Skip to main content

What Constitutes an Effective Representation?

  • Conference paper
  • First Online:
Book cover Diagrammatic Representation and Inference (Diagrams 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9781))

Included in the following conference series:

Abstract

This paper presents a taxonomy of 19 cognitive criteria for judging what constitutes effective representational systems, particularly for knowledge rich topics. Two classes of cognitive criteria are discussed. The first concerns access to concepts by reading and making inferences from external representations. The second class addresses the generation and manipulation of external representations to fulfill reasoning or problem solving goals. Suggestions for the use of the classification are made. Examples of conventional representations and Law Encoding Diagrams for the conceptual challenging topic of particle collisions are provided throughout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barwise, J., Etchemendy, J.: Heterogeneous logic. In: Glasgow, J., Narayanan, N.H., Chandrasekaran, B. (eds.) Diagrammatic Reasoning: Cognitive and Computational Perspectives, pp. 211–234. AAAI Press, Cambridge (1995)

    Google Scholar 

  2. Cheng, P.C.-H.: Problem solving and learning with diagrammatic representations. In: Peterson, D. (ed.) Forms of Representation, pp. 47–66. Intellect Books, Bristol (1996)

    Google Scholar 

  3. Cheng, P.C.-H.: Learning qualitative relations in physics with Law Encoding Diagrams. In: Cottrell, G.W. (ed.) Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society, pp. 512–517. Lawrence Erlbaum (1996)

    Google Scholar 

  4. Cheng, P.C.-H.: Interactive law encoding diagrams for learning and instruction. Learn. Instr. 9(4), 309–326 (1999)

    Article  Google Scholar 

  5. Cheng, P.C.-H.: Unlocking conceptual learning in mathematics and science with effective representational systems. Comput. Educ. 33(2–3), 109–130 (1999)

    Article  Google Scholar 

  6. Cheng, P.C.-H.: Electrifying diagrams for learning: principles for effective representational systems. Cogn. Sci. 26(6), 685–736 (2002)

    Article  Google Scholar 

  7. Cheng, P.C.-H.: Why diagrams are (sometimes) six times easier than words: benefits beyond locational indexing. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Diagrams 2004. LNCS (LNAI), vol. 2980. Springer, Heidelberg (2004)

    Google Scholar 

  8. Cheng, P.C.-H.: Probably good diagrams for learning: representational epistemic re-codification of probability theory. Topics Cogn. Sci. 3(3), 475–498 (2011)

    Article  Google Scholar 

  9. Cheng, P.C.-H.: Algebra diagrams: a HANDi introduction. In: Cox, P., Plimmer, B., Rodgers, P. (eds.) Diagrams 2012. LNCS, vol. 7352, pp. 178–192. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Cheng, P.C.-H., Barone, R.: Representing complex problems: a representational epistemic approach. In: Jonassen, D.H. (ed.) Learning to Solve Complex Scientific Problems, pp. 97–130. Lawrence Erlbaum Associates, London (2007)

    Google Scholar 

  11. Cheng, P.C.-H., Barone, R., Cowling, P.I., Ahmadi, S.: Opening the information bottleneck in complex scheduling problems with a novel representation: STARK diagrams. In: Hegarty, M., Meyer, B., Narayanan, N. (eds.) Diagrams 2002. LNCS (LNAI), vol. 2317, pp. 264–278. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Cheng, P.C.-H., Simon, H.A.: Scientific discovery and creative reasoning with diagrams. In: Smith, S., Ward, T., Finke, R. (eds.) The Creative Cognition Approach, pp. 205–228. MIT Press, Cambridge (1995)

    Google Scholar 

  13. Cosmides, L., Tooby, J.: Are humans good intuitive statisticians after all? Rethinking some conclusions from the literature on judgment under uncertainty. Cognition 58, 1–73 (1996)

    Article  Google Scholar 

  14. Cleveland, W.S., McGill, R.: Graphical perception and graphical methods for analysing scientific data. Science 229, 828–833 (1985)

    Article  Google Scholar 

  15. Engelhardt, J.: The language of graphics. ILLC, University of Amsterdam (2002)

    Google Scholar 

  16. Green, T., Blackwell, A.: Cognitive Dimensions of Information Artefacts: a tutorial. https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf

  17. Gurr, C.A.: On the isomorphism, or lack of it, of representations. In: Marriott, K., Meyer, B. (eds.) Visual Language Theory, pp. 293–306. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  18. Hoffman, D.D.: Visual Intelligence: How We Create What We See. WW Norton & Company, New York (2000)

    Google Scholar 

  19. Koedinger, K.R., Anderson, J.R.: Abstract planning and perceptual chunks: elements of expertise in geometry. Cogn. Sci. 14, 511–550 (1990)

    Article  Google Scholar 

  20. Kotovsky, K., Hayes, J.R., Simon, H.A.: Why are some problems hard? Cogn. Psychol. 17, 248–294 (1985)

    Article  Google Scholar 

  21. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand words. Cogn. Sci. 11, 65–99 (1987)

    Article  Google Scholar 

  22. Markman, A.B.: Knowledge Representation. Lawrence Erlbaum, London (1999)

    Google Scholar 

  23. Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, Englewood Cliffs (1972)

    Google Scholar 

  24. Peebles, D.J., Cheng, P.C.-H.: Modelling the effect of task and graphical representations on response latencies in a graph-reading task. Hum. Factors 45(1), 28–45 (2003)

    Article  Google Scholar 

  25. Scaife, M., Rogers, Y.: External cognition: how do graphical representations work? Int. J. Hum. Comput. Stud. 45, 185–213 (1996)

    Article  Google Scholar 

  26. Shimojima, A.: Semantic Properties of Diagrams and Their Cognitive Potentials. CSLI Press, Stanford (2015)

    Google Scholar 

  27. Stenning, K., Oberlander, J.: A cognitive theory of graphical and linguistic reasoning: logic and implementation. Cogn. Sci. 19(1), 97–140 (1995)

    Article  Google Scholar 

  28. Stillings, N.A., Weisler, S.E., Chase, C.H., Feinstein, M.H., Garfield, J.L., Rissland, E.L.: Cognitive Science: An Introduction, 2nd edn. MIT Press, Cambridge (1995)

    Google Scholar 

  29. Tversky, B.: Visualizing thought. Top. Cogn. Sci. 3, 499–535 (2011)

    Article  Google Scholar 

  30. Zhang, J., Norman, D.A.: Representations in distributed cognition tasks. Cogn. Sci. 18(1), 87–122 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C-H. Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cheng, P.CH. (2016). What Constitutes an Effective Representation?. In: Jamnik, M., Uesaka, Y., Elzer Schwartz, S. (eds) Diagrammatic Representation and Inference. Diagrams 2016. Lecture Notes in Computer Science(), vol 9781. Springer, Cham. https://doi.org/10.1007/978-3-319-42333-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42333-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42332-6

  • Online ISBN: 978-3-319-42333-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics