
The subdivision of large simplicial cones in
Normaliz

Winfried Bruns1, Richard Sieg2, and Christof Söger3

1 University of Osnabrück, Germany
wbruns@uos.de,

http://www.home.uni-osnabrueck.de/wbruns/
2 University of Osnabrück, Germany

risieg@uos.de,
http://www.math.uni-osnabrueck.de/normaliz/

3 University of Osnabrück, Germany
csoeger@uos.de,

http://www.math.uni-osnabrueck.de/normaliz/

Abstract. Normaliz is an open-source software for the computation of
lattice points in rational polyhedra, or, in a different language, the solu-
tions of linear diophantine systems. The two main computational goals
are (i) finding a system of generators of the set of lattice points and
(ii) counting elements degree-wise in a generating function, the Hilbert
Series. In the homogeneous case, in which the polyhedron is a cone, the
set of generators is the Hilbert basis of the intersection of the cone and
the lattice, an affine monoid.

We will present some improvements to the Normaliz algorithm by sub-
dividing simplicial cones with huge volumes. In the first approach the
subdivision points are found by integer programming techniques. For
this purpose we interface to the integer programming solver SCIP to our
software. In the second approach we try to find good subdivision points
in an approximating overcone that is faster to compute.

Keywords: Hilbert basis, Hilbert series, rational cone, polyhedron

1 Introduction

Normaliz [3] is a software for the computation of lattice points in rational polyhe-
dra. These are exactly the solutions of linear diophantine systems of inequalities,
equations and congruences. It pursues two main computational goals: (i) finding
a minimal generating system of the set of lattice points in a polyhedron; (ii)
counting elements degree-wise in a generating function, the Hilbert series. In
the homogeneous case, in which the polyhedron is a cone, the set of generators
is the Hilbert basis of the intersection of the cone and the lattice, which is an
affine monoid by Gordan’s lemma. For the mathematical background we refer
the reader to [2]. The Normaliz algorithms are described in [4] and [5]. The
second paper contains extensive performance data.

ar
X

iv
:1

60
5.

07
44

0v
1

 [
m

at
h.

C
O

]
 2

4
M

ay
 2

01
6

2 Bruns-Sieg-Söger

Normaliz (present public version 3.1.1) is written in C++ (using Boost and
GMP/MPIR), parallelized with OpenMP, and runs under Linux, MacOs and
MS Windows. It is based on its C++ library libnormaliz which offers the full
functionality of Normaliz. There are file based interfaces for Singular, Macaulay
2 and Sage, and C++ level interfaces for CoCoA, polymake, Regina and GAP.
A C++ level interface to Sage should be available in the near future. There is
also the GUI interface jNormaliz.

Normaliz has found applications in commutative algebra, toric geometry,
combinatorics, integer programming, invariant theory, elimination theory, group
theory, mathematical logic, algebraic topology and even theoretical physics.

2 Hilbert basis and Hilbert series

We will first describe the main functionality of Normaliz. For simplicity we re-
strict ourselves to homogeneous linear systems in the following, or, geometrically
speaking, to the intersections of lattices L ⊂ Zd and rational cones C ⊂ Rd.

Definition 1. A (rational) polyhedron P is the intersection of finitely many
(rational) halfspaces. If it is bounded, then it is called a polytope. If all the
halfspaces are linear, then P is a cone.

The dimension of P is the dimension of the smallest affine subspace aff(P)
containing P .

An affine monoid is a finitely generated submonoid of Zd for some d.

By the theorem of Minkowski-Weyl, C ⊂ Rd is a (rational) cone if and only if
there exist finitely many (rational) vectors x1, . . . , xn such that

C = cone(x1, . . . , xn) = {a1x1 + · · ·+ anxn : a1, . . . , an ∈ R+}.

If x1, . . . , xn are linearly independent, we call C simplicial. For Normaliz, cones
C and lattices L can either be specified by generators x1, . . . , xn ∈ Zd or by con-
straints, i.e., homogeneous systems of diophantine linear inequalities, equations
and congruences. Normaliz also offers to define an affine monoid as the quotient
of Zn

+ modulo the intersection with a sublattice of Zn.
Normaliz puts no restriction on the rational cone C. In the following we will

however assume that C is pointed, i.e. x,−x ∈ C ⇒ x = 0. This is justified since
computations in non-pointed cones are done via the projection to the quotient
modulo the maximal linear subspace, which is pointed.

By Gordan’s lemma the monoid M = C ∩ L is finitely generated. This
affine monoid has a (unique) minimal generating system called the Hilbert basis
Hilb(M), see Figure 1 for an example. The computation of the Hilbert basis is
the first main task of Normaliz.

One application is the computation of the normalization of an affine monoid
M ; this explains the name Normaliz. The normalization is the intersection of
the cone generated by M with the sublattice gp(M) generated by M . One calls
M normal, if it coincides with its normalization.

Recent developments in Normaliz 3

Fig. 1: A cone with the Hilbert basis (circled points) and grading.

The second main task is to compute the Hilbert (or Ehrhart) series of a
graded monoid. A grading of a monoid M is simply a homomorphism deg :
M → Zg where Zg contains the degrees. The Hilbert series of M with respect
to the grading is the formal Laurent series

H(t) =
∑
u∈Zg

#{x ∈M : deg x = u}tu1
1 · · · tug

g =
∑
x∈M

tdeg x,

provided all sets {x ∈ M : deg x = u} are finite. At the moment, Normaliz can
only handle the case g = 1, and therefore we restrict ourselves to this case. We
assume in the following that deg x > 0 for all nonzero x ∈ M and that there
exists an x ∈ gp(M) such that deg x = 1. (Normaliz always rescales the grading
accordingly.)

Assume that M is a normal and affine monoid. By a theorem of Hilbert and
Serre ([2, Theorem 6.37]), H(t) in the Z-graded case is the Laurent expansion
of a rational function at the origin:

H(t) =
R(t)

(1− te)r
, R(t) ∈ Z[t],

where r is the rank of M and e is the least common multiple of the degrees of
the extreme integral generators of cone(M). As a rational function, H(t) has
negative degree.

A rational cone C and a grading together define the rational polytope Q =
C ∩ A1 where A1 = {x : deg x = 1}. In this sense the Hilbert series is nothing
but the Ehrhart series of Q.

3 The primal algorithm

The primal Normaliz algorithm is triangulation based. Normaliz contains a sec-
ond, dual algorithm for the computation of Hilbert bases that implements ideas
of Pottier [6]. The dual algorithm is treated in [4], and has not changed much in
the last years and we do not discuss it in this article.

4 Bruns-Sieg-Söger

The primal algorithm starts from a pointed rational cone C ⊂ Rd given by a
system of generators x1, . . . , xn and a sublattice L ⊂ Zd that contains x1, . . . , xn.
Other types of input data are first transformed into this format. The algorithm
is composed as follows:

1. Initial coordinate transformation to E = L ∩ (Rx1 + · · ·+ Rxn);
2. Fourier-Motzkin elimination computing the support hyperplanes of C;
3. computation of a triangulation, i.e. a face-to-face decomposition into simpli-

cial cones;
4. evaluation of the simplicial cones in the triangulation;
5. collection of the local data;
6. reverse coordinate transformation to Zd.

The algorithm does not strictly follow this chronological order, but inter-
leaves steps 2–5 in an intricate way to ensure low memory usage and efficient
parallelization.

3.1 Simplicial cones

We will now focus on step 4 of the primal algorithm, the evaluation of simplicial
cones. Let x1, . . . , xd ∈ Zd be linearly independent and S = cone(x1, . . . , xd).
Then the integer points in the fundamental domain of S

E = {q1x1 + · · ·+ qdxd : 0 ≤ qi < 1} ∩ Zd

together with x1, . . . , xd generate the monoid S ∩ Zd.

Fig. 2: A cone with a fundamental domain

Every residue class in the quotient Zd/U , where U = Zx1 + · · · + Zxd, has
exactly one representative in E. Representatives of residue classes can be quickly
computed via the elementary divisor algorithm and from an arbitrary represen-
tative we obtain the one in E by division with remainder. The integer points of
the fundamental domain are candidates for the Hilbert basis of the cone. After
their computation they are shrunk to the Hilbert basis by successively discard-
ing elements x which are reducible, i.e. there exists an y ∈ E, y 6= x such that

Recent developments in Normaliz 5

x − y ∈ C. Also the computation of the Hilbert series uses the set E and a
Stanley decomposition based on it; see [5].

The number of elements in E is given by the (lattice normalized) volume of
the simplex:

|E| = vol(S) = det(x1, . . . , xd).

Therefore the determinant of the generators of the simplicial cone has an enor-
mous impact on the runtime of the Normaliz algorithm. The algorithms pre-
sented in this paper try to decompose a simplex with big volume into simplices
such that the sum of their volumes is considerably smaller. For this purpose we
compute integer points from the cone and use them for a new triangulation.

Theoretically the best choice for these points are the vertices of the bottom
B(S) of the simplex which is defined as the union of the bounded faces of the
polyhedron conv((S∩Zd)\{0}). In practice, the computation of the whole bottom
would equalize the benefit from the small volume or even make it worse.

Therefore, we determine only some points from the bottom. Normaliz em-
ploys two methods for this purpose:
(1) computation of subdivision points by integer programming methods,
(2) computation of candidate subdivision points by approximation of the given

simplicial cone by an overcone that is generated by vectors of “low denomi-
nator”.

4 Methods from integer programming

For each simplex S = cone(x1, . . . , xd) in the triangulation with large enough
volume we try to compute a point x that minimizes the sum of determinants:

d∑
i=1

det(x1, . . . , xi−1, x, xi+1, . . . , xd),

which can also be expressed as NTx, where N is a normal vector on the affine
hyperplane spanned by x1, . . . , xd. Such a point can be found by solving the
following integer program:

min{NTx : x ∈ S ∩ Zd, x 6= 0, NTx < NTx1}. (?)

If the problem has a solution x̂, we form a stellar subdivision of the simplex with
respect to x̂: For every support hyperplane Hi (not containing xi) which does
not contain x̂ we form the simplex

Ti = cone(x1, . . . , xi−1, x̂, xi+1, . . . , xd).

If the volume of Ti is larger than a particular bound, we repeat this process and
continue until all simplices have a smaller volume than this bound or the corre-
sponding integer problems have no solutions. Figure 3 illustrates the algorithm.

After computing a set of integer points B, we triangulate the bottom of
conv(B ∪ {x1, . . . , xd}) and continue by evaluating this triangulation with the
usual Normaliz algorithm.

6 Bruns-Sieg-Söger

Fig. 3: The integer programming algorithm for a cone

4.1 Implementation and results

We use the mixed integer programming solver SCIP [1] via its C++ interface.
The algorithm runs in parallel with one SCIP environment for every thread using
OpenMP. Moreover each SCIP instance has its own time limit (log(vol(S))2 sec)
and feasibility bounds.

The condition that x 6= 0 could be implemented by the inequality NTx ≥ 1.
However this approach is prone to large numbers in N . Therefore we first check,
whether all generators are positive in one entry i and thus require xi ≥ 1. If this
is not the case we make a bound disjunction of the form (xi ≤ −1 ∨ xi ≥ 1).

Table 1 presents example data computed on a SUN xFire 4450 with four Intel
Xeon X7460 processors, using 20 threads and solving integer programs only for
simplices with a volume larger than 106.

hickerson-16 hickerson-18 knapsack 11 60

simplex volume 9.83 × 107 4.17 × 1014 2.8 × 1014

volume under bottom 8.10 × 105 3.86 × 107 2.02 × 107

volume used 3.93 × 106 5.47 × 107 2.39 × 107

integer programs solved 4 582016 11621

improvement factor 25 7.62 × 106 1.17 × 107

runtime without subdivision 2s > 12d > 8d

runtime with subdivision 0.5s 46s 5.1s

Table 1: Runtime improvements using integer programming methods

The bound on the volume to stop the calculation of a single simplex has a
significant effect on the runtime of the algorithm. A smaller bound means that
more integer programs have to be solved by SCIP, whereas a large bound prevents
a major improvement of the respective volume. Running several experiments, it
turns out that 106 is a good value in between these two extreme cases. Figure 4
shows a runtime graph illustrating the effect of different choices for this bound.
The measured time is a single thread computation of hickerson-18.

Recent developments in Normaliz 7

103 104 105 106 107 108 109 1010 1011

0

1,000

2,000

3,000

4,000

5,000

our choice

BOUND

R
u
n
ti
m
e
(s
ec
)

overall

Normaliz

SCIP

Fig. 4: Runtime graph showing different choices for the bound

5 Approximation

SCIP cannot be employed in all environments. Especially if Normaliz is bundled
with another software package it may be undesirable or even impossible to force
the link to SCIP.

Our second approach is completely implemented within Normaliz. It first
approximates the simplicial cone S by a (not necessarily simplicial) overcone C
for which the sets E in a triangulation of C are significantly faster to compute.
Then these points are used to decompose the original simplex as before. It is
clear that the efficiency depends crucially on the intersection of the sets E with
S.

For this purpose we look at the polytope given by the cross section of the
simplex at height one, where the height function comes from the normal vector
N on the affine hyperplane spanned by the generators. For every vertex of this
polytope we triangulate the lattice cube around it using the braid hyperplane
arrangement {xi = xj}. We continue by detecting the minimal face containing
the vertex and collect its vertices, which are at most d. The approximating cone
C is then generated by all vertices found in that way. Figure 5 illustrates the
choice of the approximation for a 3-dimensional cone (with a 2-dimensional cross
section).

Fig. 5: Approximating cone

8 Bruns-Sieg-Söger

As in the usual Normaliz algorithm we create a candidate list for the exterior
cone, but keep only those points which lie inside the original simplex S. The
remaining candidates are then reduced as before, which results in a list B which
is used for a recursive decomposition of the simplex as in Section 4. Figure 6
illustrates this process for the previous example.

Fig. 6: Decomposition of a simplex after approximation

It might happen for both algorithms that no decomposition point can be
found, although the volume of the simplex is still quite large (> 109) and subdi-
vision points exist. In this case, the approximation method is applied again with
a higher level of approximation.

Table 2 contains performance data for the examples in Section 4.

hickerson-16 hickerson-18 knapsack 11 60

volume used 3.93 × 106 8.42 × 107 9.36 × 107

improvement factor 25 4.95 × 106 2.99 × 104

runtime with subdivision 0.4s 50s 2m30s

Table 2: Runtime improvements using the approximation method

At present we are working on improvements of the approximation method.

References

1. T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Program-
ming Computation 1 (2009), 1–41. Available from http://mpc.zib.de/index.php/

MPC/article/view/4

2. W. Bruns and J. Gubeladze, Polytopes, rings and K-theory, Springer, 2009.
3. W. Bruns, B. Ichim, T. Römer, R. Sieg and C. Söger, Normaliz. Algorithms for ra-

tional cones and affine monoids, Available at http://www.math.uos.de/normaliz.
4. W. Bruns and B. Ichim, Normaliz: Algorithms for affine monoids and rational cones.

J. Algebra 324 (2010), 1098–1113.
5. W. Bruns, B. Ichim and C. Sger. The power of pyramid decompositions in Normaliz.

J. Symb. Comp. 74 (2016), 513–536.
6. L. Pottier, The Euclide algorithm in dimension n. Research report, ISSAC 96, ACM

Press 1996.

http://mpc.zib.de/index.php/MPC/article/view/4
http://mpc.zib.de/index.php/MPC/article/view/4

	The subdivision of large simplicial cones in Normaliz
	1 Introduction
	2 Hilbert basis and Hilbert series
	3 The primal algorithm
	3.1 Simplicial cones

	4 Methods from integer programming
	4.1 Implementation and results

	5 Approximation

