the amino acid sequences of mitochondrial Hsp70 found in Giardia intestinalis, Trichomonas vaginalis, and Vairimorpha necatrix from each of the three major amitochondriate lineages. Analyzing the sequences with apriori and decision tree algorithm, we will compare the data with the sequence of the mitochondriate Mus musculus, and therefore provide grounds to evaluate the scenarios of endosymbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mereschkowsky, C.: Über natur und ursprung der chromatophoren im pflanzenreiche (1905)

    Google Scholar 

  2. Sagan, L.: On the origin of mitosing cells. J. Theoret. Biol. 14(3), 225–IN6 (1967)

    Article  Google Scholar 

  3. Cavalier-Smith, T.: A 6-kingdom classification and a unified phylogeny. In: Endocytobiology II, pp. 1027–1034 (1983)

    Google Scholar 

  4. Cavalier-Smith, T.: Kingdom protozoa and its 18 phyla. Microbiol. Rev. 57(4), 953–994 (1993)

    Google Scholar 

  5. Hirt, R.P., et al.: Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc. Nat. Acad. Sci. 96(2), 580–585 (1999)

    Article  Google Scholar 

  6. Keeling, P.J., Luker, M.A., Palmer, J.D.: Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. Mol. Biol. Evol. 17(1), 23–31 (2000)

    Article  Google Scholar 

  7. Philippe, H.: Early–branching or fast–evolving eukaryotes? An answer based on slowly evolving positions. Proc. Roy. Soc. Lond. B: Biolog. Sci. 267(1449), 1213–1221 (2000)

    Article  Google Scholar 

  8. Keeling, M.J., Eames, K.T.: Networks and epidemic models. J. Roy. Soc. Interface 2(4), 295–307 (2005)

    Article  Google Scholar 

  9. Koonin, E.V.: The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol. 11(5), 209 (2010)

    Article  Google Scholar 

  10. Embley, T.M., Hirt, R.P.: Early branching eukaryotes? Curr. Opin. Genet. Dev. 8(6), 624–629 (1998)

    Article  Google Scholar 

  11. Müller, M., Lindmark, D.G.: Respiration of hydrogenosomes of Tritrichomonas foetus. II. Effect of CoA on pyruvate oxidation. J. Biolog. Chem. 253(4), 1215–1218 (1978)

    Google Scholar 

  12. Tovar, J., Fischer, A., Clark, C.G.: The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol. Microbiol. 32(5), 1013–1021 (1999)

    Article  Google Scholar 

  13. Bui, E.T., Bradley, P.J., Johnson, P.J.: A common evolutionary origin for mitochondria and hydrogenosomes. Proc. Nat. Acad. Sci. 93(18), 9651–9656 (1996)

    Article  Google Scholar 

  14. Germot, A., Philippe, H., Le Guyader, H.: Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc. Nat. Acad. Sci. 93(25), 14614–14617 (1996)

    Article  Google Scholar 

  15. Horner, D.S., et al.: Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proc. Roy. Soc. Lond. B: Biolog. Sci. 263(1373), 1053–1059 (1996)

    Article  Google Scholar 

  16. Roger, A.J., Clark, C.G., Doolittle, W.F.: A possible mitochondrial gene in the early-branching amitochondriate protist Trichomonas vaginalis. Proc. Nat. Acad. Sci. 93(25), 14618–14622 (1996)

    Article  Google Scholar 

  17. Gray, M.W.: Mitochondrial evolution. Cold Spring Harb. Perspect. Biol. 4(9), a011403 (2012)

    Article  Google Scholar 

  18. Lill, R., Mühlenhoff, U.: Iron–sulfur-protein biogenesis in eukaryotes. Trends Biochem. Sci. 30(3), 133–141 (2005)

    Article  Google Scholar 

  19. Gupta, R.S., Singh, B.: Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus. Curr. Biol. 4(12), 1104–1114 (1994)

    Article  Google Scholar 

  20. Hartl, F.-U., Hlodan, R., Langer, T.: Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends Biochem. Sci. 19(1), 20–25 (1994)

    Article  Google Scholar 

  21. Boorstein, W.R., Ziegelhoffer, T., Craig, E.A.: Molecular evolution of the Hsp70 multigene family. J. Mol. Evol. 38(1), 1–17 (1994)

    Article  Google Scholar 

  22. Tovar, J., et al.: Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426(6963), 172–176 (2003)

    Article  Google Scholar 

  23. Arisue, N., et al.: Mitochondrial-type Hsp70 genes of the amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and two microsporidians. Parasitol. Int. 51(1), 9–16 (2002)

    Article  MathSciNet  Google Scholar 

  24. Steinbüchel, A., Müller, M.: Anaerobic pyruvate metabolism of Tritrichomonas foetus and Trichomonas vaginalis hydrogenosomes. Mol. Biochem. Parasitol. 20(1), 57–65 (1986)

    Article  Google Scholar 

  25. Vávra, J.: “Polar vesicles” of microsporidia are mitochondrial remnants (“mitosomes”). Folia Parasitol. 52(1/2), 193–195 (2005)

    Article  Google Scholar 

  26. Hirt, R.P., et al.: A mitochondrial Hsp70 orthologue in Vairimorpha necatrix: molecular evidence that microsporidia once contained mitochondria. Curr. Biol. 7(12), 995–998 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwon Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Song, J., Yoon, T. (2016). Analysis of Mitochondrial Hsp70 Homolog Amino Acid Sequences of Amitochondriate Organisms Using Apriori and Decision Tree. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2016. Lecture Notes in Computer Science(), vol 9771. Springer, Cham. https://doi.org/10.1007/978-3-319-42291-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42291-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42290-9

  • Online ISBN: 978-3-319-42291-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics