Skip to main content

Optimizing Morphology and Locomotion on a Corpus of Parametric Legged Robots

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9793))

Abstract

In this paper, we describe an optimization approach to the legged locomotion problem. We designed a software environment to manipulate parametrized robot models. This environment is a platform developed for future experiments and for educational robotics purpose. It allows to generate dynamic models and simulate them using a physics engine. Experiments can then be made with both morphological and controller optimization. Here we describe the environment, propose a simple open loop generic controller for legged robots and discuss experiments that were made on a robot corpus using a black-box optimization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Videos showing the editor is available at https://www.youtube.com/watch?v=smHctwi05Ic.

  2. 2.

    A video of the obtained behaviors is available: https://www.youtube.com/watch?v=GF1KM7JrmC0.

References

  1. Muybridge, E.: Animals in Motion. Courier Corporation (2012)

    Google Scholar 

  2. Marder, E., Bucher, D.: Central pattern generators and the control of rhythmic movements. Curr. Biol. 11(23), R986–R996 (2001)

    Article  Google Scholar 

  3. Holmes, P., Full, R.J., Koditschek, D., Guckenheimer, J.: The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev. 48(2), 207–304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Grégoire Passault, F.P., Rouxel, Q., Ly, O.: Metabot: a low-cost legged robotics platform for education (Submitted)

    Google Scholar 

  5. Pollack, J.B., Lipson, H.: The GOLEM project: evolving hardware bodies and brains. In: 2000 Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware, pp. 37–42. IEEE (2000)

    Google Scholar 

  6. Megaro, V., Thomaszewski, B., Nitti, M., Hilliges, O., Gross, M., Coros, S.: Interactive design of 3D-printable robotic creatures. ACM Trans. Graph. (TOG) 34(6), 216 (2015)

    Article  Google Scholar 

  7. Marbach, D., Ijspeert, A.J.: Co-evolution of configuration and control for homogenous modular robots. In: Proceedings of the Eighth Conference on Intelligent Autonomous Systems (IAS8), BIOROB-CONF-2004-004, pp. 712–719. IOS Press (2004)

    Google Scholar 

  8. Samuelsen, E., Glette, K.: Real-world reproduction of evolved robot morphologies: automated categorization and evaluation. In: Mora, A.M., Squillero, G. (eds.) Applications of Evolutionary Computation. LNCS, vol. 9028, pp. 771–782. Springer, Heidelberg (2015)

    Google Scholar 

  9. Cully, A., Clune, J., Tarapore, D., Mouret, J.-B.: Robots that can adapt like animals. Nature 521(7553), 503–507 (2015)

    Article  Google Scholar 

  10. Hengst, B., Ibbotson, D., Pham, S.B., Sammut, C.: Omnidirectional locomotion for quadruped robots. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, pp. 368–373. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Neuhaus, P.D., Pratt, J.E., Johnson, M.J.: Comprehensive summary of the institute for human and machine cognition’s experience with little dog. Int. J. Robot. Res. 30(2), 216–235 (2011)

    Article  Google Scholar 

  12. Maes, P., Brooks, R.A.: Learning to coordinate behaviors. In: AAAI, pp. 796–802 (1990)

    Google Scholar 

  13. The programmers solid 3D CAD modeller. http://www.openscad.org/

  14. Hormann, K., Agathos, A.: The point in polygon problem for arbitrary polygons. Comput. Geom. 20(3), 131–144 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Boeing, A., Bräunl, T.: Evaluation of real-time physics simulation systems. In: Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, pp. 281–288. ACM (2007)

    Google Scholar 

  16. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  17. Multithreaded C++11 implementation of CMA-ES family for optimization of nonlinear non-convex blackbox functions. https://github.com/beniz/libcmaes/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégoire Passault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Passault, G., Rouxel, Q., Fabre, R., N’Guyen, S., Ly, O. (2016). Optimizing Morphology and Locomotion on a Corpus of Parametric Legged Robots. In: Lepora, N., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T. (eds) Biomimetic and Biohybrid Systems. Living Machines 2016. Lecture Notes in Computer Science(), vol 9793. Springer, Cham. https://doi.org/10.1007/978-3-319-42417-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42417-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42416-3

  • Online ISBN: 978-3-319-42417-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics