Skip to main content

MantisBot Uses Minimal Descending Commands to Pursue Prey as Observed in Tenodera Sinensis

  • Conference paper
  • First Online:
  • 2611 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9793))

Abstract

Praying mantises are excellent models for studying directed motion. They may track prey with rapid saccades of the head, prothorax, and legs, or actively pursue prey, using visual input to modulate their walking patterns. Here we present a conductance-based neural controller for MantisBot, a 28 degree-of-freedom robot, which enables it to use faux-visual information from a head sensor to either track or pursue prey with its prothorax and appropriate movements of one of its legs. The controller can switch between saccades and smooth tracking, as seen in pursuit, modulating only two neurons in its model thoracic ganglia via descending commands. Similarly, the neural leg controller redirects the direction of locomotion, and automatically produce reflex reversals seen in other insects when they change direction, via two simple descending commands.

N.S. Szczecinski—This work was supported by a NASA Office of the Chief Technologists Space Technology Research Fellowship (Grant Number NNX12AN24H).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akay, T., Ludwar, B.C., Göritz, M.L., Schmitz, J., Büschges, A.: Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. J. Neurosci. 27(12), 3285–3294 (2007)

    Article  Google Scholar 

  2. Buschmann, T., Ewald, A., Twickel, A.V., Büschges, A.: Controlling legs for locomotion insights from robotics and neurobiology. Bioinspiration Biomimetics 10(4), 41001 (2015)

    Article  Google Scholar 

  3. Cruse, H.: Which parameters control the leg movement of a walking insect? II: the start of the swing phase. J. Exp. Biol. 116, 357–362 (1985)

    Google Scholar 

  4. Daun-Gruhn, S.: A mathematical modeling study of inter-segmental coordination during stick insect walking. J. Comput. Neurosci. 30(2), 255–278 (2010)

    Article  MathSciNet  Google Scholar 

  5. Getsy, A.P., Szczecinski, N.S., Quinn, R.D.: MantisBot: the implementation of a photonic vision system. In: Lepora, N.F., et al. (eds.) Living Machines 2016. LNCS(LNAI), vol. 9793, pp. 429–435. Springer, Switzerland (2016)

    Google Scholar 

  6. Guo, P., Ritzmann, R.E.: Neural activity in the central complex of the cockroach brain is linked to turning behaviors. J. Exp. Biol. 216(Pt 6), 992–1002 (2013)

    Article  Google Scholar 

  7. Lea, J.Y., Mueller, C.G.: Saccadic head movements in mantids. J. Comp. Physiol. A 114(1), 115–128 (1977)

    Article  Google Scholar 

  8. Martin, J.P., Guo, P., Mu, L., Harley, C.M., Ritzmann, R.E.: Central-complex control of movement in the freely walking cockroach. Curr. Biol. 25(21), 2795–2803 (2015)

    Article  Google Scholar 

  9. Mittelstaedt, H.: Prey capture in mantids. In: Scheer, B.T. (ed.) Recent Advances in Invertebrate Physiology, pp. 51–72. University of Oregon, Eugene (1957)

    Google Scholar 

  10. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  11. Reichardt, W.: Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith, W.A. (ed.) Sensory Communication, pp. 303–317. MIT Press, Cambridge, MA (1961)

    Google Scholar 

  12. Rossel, S.: Foveal fixation and tracking in the praying mantis. J. Comp. Physiol. A Neuroethology Sens. Neural Behav. Physiol. 139, 307–331 (1980)

    Article  Google Scholar 

  13. Szczecinski, N.S., Brown, A.E., Bender, J.A., Quinn, R.D., Ritzmann, R.E.: A neuromechanical simulation of insect walking and transition to turning of the cockroach blaberus discoidalis. Biol. Cybern. 108(1), 1–21 (2013)

    Article  Google Scholar 

  14. Szczecinski, N.S., Chrzanowski, D.M., Cofer, D.W., Moore, D.R., Terrasi, A.S., Martin, J.P., Ritzmann, R.E., Quinn, R.D.: MantisBot: a platform for investigating mantis behavior via real-time neural control. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) Living Machines 2015. LNCS, vol. 9222, pp. 175–186. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  15. Szczecinski, N.S., Chrzanowski, D.M., Cofer, D.W., Terrasi, A.S., Moore, D.R., Martin, J.P., Ritzmann, R.E., Quinn, R.D.: Introducing MantisBot: hexapod robot controlled by a high- fidelity, real-time neural simulation. In: IEEE International Conference on Intelligent Robots and Systems. pp. 3875–3881. Hamburg, DE (2015)

    Google Scholar 

  16. Yamawaki, Y., Toh, Y.: A descending contralateral directionally selective movement detector in the praying mantis tenodera aridifolia. J. Comp. Physiol. A 195(12), 1131–1139 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas S. Szczecinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Szczecinski, N.S., Getsy, A.P., Bosse, J.W., Martin, J.P., Ritzmann, R.E., Quinn, R.D. (2016). MantisBot Uses Minimal Descending Commands to Pursue Prey as Observed in Tenodera Sinensis . In: Lepora, N., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T. (eds) Biomimetic and Biohybrid Systems. Living Machines 2016. Lecture Notes in Computer Science(), vol 9793. Springer, Cham. https://doi.org/10.1007/978-3-319-42417-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42417-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42416-3

  • Online ISBN: 978-3-319-42417-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics