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Abstract

3D printing and other layer manufacturing processes are challenged by dimensional accuracy.
Several techniques are used to validate and calibrate dimensional accuracy through the complete
building envelope. The validation process involves the growing and measuring of a shape with
known parameters. The measured result is compared with the intended digital model. Processes
with the risk of deformation after time or post processing may find this technique beneficial. We
propose to use objects from algebraic geometry as test shapes. A cubic surface is given as the
zero set of a 3rd degree polynomial with 3 variables. A class of cubics in real 3D space contains
exactly 27 real lines. We provide a library for the computer algebra system Singular which, from
6 given points in the plane, constructs a cubic and the lines on it. A surface shape derived from a
cubic offers simplicity to the dimensional comparison process, in that the straight lines and many
other features can be analytically determined and easily measured using non-digital equipment.
For example, the surface contains so-called Eckardt points, in each of which three of the lines
intersect, and also other intersection points of pairs of lines. Distances between these intersection
points can easily be measured, since the points are connected by straight lines. At all intersection
points of lines, angles can be verified. Hence, many features distributed over the build volume are
known analytically, and can be used for the validation process. Due to the thin shape geometry
the material required to produce an algebraic surface is minimal. This paper is the first in a series
that proposes the process chain to first define a cubic with a configuration of lines in a given
print volume and then to develop the point cloud for the final manufacturing. Simple measuring
techniques are recommended.

1 Introduction

This paper is the first in a series to investigate whether cubic surface shapes, and specifically the
Clebsch cubic, can be used in 3D printing build volume accuracy. In this initial paper the phases of
development are proposed and the authors attempt to determine the mathematical base for calculating
with cubic surfaces. Various build volumes, growing techniques and materials may require slight
adjustments due to its unique characteristics. However, the basic shape and mathematical approach
remains the same for all variants. The ultimate aim is to have a standard Clebsch cubic shape
which can be grown on any platform in any material, and in any build volume size. The research
phases proposed are an initial analytical mathematical model, then an engine which converts from
the analytical model to a point cloud, then a digital domain simulated growth, followed by an actual
hardware printing phase, and lastly a reverse engineering phase. The initial mathematical model is
developed from ground rules to provide others the fundamental information for parallel development.
The input to the mathematical model, based on the mathematical formulations found by Clebsch and
others, is the extent of the build volume. The open source computer algebra system Singular is
used for this conversion. The outputs from the mathematical model is a three dimensional shape in
analytical mathematical formulation, the formulas for 27 straight lines, the coordinates of the points
where the lines cross, and the angles between the lines. After printing, the line straightness is one
indicator of the dimensional accuracy. Another indicator is the angles between lines. The coordinate
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positioning of the cross points, and the thickness of the cubic’s vanes could also be measures. This
model is developed and suggested in the second part of this paper. The engine which converts the
analytical mathematical formulation to a printable point cloud would typically be programmed in
Matlab and later in C++. The inputs are the three dimensional mathematical shape of the Clebsch
cubic, and the formulas of the 27 straight lines that we want to use as part of the dimensional
accuracy measurement. Note that the straight lines will have to be highlighted in some way for
the reverse engineering process to pick it up. Several ways could be used to highlight the lines:
generating cylinders around the lines with diameter larger than the cubics vane thickness, thinning
the vanes along the lines, or perforating the vanes along the lines, are examples. The output of this
engine would be a point cloud in an STL format or similar. In phase three of this project we would
attempt to compare the point cloud with the initial analytical line formulas. This comparison can
be done on a CAD platform, but would typically be a manual process. Several alternatives of the
previous phases will be evaluated for accuracy. All work up to this point is in the digital domain.
This phase is to ensure accuracy and robustness of self developed tools by comparison with trusted
commercially available CAD platforms. The output of this phase is a report which defines constraints
and extents within which these techniques are deemed accurate in the digital domain. Phase four
will see the growing of hard copies in various materials on various platforms. This phase will report
on any manufacturing issues on any of the platforms using the extent of materials chosen. Phase
five will reverse engineer hardware shapes to compare with the initial intended analytical shape. In
this phase it will be determined to what extent the use of the 27 straight lines and their angles is
an indication of dimensional accuracy of the process. This phase will seek to propose an economical
method of measuring dimensional accuracy of the complete building envelope. This paper starts with
the mathematical setup on which the description of the cubic and the lines are based. Then a reference
to the mathematical origins of the cubic surfaces is made, followed by the derivation of the surface
equation and the lines. Finally an example output from the computer algebra library and explicit
data for the Clebsch cubic is given.

2 Algebraic varieties

We first set the mathematical framework used to describe the cubic and the lines on it. Let K be
either the real numbers R or the complex numbers C. The set of lines through the origin in Kn+1 is
called projective space and is denoted Pn

K . We will write (x0 : . . . : xn) for the line with direction
(x0, . . . , xn) 6= 0. There is an inclusion of usual n-space to projective space

Kn −→ Pn
K , (x1, . . . , xn) 7−→ (1 : x1 : . . . : xn).

This map is referred to as an affine chart. The complement of the image is called the plane at infinity
(the horizon in a perspective drawing). An algebraic variety V (f1, . . . , fr) ⊂ Pn

K is the common
zero set of homogeneous polynomials fi ∈ K[x0, . . . , xn].

Algebraic varieties are studied in algebraic geometry, which forms a central branch of classical
mathematics. It has important applications, e.g., in cryptography, robotics, and computational biol-
ogy. Algebraic varieties have the advantage over zero sets of non-polynomial equations that they can
easily be handled by the means of computer algebra. For computing with polynomials we make use of
the open-source computer algebra system Singular [8]. Using projective space in the development
of the theory, avoids the problem that some features of an algebraic variety (e.g. a line on it) may be
contained in the plane at infinity. For an introduction to algebraic geometry, computer algebra, and
its applications see, e.g. [6].

3 Historic overview and derivation of the fundamental proper-
ties of cubic hypersurfaces

Starting in the second half of the 19th century, Clebsch, Klein, Salmon, Coble and many other math-
ematicians investigated cubic surfaces in P3

C, which are given by a single 3rd degree polynomial. In
1849, Arthur Cayley [2] and George Salmon [11] found:

Theorem 3.1. Every smooth cubic surface in P3
C contains exactly 27 lines.

Here smooth means, that C has in every point a well-defined tangent plane. In algebraic geometry
there is a process, called blowup, which replaces in a variety a given point by a line and is a 1 : 1 map
everywhere else. In 1871 Alfred Clebsch [4] proved (see also [3]):
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Theorem 3.2. Every smooth cubic surface in P3
C is the blowup of P2

C in 6 points.

In the following, let P1, . . . , P6 ∈ P2
K be points in general position, that is, no three are on a line

and not all of them on a conic.

Remark 3.3. The homogeneous linear polynomial

li,j(t) := det (Pi, Pj , t) := det

 Pi,0 Pj,0 t0
Pi,1 Pj,1 t1
Pi,2 Pj,2 t2

 ∈ K[t0, t1, t2]

defines in P2
K the line through Pi and Pj .

Proposition 3.4. [5] The blowup C = C(P1,...,P6) of P2
K in the points Pi is the smallest algebraic

variety (with respect to inclusion) containing the image of

ϕ(P1,...,P6) : P2
K\{P1, . . . P6} −→ P5

K

(t0 : t1 : t2) 7−→ (ϕ0(t) : . . . : ϕ5(t))

(defined on P2
K except at the points P1, . . . P6), where

ϕ0 = l2,5l1,3l4,6 + l5,1l4,2l3,6 + l1,4l3,5l2,6 + l4,3l2,1l5,6 + l3,2l5,4l1,6
ϕ1 = l5,3l1,2l4,6 + l1,4l2,3l5,6 + l2,5l3,4l1,6 + l3,1l4,5l2,6 + l4,2l5,1l3,6
ϕ2 = l5,3l4,1l2,6 + l3,4l2,5l1,6 + l4,2l1,3l5,6 + l2,1l5,4l3,6 + l1,5l3,2l4,6
ϕ3 = l4,5l3,1l2,6 + l5,3l2,4l1,6 + l4,1l2,5l3,6 + l3,2l1,5l4,6 + l2,1l4,3l5,6
ϕ4 = l3,1l2,4l5,6 + l1,2l5,3l4,6 + l2,5l4,1l3,6 + l5,4l3,2l1,6 + l4,3l1,5l2,6
ϕ5 = l4,2l3,5l1,6 + l2,3l1,4l5,6 + l3,1l5,2l4,6 + l1,5l4,3l2,6 + l5,4l2,1l3,6.

Remark 3.5. The Clebsch cubic, given in [4, Ch. 16], is obtained by applying this construction to
the points in general position

P1 = (0 : 1 : −g) P3 = (1 : g : 0) P5 = (0 : 1 : g)
P2 = (g : 0 : 1) P4 = (1 : −g : 0) P6 = (−g : 0 : 1),

where g = 1+
√
5

2 is the golden ratio. These points correspond to the diagonals in an icosahedron. The
Clebsch cubic with K = R contains 27 real lines.

Remark 3.6. The number

|i, j; k, l;m,n| = det

(
det (Pi, Pj , Pm) det (Pi, Pj , Pn)
det (Pk, Pl, Pm) det (Pk, Pl, Pn)

)
,

vanishes if the lines defined by li,j(t), lk,l(t) and lm,n(t) in P2
K meet in one point.

Theorem 3.7. [5, 7] Consider the skew-symmetric matrix

(Ai,j) =


0 |1, 5; 2, 4; 3, 6| |1, 4; 3, 5; 2, 6| |1, 2; 4, 3; 5, 6| |2, 3; 4, 5; 1, 6| |1, 3; 5, 2; 4, 6|

0 |2, 5; 3, 4; 1, 6| |1, 3; 5, 4; 2, 6| |1, 2; 3, 5; 4, 6| |1, 4; 2, 3; 5, 6|
0 |1, 5; 3, 2; 4, 6| |1, 3; 2, 4; 5, 6| |1, 2; 4, 5; 3, 6|

0 |1, 4; 5, 2; 3, 6| |2, 4; 3, 5; 1, 6|
0 |1, 5; 3, 4; 2, 6|

0

 ∈ K6×6

where the entries are defined as in Remark 3.6, and write for the sum of the entries of the i-th row

ai =

6∑
j=1

Ai,j.

Then C is given by the equations

x30 + . . .+ x35 = 0

x0 + . . .+ x5 = 0

a0 · x0 + . . .+ a5 · x5 = 0.

Remark 3.8. Using the ordering of the Pi from Remark 3.5, we obtain for the Clebsch cubic surface
a0 = a1 = a2 = a3 = a4 = 1 and a5 = −5.
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Remark 3.9. For a subset S ⊂ Pn
C we define I(S) as the ideal of all f ∈ C[x0, . . . , xn] with f(x) = 0

for all x ∈ S. So V (I(S)) is the smallest algebraic variety (with respect to inclusion) containing S.
The ideal generated by the ϕi is

〈ϕ0, . . . , ϕ5〉 = I(P1) ∩ ... ∩ I(P6).

With the ring homomorphism

ψ(P1,...,P6) : C[x0, . . . , x5] −→ C[t0, t1, t2]
xi 7−→ ϕi

we have
I(C) = kerψ(P1,...,P6) =

〈
x30 + ...+ x35, x0 + ...+ x5, a0x0 + ...+ a5x5

〉
.

Remark 3.10. Eliminating two variables by the two linear equations, C can be considered as a subset
of P3

K .

Note that a plane intersects C in an irreducible plane cubic, a union of a conic and a line, or in
three lines.

Definition 3.11. A tritangent plane H to C is a plane, such that H ∩ C consists out of three
lines.

Remark 3.12. A tritangent plane H to C is called generic if the three lines pairwise intersect in three
distinct points. Then H is tangent to C in each of the three points.

If H is not generic, then the three lines on C intersect in a single point. This point is called an
Eckardt point of C.

Since in an Eckardt point the three lines are tangent to C, they are coplanar, hence, lie on a
tritangent plane. So, the Eckardt points are in one-to-one correspondence to the non-generic tritangent
planes.

Theorem 3.13. [5, 2] There are 45 tritangent planes to C:

1. Of these, 15 are given by the equations

xi + xj = 0

for 0 ≤ i < j ≤ 5.

2. Write M for the set of 2-element subsets of {1, . . . , 6}, and S(M) for the set of permutations of
M . The remaining 30 tritangent planes are then

(mi,j − d2) · (xi + xj)− (mk,l + d2) · (xk + xl) = 0

where
{i,j}

{k,l} {m,n}
∈ S(M)

is a 3-cycle of pairwise disjoint elements of M ,

d2 = det
(

det (P3, P4, P1) · det (P5, P6, P1) det (P5, P3, P1) · det (P4, P6, P1)
det (P3, P4, P2) · det (P5, P6, P2) det (P5, P3, P2) · det (P4, P6, P2)

)
and

mi,j =
∑
s<t

asat + 2(a2i + a2j + aiaj),

where ai is as defined in Theorem 3.7.

Remark 3.14. Possible numbers for Eckardt points are 1, 2, 3, 4, 6, 9, 10, 18. The Clebsch cubic is the
unique cubic with 10 Eckardt points. The Fermat cubic V (x30 + . . . + x33) is the unique cubic with
the maximum possible number of 18 Eckardt points, however, only 3 of the lines on the Fermat cubic
are defined over R.
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Remark 3.15. Every line on C lies on 5 tritangent planes. Hence, any line on C is the intersection of
the planes x0 + . . .+ x5 = 0, a0x0 + ...+ a5x5 = 0 and two tritangent planes (see Remark 3.10).

Remark 3.16. After permuting the coordinates we may assume that a5 6= 0. Then by eliminating x4
and x5 via the two linear equations of C, we obtain C ′ = V (F ) ⊂ P3

K with a homogeneous cubic
polynomial F ∈ K[x0, x1, x2, x3].

Example 3.17. The Clebsch Cubic is then given by

F = x30 + x31 + x32 + x33 − (x0 + x1 + x2 + x3)
3

.

Remark 3.18. For the Clebsch cubic, as well as cubics “close” to it in the sense of the position of
P1, . . . , P6, the transformation

x0 = y0 − y3 −
√

2y1 x2 = y0 + y3 +
√

2y2
x1 = y0 − y3 +

√
2y1 x3 = −y0 − y3 +

√
2y2

of the coordinate system with inverse

y0 = x0 + x1 + x2 − x3 y2 =
√

2(x2 + x3)

y1 =
√

2(−x0 + x1) y3 = −x0 − x1 + x2 − x3

achieves that all 27 lines, for K = R, are visible in the affine chart

K3 −→ P3
K , (y1, y2, y3) 7−→ (1 : y1 : y2 : y3).

Moreover, they all pass through a ball with radius 6 around 0. In the affine chart we obtain a so-
called affine cubic hypersurface C ′′ ⊂ K3 given by a single, non-homogeneous 3rd degree polynomial
f ∈ K[y1, y2, y3].

4 Implementation in Singular

We have implemented the constructions above in the library cubic.lib [1] for the open-source com-
puter algebra system Singular [8]. For an introduction to the language of Singular see [10]. Specif-
ically, from 6 points in general position (with coordinates in Q or an algebraic extension thereof), we
give a function to obtain the cubic C ⊂ P5

K , its projection C ′ ⊂ P3
K and the affine cubic hypersurface

C ′′ ⊂ K3. Moreover, we compute the parametrizations

P2
K\{P1, . . . , P6} −→ C −→ C ′

and an affine parametrization

P2
K\V (ϕ0 + ϕ1 + ϕ2 − ϕ3) −→ C ′′.

Finally, we compute the lines on C,C ′ and C ′′ in implicit and parametric form, as well as the Eckardt
points. We demonstrate key parts of our library, considering the Clebsch cubic as an example:

Example 4.1. Our library can be loaded in Singular by:
> LIB "cubic.lib";

We first create a polynomial ring in 4 variables over the field Q[
√

5]:
> ring R = (0,a),(x0,x1,x2,x3),dp;

> minpoly = a^2-5;

We specify a list P with the points P1, . . . , P6:
> number g = (1 + a)/2;

> list P = vector(0,1,-g), vector(g,0,1), vector(1,g,0), vector(1,-g,0),

vector(0,1,g), vector(-g,0,1);

We compute the equation of C ′:
> poly f = cubic(P);

> f;

-3*x0^2*x1-3*x0*x1^2-3*x0^2*x2-6*x0*x1*x2-3*x1^2*x2-3*x0*x2^2-3*x1*x2^2

-3*x0^2*x3-6*x0*x1*x3-3*x1^2*x3-6*x0*x2*x3-6*x1*x2*x3-3*x2^2*x3-3*x0*x3^2

-3*x1*x3^2-3*x2*x3^2

The following command returns a list of all lines on C ′, each specified by 2 linear equations:
> list L = lines(P);
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> L[1];

[1] = x0 + x1

[2] = x2 + x3

We compute a list of Eckardt points, each specified by 3 linear equations:
> list E = EckardtPoints(P);

> E[1];

[1] = x0

[2] = x1

[3] = x2 + x3

Note that, by the commands affineCubic, affineLines and affineEckardtPoints, one can also
obtain the affine cubic C ′′ and the corresponding lines and Eckardt points, respectively. Moreover,
the functions paramLines and affineParamLines compute parametrizations of the lines on C ′ and
C ′′, respectively.

If, in addition to Singular, the program Surf [9] is installed, C ′′ can be visualized by:
> LIB "surf.lib";

> plot(affineCubic(P));

It also can plot hyperplane sections of a surface. Hence, we can visualize the lines on the cubic by
intersecting with tritangent planes, see Figure 1.

Figure 1: Lines on the Clebsch cubic

5 Explicit data for the Clebsch cubic

Our program returns the equation for the cubic and derived information for any 6 points in general
position in the projective plane (corresponding to lines in 3D space through the origin).

In this section we give the explicit data required for the dimensional comparison process for the
Clebsch cubic (i.e. for the choice of the six points given by the diagonals in an icosahedron). In the
following let a =

√
5 and c =

√
2. The cubic C ′′ is the zero set in K3 of the equation

2cy32 + 2y21y3 − 8y22y3 + 3cy2y
2
3 − y33 − 2y21 + 8y22 − 10cy2y3 + 3y23 + 3cy2 − 3y3 + 1 = 0.
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The lines on C ′′ given in implicit form (by two linear equations each) as well as their parametrizations
(specified as maps K → K3, s 7→ (ψ1(s), ψ2(s), ψ3(s))) are specified in Table 5. The 10 Eckardt points

Implicit Parametric

〈y3 − 1, y2〉 (s, 0, 1)〈
y3 − 1, y2 −

2
c

〉 (
s, 2

c
, 1
)

〈
y3 − 1, y2 + 2

c

〉 (
s,− 2

c
, 1
)

〈
y2 −

1
c
· y3 + 1

c
, y1 −

1
c
· y3 −

1
c

〉 (
1
c
· s + 1

c
, 1
c
· s − 1

c
, s
)

〈
y2 −

1
c
· y3 −

1
c
, y1 −

1
c
· y3 −

3
c

〉 (
1
c
· s + 3

c
, 1
c
· s + 1

c
, s
)

〈
y2 −

1
c
· y3 + 3

c
, y1 −

1
c
· y3 + 1

c

〉 (
1
c
· s − 1

c
, 1
c
· s − 3

c
, s
)

〈
y2 −

1
c
· y3 + 1

c
, y1 + 1

c
· y3 + 1

c

〉 (
− 1

c
· s − 1

c
, 1
c
· s − 1

c
, s
)

〈
y2 −

1
c
· y3 −

1
c
, y1 + 1

c
· y3 + 3

c

〉 (
− 1

c
· s − 3

c
, 1
c
· s + 1

c
, s
)

〈
y2 −

1
c
· y3 + 3

c
, y1 + 1

c
· y3 −

1
c

〉 (
− 1

c
· s + 1

c
, 1
c
· s − 3

c
, s
)

〈
y2 + 1

c
· y3 + 1

c
, y1 + 3

c
· y3 + 1

c

〉 (
− 3

c
· s − 1

c
,− 1

c
· s − 1

c
, s
)

〈
y2 −

3
c
· y3 + 1

c
, y1 −

1
c
· y3 + 1

c

〉 (
1
c
· s − 1

c
, 3
c
· s − 1

c
, s
)

〈
y2 + 1

c
· y3 + 1

c
, y1 −

3
c
· y3 −

1
c

〉 (
3
c
· s + 1

c
,− 1

c
· s − 1

c
, s
)

〈
y2 −

3
c
· y3 + 1

c
, y1 + 1

c
· y3 −

1
c

〉 (
− 1

c
· s + 1

c
, 3
c
· s − 1

c
, s
)

〈
y2, y1 −

1
c
· y3 + 1

c

〉 (
1
c
· s − 1

c
, 0, s

)
〈
y2, y1 + 1

c
· y3 −

1
c

〉 (
− 1

c
· s + 1

c
, 0, s

)
〈
y2 −

1
ac+2c

· y3 + 5
ac

, y1 + ( 3
2
ac − 3c) · y3 − ( 1

2
ac − 2c)

〉 (
−( 3

2
ac − 3c) · s + ( 1

2
ac − 2c), 1

ac+2c
· s − 1

2
ac, s

)
〈
y2 −

5
ac
· y3 + 1

ac+2c
, y1 −

11
ac+4c

· y3 −
3

ac+2c

〉 (
11

ac+4c
· s + 3

ac+2c
, 5
ac
· s − 1

ac+2c
, s
)

〈
y2 + 1

ac−2c
· y3 −

5
ac

, y1 − ( 3
2
ac + 3c) · y3 + ( 1

2
ac + 2c)

〉 (
( 3
2
ac + 3c) · s − ( 1

2
ac + 2c),− 1

ac−2c
· s + 1

2
ac, s

)
〈
y2 + 5

ac
· y3 −

1
ac−2c

, y1 + 11
ac−4c

· y3 + 3
ac−2c

〉 (
− 11

ac−4c
· s − 3

ac−2c
,− 5

ac
· s + 1

ac−2c
, s
)

〈
y2 + 2

ac−3c
· y3 −

2
ac−3c

, y1 + ( 1
4
ac + 1

4
c) · y3 + ( 1

4
ac + 1

4
c)
〉 (

−( 1
4
ac + 1

4
c) · s − ( 1

4
ac + 1

4
c),− 2

ac−3c
· s − ( 1

4
ac + 3

4
c), s

)
〈
y2 + 1

ac−2c
· y3 −

5
ac

, y1 + ( 3
2
ac + 3c) · y3 − ( 1

2
ac + 2c)

〉 (
−( 3

2
ac + 3c) · s + ( 1

2
ac + 2c),− 1

ac−2c
· s + 1

2
ac, s

)
〈
y2 −

2
ac+3c

· y3 + 2
ac+3c

, y1 − ( 1
4
ac − 1

4
c) · y3 − ( 1

4
ac − 1

4
c)
〉 (

( 1
4
ac − 1

4
c) · s + ( 1

4
ac − 1

4
c), 2

ac+3c
· s + ( 1

4
ac − 3

4
c), s

)
〈
y2 −

1
ac+2c

· y3 + 5
ac

, y1 − ( 3
2
ac − 3c) · y3 + ( 1

2
ac − 2c)

〉 (
( 3
2
ac − 3c) · s − ( 1

2
ac − 2c), 1

ac+2c
· s − 1

2
ac, s

)
〈
y2 + 2

ac−3c
· y3 −

2
ac−3c

, y1 − ( 1
4
ac + 1

4
c) · y3 − ( 1

4
ac + 1

4
c)
〉 (

( 1
4
ac + 1

4
c) · s + ( 1

4
ac + 1

4
c),− 2

ac−3c
· s − ( 1

4
ac + 3

4
c), s

)
〈
y2 + 5

ac
· y3 −

1
ac−2c

, y1 −
11

ac−4c
· y3 −

3
ac−2c

〉 (
11

ac−4c
· s + 3

ac−2c
,− 5

ac
· s + 1

ac−2c
, s
)

〈
y2 −

2
ac+3c

· y3 + 2
ac+3c

, y1 + ( 1
4
ac − 1

4
c) · y3 + ( 1

4
ac − 1

4
c)
〉 (

−( 1
4
ac − 1

4
c) · s − ( 1

4
ac − 1

4
c), 2

ac+3c
· s + ( 1

4
ac − 3

4
c), s

)
〈
y2 −

5
ac
· y3 + 1

ac+2c
, y1 + 11

ac+4c
· y3 + 3

ac+2c

〉 (
− 11

ac+4c
· s − 3

ac+2c
, 5
ac
· s − 1

ac+2c
, s
)

Table 1: Lines on the Clebsch cubic in implicit and parametric form

on C ′ have projective coordinates

(−1 : 1 : 0 : 0) (−1 : 0 : 1 : 0) (0 : −1 : 1 : 0) (−1 : 0 : 0 : 1) (0 : −1 : 0 : 1)
(0 : 0 : −1 : 1) (1 : 0 : 0 : 0) (0 : 1 : 0 : 0) (0 : 0 : 1 : 0) (0 : 0 : 0 : 1).

Hence (after applying the transformation of Remark 3.18 and passing to the affine chart), the cubic
C ′′ contains 7 of them with affine coordinates

(− 1
c ,−

1
c , 0) ( 1

c ,−
1
c , 0) (0, 0, 1) (− 2

c , 0,−1) ( 2
c , 0,−1) (0, 2c , 1) (0,− 2

c , 1),

the remaining three of them lying at the plane at infinity y0 = 0 with projective coordinates (0 : 1 :
0 : 0), (0 : 1 : 1 : c), (0 : −1 : 1 : c).

Using the implicit equations of the lines, it is easy to determine, which lines pass through which
Eckardt points. The angle α beween two such lines with direction vectors v1 and v2 can be calculated

via the well-known formula cos(α) = 〈v1,v2〉
‖v1‖·‖v2‖ .

Remark 5.1. For the given data a suitable print volume is the cube

[−6, 6]× [−6, 6]× [−6, 6].

However, for practical purposes the build volume may be a rectangular cuboid

[−r1, r1]× [−r2, r2]× [−r3, r3].

From the above data, a suitable test shape is then obtaind by applying the substitution

y1 7→ x · 6
r1

y2 7→ y2 · 6
r2

y3 7→ y3 · 6
r3

to the implicit equations. Correspondingly, a point (y1, y2, y3) ∈ R3 is transformed to the point
(y1 · r16 , y2 ·

r2
6 , y3 ·

r3
6 ).
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6 Conclusion

A general cubic surface contains 27 lines. For the Clebsch cubic all lines are on its shaped surface
defined over the real numbers. These straight lines are determined analytically and are proposed for
use to measure the build accuracy of a 3D printing process using even non digital techniques. The
straight lines extend to the build volume perimeter and are structurally supported by the cubic surface.
It is proposed that the lines are “highlighted” to stand out from the cubic for easy identification and
physical measurement. The development procedure is outlined in this paper and is proposed as phases
of the project. The first phase, which is descibed by this paper, is the mathematical description of
cubic surfaces and the formulas of its straight lines. Future papers will present the results from the
next phases that would firstly digitally test the accuracy and lastly produce physical parts for reverse
engineering quality control purposes. Moreover, we will describe a method to specify 6 lines and then
derive a cubic test shape containing these given lines.
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