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Abstract. While navigating their environments it is essential for
autonomous mobile robots to actively avoid collisions with obstacles.
Flying insects perform this behavioural task with ease relying mainly
on information the visual system provides. Here we implement a bio-
inspired collision avoidance algorithm based on the extraction of nearness
information from visual motion on the hexapod walking robot platform
HECTOR. The algorithm allows HECTOR to navigate cluttered envi-
ronments while actively avoiding obstacles.
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1 Introduction

Compared to man-made machines, insects show in many respects a remarkable
behavioural performance despite having only relatively small nervous systems.
Such behaviours include complex flight or walking manoeuvres, avoiding colli-
sions, approaching targets or navigating in cluttered environments [11]. Sensing
and processing of environmental information is a prerequisite for behavioural
control in biological as well as in technical systems. An important source of
information is visual motion, because it provides information about self-motion,
moving objects, and also about the 3D-layout of the environment [7].

When an agent moves through a static environment, the resulting visual
image displacements (optic flow) depend on the speed and direction of ego-
motion, but may also be affected by the nearness to objects in the environment.
During translational movements, the optic flow amplitude is high if the agent
moves fast and/or if objects in the environment are close. However, during rota-
tional movements, the optic flow amplitude depends solely on the velocity of ego-
motion and, thus, is independent of the nearness to objects. Hence, information
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about the depth structure of an environment can be extracted parsimoniously
during translational self-motion as distance information is immediately reflected
in the optic flow [7]. To solve behavioural tasks, such as avoiding collisions or
approaching targets, information about the depth structure of an environment is
necessary. Behavioural studies suggest, that flying insects employ flight strategies
which facilitate the neuronal extraction of depth information from optic flow by
segregating flight trajectories into translational and usually much shorter rota-
tional phases (active-gaze-strategy, [4]). Furthermore, the neuronal processing of
optic flow has been shown to play a crucial role in the control of flight stabilisa-
tion, object detection, visual odometry and spatial navigation [3].

In flying insects, optic flow is estimated by a mechanism that can be modelled
by correlation-type elementary motion detectors (EMDs, [2]). A characteristic
property of EMDs is that the output does not exclusively depend on velocity,
but also on the pattern properties of a moving stimulus, such as its contrast and
spatial frequency content. Hence, nearness information can not be extracted
unambiguously from EMD responses [5]. Rather, the responses of EMDs to pure
translational optic flow have been concluded to resemble a representation of the
relative contrast-weighted nearness to objects in the environment, or, in other
words, of the contours of nearby objects [18].

Recently, a simple model for collision avoidance based on EMDs was pro-
posed [1]. The model is based on three successive processing steps: (a) the
extraction of (contrast-weighted) nearness information from optic flow by EMDs,
(b) the determination of a collision avoidance direction from the map of near-
ness estimates and (c) the determination of a collision avoidance necessity, i.e.
whether to follow (i.e. potential obstacles are close) or not to follow the collision
avoidance direction (i.e. potential obstacles are still rather distant). When cou-
pled with a goal direction, the algorithm is able to successfully guide an agent
to a goal in cluttered environments without collisions.

In this study, this collision avoidance model was implemented on the insect-
inspired hexapod walking robot HECTOR [15]. In contrast to flight, walking
imposes specific constraints on the processing of optic flow information. Due to
the mechanical coupling of the agent to the ground the perceived image flow is
superimposed by continuous rotational components about all axes correlated to
the stride-cycle [9]. Therefore, nearness estimation from optic flow during trans-
lational walking might be obfuscated, potentially reducing the reliability of the
collision avoidance algorithm. Further, in contrast to the 360◦ panoramic vision
used in [1], a fisheye lens was mounted on the front segment of the robot with
its main optical axis pointing forward, limiting the field of view for retrieving
optic flow information.

In the following, the implementation of the collision avoidance and vision-
based direction control on the robotic platform will be described and the perfor-
mance assessed in artificial and natural cluttered environments in a simulation
framework of HECTOR. After optimisation of parameters, HECTOR will be
able to successfully navigate to predefined goals in cluttered environments while
avoiding collisions.
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2 The Simulation Framework

The performance of the model of collision avoidance and direction control was
assessed in a dynamics simulation of HECTOR which is coupled with a render-
ing module. The simulation allows parameter optimisation and tests in different
virtual environments. The simulation framework is depicted in Fig. 1 and can be
separated into four processing modules: (a) walking controller, (b) robot simula-
tion, (c) renderer and (d) vision-based directional controller.

Fig. 1. The simulation framework used for testing the implementation of the visual col-
lision avoidance model on HECTOR. The dashed box (Vision-Based Direction Con-
troller) indicates the algorithm used for controlling the robot’s behaviour based on
nearness estimation from optic flow.

2.1 Robot Simulation and Walking Controller

The hexapod robot HECTOR is inspired by the stick insect Carausius morosus.
For its design, the relative positions of the legs as well as the orientation of the
legs’ joint axes have been adopted. The size of the robot was scaled up by a factor
of 20 as compared to the biological example which results in an overall length of
roughly 0.9 m. This size allows the robot to be used as an integration platform
for several hard- and software modules. All 18 drives for the joints of the six legs
are serial elastic actuators. The mechanical compliance of the drives is achieved
by an integrated, sensorised elastomer coupling [14] and is the foundation for
the robot’s ability to passively adapt to the structure of the substrate during
walking. The bio-inspired walking controller is a conversion of the WALKNET
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approach [17] and allows the robot to negotiate rough terrain [15]. Abstracting
the complex task of leg coordination, only the heading vector must be provided
externally, e.g. by a vision-based direction controller as proposed here.

To simulate a multitude of controller parameters, a dynamics simulation
has been set up based on ODE (Open Dynamics Engine) which also simulates
the elastic joint actuation. The HECTOR simulator is controlled by the same
controller framework as the physical robot.

2.2 Renderer

To obtain optic flow information resulting from ego-motion in different virtual
environments the images of a camera attached to the robot’s main body are
rendered using the graphics engine Panda3D [6]. The robot’s orientation and
position are obtained from the robot simulation module. To emulate the wide
field of view of insect eyes [21], virtual camera images are rendered simulating an
equisolid fisheye lens [12]. The lens is parametrised to a horizontal and vertical
field of view of 192◦. The images obtained have a resolution of 400× 400 pixels
with a resolution of 10 bit per RGB color channel and a sampling frequency
of 20 Hz. Although blowflies possess color vision, evidence suggests that the
pathways involved in motion detection are monochromatic [20]. Therefore, only
the green color channel is used (Fig. 2A).

Head Stabilisation. During walking, the extraction of distance information
on the basis of optic flow processing may be impaired by stride-coupled image
shifts. For example, walking blowflies hardly ever show purely translational loco-
motion phases. Rather, they perform relatively large periodic rotations of their
body around all axes due to walking [9]. While stride-induced body rotations
around the roll and pitch axes are compensated by counter-rotations of the head,
body rotations around the yaw axis are not [8]. To minimise stride-coupled image
displacements, movements of the camera around the roll and pitch axis are com-
pensated in simulation. This is achieved by setting the roll and pitch angles of
the camera to fixed values independent of the movement of the robot’s main
body, effectively keeping the center of the optical axis of the camera parallel to
the ground plane.

2.3 Vision-Based Direction Controller

The sequences of camera images obtained from the renderer are processed by the
vision-based direction controller, which can be subdivided into four processing
steps:

(a) preprocessing of images, in order to emulate the characteristics of the visual
input of flying insects,

(b) estimation of a relative nearness map by processing of optic flow via EMDs,
(c) computation of a collision avoidance direction based on the relative nearness

of objects and a goal direction, and
(d) controlling the walking direction of the robot.
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Fig. 2. (A) Camera image of a virtual environment rendered with an equisolid fish-
eye lens. Image has been resized and reduced to 8-bit dynamic range for reproduc-
tion. (B) Camera image remapped to a rectilinear representation, spatially filtered and
scaled to an array of photoreceptors. Each pixel position represents a luminance value
as perceived by the according photoreceptor. Image has been resized and reduced to
8-bit dynamic range for reproduction. (C) Relative contrast-weighted nearness map μr

obtained from optic flow estimation via horizontally and vertically aligned EMDs. The
color-code depicts near (red) and far (blue) estimated relative nearnesses. (D) Polar
representation of the relative nearness averaged over the azimuth (blue). The arrow
(black) depicts the sum of nearness vectors (COMANV ) used for determining the col-
lision avoidance direction CADfov (red). Based on the weighted sum of the direction
to a goal α (yellow) and the CADfov, a heading direction γ (green) is computed. The
greyed out area indicates the surrounding of the robot not covered by the field of view.
(Color figure online)
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(a) Image Preprocessing. The non-linear fisheye lens, used here, possesses
distortion characteristics which are such that objects along the optical axis of
the lens occupy disproportionately large areas of the image. Objects near the
periphery occupy a smaller area of the image. Since the lens enlarges objects in
the vicinity of the optical axis, those objects are transmitted with much greater
detail than objects in the peripheral viewing region, thus, obfuscating nearness
estimation from optic flow. Hence, images obtained from the fisheye lens are
remapped to a rectilinear representation [12].

The compound eye of insects consists of a two-dimensional array of hexago-
nally aligned ommatidia comprising the retina. Each ommatidium contains a lens
and a set of photoreceptor cells. The lattice of ommatidia has characteristics of a
spatial low-pass filter and blurs the retinal image. To mimic the spatial filtering of
the eye, the remapped images are filtered by a two-dimensional Gaussian-shaped
spatial low-pass filter according to Shoemaker et al. [19]. After spatial filtering,
each input image is scaled down to a rectangular grid of photoreceptors, with an
interommatidial angle of 1.5◦. The acceptance angle of an ommatidium is set to
1.64◦ in order to approximate the characteristics of the eyes of the blowfly [16].
The grid covers a field of view of 174◦ horizontally and vertically, resulting in
an array of 116× 116 photoreceptors (i.e. luminance values) (Fig. 2B).

(b)Optic FlowProcessing. In the model used here (see [18]), optic flow estima-
tion is based on two retinotopic arrays of either horizontally or vertically aligned
EMDs. Individual EMDs are implemented by a multiplication of the delayed sig-
nal of a receptive input unit with the undelayed signal of a neighbouring unit. Only
interactions between direct neighbours are taken into account, for both horizon-
tally and vertically aligned EMDs. The luminance values from the photoreceptors
are filtered with a first-order temporal high-pass filter (τhp = 20 ms) to remove the
mean from the overall luminance of the input. The filtered outputs are fed into the
horizontally and vertically aligned EMD arrays. The delay operator in each half-
detector is modelled by a temporal first-order low-pass filter (τlp = 35 ms). Each
EMD consists of two mirror-symmetric subunits with opposite preferred direc-
tions. Their outputs are subtracted from each other. For each retinotopic unit the
motion energy is computed by taking the length of the motion vector given by
the combination of the responses of a pair of the horizontal hEMD and the vertical
vEMD at a given location (x,y) of the visual field:

μr(x,y) =
√

v2
EMD(x, y) + h2

EMD(x, y) (1)

The array of the absolute values of these local motion vectors μr resembles a
map of contrast-weighted relative nearness to objects in the environment [18],
providing information about the contours of nearby objects (Fig. 2C).

(c) Navigation and Collision Avoidance. Once the relative nearness map μr

is known, collision avoidance is achieved by moving away from the maximum near-
ness value (e.g. objects that are close) (see [1]). However, the contrast-weighted



Bio-Inspired Visual Collision Avoidance on a Walking Robot 173

nearness map also depends on the textural properties of the environment. To
reduce the texture dependence, the nearness map is averaged along the elevation ε,
giving the average nearness for a given azimuth φ. Each of these averaged nearness
values can be represented by a vector in polar coordinates, where the norm of the
vector is the averaged nearness, and its angle corresponds to the azimuth. The sum
of these vectors points towards the average direction of close objects (Fig. 2D).
This vector is denoted center-of-mass-average-nearness-vector (COMANV ; [1])

COMANV =
∑

⎛
⎝

⎛
⎝

cos(φ)

sin(φ)

⎞
⎠ 1

n

∑
μr (ε, φ)

⎞
⎠ , (2)

where n is the number of elements in the azimuth. The inverse of the COMANV
vector, scaled to the horizontal field of view θ of the photoreceptor array, points
away from the closest object and, thus, can be used as the direction of the robot
to avoid collisions (collision avoidance direction, CADfov; Fig. 2D; [1]):

CADfov =
− arctan (COMANVy, COMANVx)

2π
θ

(3)

The length of the COMANV vector increases with nearness and apparent size of
objects. Its length is a measure of the collision avoidance necessity (CAN ; [1]):

CAN =‖ COMANV ‖ . (4)

The CAN measure is used to control the heading direction γ of the robot between
avoiding collisions and following the direction to a goal (α; Fig. 2D) [1]:

γ = W (CAN) · CADfov + (1 − W (CAN)) · α (5)

W is a sigmoid weighting function based on the CAN :

W (CAN) =
1

1 +
(

CAN
n0

)−g , (6)

and driven by a gain g and a threshold n0 [1].

(d) Behavioural Control of the Walking Robot. The walking direction of
the robot is controlled based on the heading direction γ obtained from estimating
relative nearness values to objects from optic flow and the goal direction. Infor-
mation about the spatial structure of an environment can only be extracted from
optic flow during translational movements, as rotational flow components do not
provide distance information [7]. Inspired by the active-gaze-strategy employed
by flying insects [4], the control of walking direction is implemented by segre-
gating the motion trajectory into translational and rotational phases. During
translation, the robot moves forward with a constant velocity of 0.2 m/s for 4 s
(corresponding to 80 camera images), while averaging the heading direction γ.
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After that, the robot switches to a rotational state and turns towards the aver-
aged heading direction γ until the vector is centred in the field of view. When
the optic flow field is estimated by EMDs, the nearness estimations also depend
on the motion history due to the temporal filters. Hence, the optic flow obtained
during the rotational phase interferes with the optic flow measurements during
the translational phase. This effect decreases over time. Therefore, the heading
direction γ is only averaged for the last 3 s of the translational phase.

Due to the restricted horizontal field of view, no information about the near-
ness of objects outside of the camera’s field of view can be obtained (grey area
in Fig. 2D). However, as the camera is pointing forward along the direction of
walking during translation, information about the nearness of objects sidewards
or behind the robot is not essential. In situations where the goal direction does
not reside within the field of view, the CAN is set to zero, effectively inducing
a turn of the robot in the rotational phase until the goal direction is centered in
the field of view.

3 Visual Collision Avoidance in Cluttered Environments

Parameter Optimisation. The implementation of the collision avoidance
model in the dynamics simulation of HECTOR was tested in several cluttered
environments. In a first step, the threshold n0 and gain g of the weighting func-
tion W [see Eq. (6)] were optimised in an artificial environment. The environ-
ment consisted of a cubic box with a cylindrical object placed in the center
(see Fig. 3B–D). Both, the box and the object were covered with a Perlin noise
texture. The robot was placed at a starting position (S) in front of the object,
facing a goal position (G) behind the object. The distance between starting posi-
tion and goal was set to 10 m. For each of the possible parameter combinations
of the gain g = [1.0, 2.0, ..., 10.0] and threshold n0 = [0.0, 1.0, ..., 20.0] the tra-
jectory length for reaching the goal (G) without colliding with the object was
taken as a benchmark of the performance of the collision avoidance model (see
Fig. 3A). A collision was assumed if the position of the camera crossed a radius
of 1.5 m around the center of the object (black dashed circle, Fig. 3B–D) and the
respective combination of parameters was discarded. For each combination of
parameters 3 trials were performed.

If the threshold n0 is set to low values, the computation of the heading direc-
tion γ [see Eq. (5)] mainly depends on the collision avoidance direction CADfov,
whereas the goal direction α is only taken into account to a small extent. Hence,
the robot will more likely avoid collisions than navigate to the goal (G). Further,
a steeper slope of the sigmoid weighting function W , set by the gain g, leads to
higher temporal fluctuation of the heading direction γ. As a consequence, when
setting the threshold to n0 = 0.0 and the gain to g = 10.0, the resulting tra-
jectories were relatively long (Fig. 3A) and showed erratic movement patterns.
However, all trajectories reached the goal position for the given parameter com-
bination (Fig. 3B). Due to the robot following the collision avoidance direction
CADfov, in several cases the goal direction did not reside within the field of view,
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Fig. 3. (A) Length of simulated trajectories (color-coded) in a cubic box with a single
object (see B–D) for different combinations of the weighting function parameters gain
g = [1.0, 2.0, ..., 10.0] and threshold n0 = [0.0, 1.0, ..., 20.0] [see Eq. (6)]. The size of
the box was 14 m× 14m× 10 m (length×width× height) and the radius of the object
r = 1 m (height h =10 m). The walls of the box and the object were uniformly covered
with a Perlin noise texture (scale = 0.05). When the trajectory crossed a circle of a
radius of 1.5 m around the center of the object (dashed line in B–D) a collision was
assumed (white areas). (B–D) Simulated trajectories (n=10) in a cubic box with a
single object (filled circle). Starting positions are given as S and goal positions as G.
Weighting function parameters were set to (B) g = 10.0 and n0 = 0.0, (C) g = 10.0
and n0 = 20.0 and (D) g = 1.0 and n0 = 12.0. The grey dotted lines in B indicate
the main optical axis before and after recentering the goal direction in the visual field.
(E) Simulated trajectories in a cubic box with randomly placed objects (filled circles)
for different starting positions (S1–S3). The size of the box was 25m× 25 m× 10 m
(length×width× height). The radius of each object (n = 30; height: 10 m) was set
randomly in a range from 0.25 m to 1.0 m. The walls of the box and the objects were
uniformly covered with a Perlin noise texture (scale = 0.05). Weighting function para-
meters were set to g = 1.0 and n0 = 12.0 (see A and D). For each starting position 3
trajectories are shown. It is notable, that the variability for trajectories with the same
starting positions arises due to the initialization of the robot with differing body pos-
tures, effectively influencing the initial perceived image flow. (F) Simulated trajectories
(n = 5) in a reconstructed natural environment. Weighting function parameters were
set to g = 1.0 and n0 = 12.0 (see A and D). The distance between starting position
(S) and goal position (G) was 48.83 m.
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resulting in a recentering of the goal vector along the main optical axis (as indi-
cated by the grey dashed lines in Fig. 3B). This strategy led to reaching the goal
position for all trajectories.

In contrast, when setting the threshold n0 to high values, the computation
of the heading vector γ mainly takes the goal direction α into account, whereas
the influence of the collision avoidance direction (CADfov) is reduced. As a
consequence, the robot will more likely follow the direction to the goal without
avoiding obstacles. Therefore, when setting the threshold to n0 = 20.0 and the
gain to g = 10.0, the robot directly approached the goal position, consequently,
colliding with the object (Fig. 3A and C).

Figure 3D shows the trajectories for a combination of the parameters gain and
threshold which resulted in short trajectory lengths without collisions (n0 = 12.0,
g = 1.0). Here, the robot almost directly approached the goal, while effectively
avoiding the object. This combination of the threshold and gain parameters was
used in subsequent simulations in more complex cluttered environments.

Artificial Cluttered Environment. After optimisation of the threshold and
gain parameters the performance of the collision avoidance model was tested in
an Artificial cluttered environment (Fig. 3E) which was set up in a cubic box.
Several cylindrical objects (n = 30) were placed at random positions in the
x,y-plane. The radius of the objects was set individually to a random number
of r = [0.25, 1.0] m. Both, the box and the objects were covered with a texture
generated from Perlin noise. The robot was placed at different starting positions
(S1–S3), with the main optical axis oriented in parallel with the x-axis. The
distance to the goal position was d1,3 = 21.36 m for the starting positions S1

and S3 and d2 = 20 m for the starting position S2. The parameters of the
sigmoid weighting function W were set to n0 = 12.0 and g = 1.0 according
to Fig. 3A. For each starting position 3 trajectories were simulated. In all cases
the robot successfully reached the goal position without collisions and without
encountering local minima (see however [1] for a more detailed analysis).

Natural Cluttered Environment. We further tested the performance of the
collision avoidance model in a reconstructed natural environment (Fig. 3F). The
environment consisted of a dataset obtained from several laser scans [22]. The
starting (S) and goal position (G) were set so that the robot had to avoid
collisions with trees to reach the location of the goal. Also in the natural envi-
ronment – which substantially differs in the textural pattern properties from the
tested artificial environment – for all trials (n = 5) the combination of weighting
function parameters n0 = 12.0 and g = 1.0 resulted in trajectories successfully
leading to the goal, without colliding with objects.

4 Conclusion

A prerequisite for autonomous mobile robots is to navigate their environments
while actively avoiding collisions with obstacles. Whereas, to perform collision
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avoidance, autonomous robots nowadays normally rely on active sensors (e.g.
laser range finders [13]) or extensive computations (e.g. Lucas-Kanade optic
flow computation [10]), insects are able to do so with minimal energetic and
computational expenditure by relying mainly on visual information. We imple-
mented a bio-inspired model of collision avoidance in simulations of the hexa-
pod walking robot HECTOR solely based on the processing of optic flow by
correlation-type elementary motion detectors (EMDs). EMDs have previously
been accounted for playing a key role in the processing of visual motion infor-
mation in insects [3]. As could be shown, although the responses of EMDs to
visual motion are entangled with the textural properties of the environment [5],
the relative nearness information obtained from optic flow estimation via EMDs
is sufficient to direct HECTOR to a goal location in cluttered environments with-
out colliding with obstacles. This holds true either for artificially generated envi-
ronments as well as for a reconstructed natural environment, which substantially
differ in their textural pattern properties. Moreover, by employing behavioural
strategies such as (a) an active-gaze strategy and (b) active head stabilisation –
both also found in insects – the influence of rotational optic flow components
which potentially obfuscate the estimation of relative nearness information from
optic flow is reduced. Hence, on the physical robot a prototype for mechanical
gaze-stabilisation has been implemented and is currently compared to a software
implementation.

The simulation results shown here will serve as a basis for the implementation
of more complex bio-inspired models for visually-guided navigation in hardware
which is currently under development. These models will comprise strategies for
navigation and search behaviour based on the insect-inspired processing of optic
flow.
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