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Abstract

DSJM is a software toolkit written in portable C++ that eregbtirect determination of
sparse Jacobian matrices whose sparsity pattern is a pnionwn. Using the seed matrix
Se R™P, the Jacobia €¢ R™" can be determined by solvildS= B, whereB € R™<P
has been obtained via finite difference approximation ovéwd automatic differentiation.
Seed matrixS is defined by the nonzero unknownsAn DSJM includes well-known as
well as new column ordering heuristics. Numerical testisdnighly promising both in

terms of running time and the number of matrix-vector prasineeded to determinfe
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Chapter 1

Introduction

An important computational step in many numerical algonishsolving complex scientific
and engineering problems is to compute or estimate the firsgber-order derivatives of a
vector function of several independent variables [11, @8Jmplex real-world phenomena
e.g., atmospheric dynamics are usually studied by buildingels (differential equations)
for constituent natural processes. The numerical proesdarthose models often require
the solution of systems of nonlinear equations or mininndrabf some nonlinear function
of large number of variables. A frequently used algorithrsatve these problem is some

variant of Newton’s method.

Algorithm 1: Newton’s method for solving system of nonlinear equations
input: For an initial approximation € R"

1 for j < 0to convergencelo

2 Evaluateb = F (X) ;

3 | Determinel = F/(x) ;
4 Solve fords= —b;

5 | X4 X+S;

6 end

Figure 1.1: Model Newton'’s Algorithm

Newton’s method finds a solution of a system of nonlinear g#qua specified by

F(x)=0

whereF (x) : R" — R™Mis a vector valued function ox Starting from an initial approxi-
mation, newton’s method improves the solution iteratively

Each iteration requires one evaluationFdix) and its derivativé=’(x) at a given point



X. S0, in alarge number of scientific and engineering problgetsrmination of derivatives
or Jacobian oF (x) is a necessary computational step.

In most of the cases we can only approximate the value of tbebilenF’(x) using
numerical methods, most notably finite differencing or auatic differentiation [19]. Sci-
entific and engineering problems often produces large Jaicaobatrices which are sparse,
or has structural patterns in them. Though there has be@m#éicant improvement in the
algorithmic methods for determining the Jacobian of a fiumctthere is a gap between the-
ory and implementation. In our thesis, we present a softigokkit which tries to fill the
gap by providing a tool to determine large Jacobian matrtisiently by exploiting the
sparsity frequently found in the real-world problems. Tgloumportant, the implementa-
tion does not try to use the known specific structural patéthe sparsity (i.e. tri-diagonal
matrix, banded matrix).

Given a nonlinear vector function

F(X)=[fi(x) f2x) ... fa(x)]", xeR" (1.1)

we want to compute the Jacobian maffiXx) at a givernx, whereF’(x) is given by

ofy  ofy oty oty
oXy Oxp "°° 0% T OXn

‘(x)= | 92 of ot ot

FFO =1 52 5 - & - o (1.2)
Ot dfm dfm dfm
OXy Oxp "7 0X " OXn

Finite differencing can approximatecolumns of Jacobian matrix with+ 1 function

evaluations. In the forward difference formula

of 1
6_xi(a) ~ E[F(a-l—ee,)—F(a)], (1.3)



one needs to evaluakeat a andn neighboring pointg§a-+€g) where,i =1,2,...,n, and

e > 0is a small interval ang, isit" co-ordinate vector.

0 x --- 0 0 O
x x -+ 0 0 O
x 0 - 0 x O
A= Lo P
x 0 0 x x
0 x --- 0 0 x
] k

Figure 1.2: Structure of a Jacobian Matrix

Definition Two columns are calledtructurally orthogonalif they do not have nonzero

entries in same row.

In Figure 1.2, columng andk are structurally orthogonal as they do not have overlapping
nonzero entries in the same row position. Curtis, PowellRed [9] showed that if two
columnsj andk are structurally orthogonal ,these two columns can be aopaded in a

single evaluation instead of two, noting that

1

A+ A~ E[F(a+s(q +&)) —F(a)]. (1.4)

They proposed that by grouping thecolumns intop structurally orthogonal groups ,
the number of function evolutions required to compute |laga&rse Jacobian matrices can
be reduced significantly, thus introducing column panitng problem as a kernel opera-
tion in determining Jacobians efficiently.

Further analysis on Jacobian determination problem isnging[16], [22] and [21].
Coleman and Moré [8] first showed that this problem can be teddsso as a graph col-

oring problem. Considering each column as a vertex in amsattion graph (see Section



2.4.1), Coleman and Moré developed efficient heuristicefdumn partitioning. Further
development on this idea was carried out in [21] by consimgd€SegGraph [21].

We assume that the sparsity pattern of the Jacobian matkimasn a priori and is
independent of the actual values»gfor can be computed as in Automatic Differentiation
[19]. We also assume that for one or more components(gj we need to compute the
whole vector (x). Itis more efficient to evaluate vectBrthan to evaluate each component

of F separately, as
e common sub-expressions are evaluated only once, and

e F might be a computer subroutine that returns the veetewaluated ax whose code

is not available directly to users.

DSM[7] was the only software since its release in 1983 for deiteing Jacobian ma-
trices. DSM is very efficient and works well on the target peon. But as DSM was
programmed in FORTRAN(F77) it cannot take advantage of dyaoanemories, and other
modern development in programming languages e.g. objesttation.Colpack[17] and
DSJMare two softwares that address the same problem using miogi@lementationCol-
packmodels column partitioning problem as bipartite graph, hreDSJIMbuilds sparse
matrix primitives where graph theoretic techniques ardé@mented using efficient sparse

data structures.

1.1 Contribution

DSJM implements proven coloring and ordering heuristissyall as some novel ones. It
also makes available a heuristic coloring technique witlkmawn alternative implemen-
tation, which proved to be of more effective than the othesvkm heuristics. Graph algo-

rithms typically display relatively small floating-poinperations count per memory access



resulting in degraded performance on traditional hierigaethmemory computer systems.
Our implementation of the ordering and coloring algorithméh the help of efficient
sparse data structures, allow the kernel operations torfberped in a cache-friendly way
to minimizecache missedue to irregular data access. Choice of C++ as implementatio
language equips DSJM with dynamic and efficient memory mamagt, as well as wider
scope for extensibility and ease of use through object tecedesign. Along with mak-
ing available itself as a linkable C++ library, the routirees also be used from MATLAB
tools. DSJM was successfully interfaced with MAD (Matlabt&matic Differentiation)
[13]. Part of this work has been published as an extendedaabsh SIAM workshop on
Combinatorial Scientific Computing, 2009. It was also pnésé as a talk in IBM Cascon
Conference, 2010, and University of Lethbridge Optim@atseminar, as well as a poster

in CORS/MITACS conference, 2010.



Chapter 2

Background and Sparse Matrix Data Structure

In this chapter we review some preliminary graph theoregiinitions necessary for this

thesis, and introduce sparse matrix data structure foesepting graphs.

2.1 Graph

A graphGis a pair(V,E), whereV is a finite set of vertices ard is a binary relation over

V. Each element il is called an edge and is a det v} such thau,ve V.

V3 Vg Vg

N

Figure 2.1: A GraphG = (V,E), whereV = {vi,v2,v3,V4,V5} and edge sekE =
{{v1,Vv2},{v1,Va},{vo,Va},{V3,va},{Va,V5}}. The vertices are shown as circles and edges
as lines connecting two vertices.

We call two verticeau andv adjacentif and only if {u,v} € E. The neighborhood
N(v), of a vertexv is defined as the set of all vertices# v, such that{u,v} € E. The
degreeof a vertexv is defined asl(v) = |[N(v)].

The graph induced by’ C V, denoted5[V’] = (V',E’), is the subgraph d& = (V,E)
whereE’ = {{u,v} € Eju,ve V'}.

2.2 Seed matrix computation

In this thesis we consider the problem of finding minimum gaality structurally orthogo-

nal column partitioning of a Jacobian matrix. The main gdahd thesis is the design and



implementation of efficient data structure and partitignialated algorithms. As we have
seen in Chapter 1, the nonzero elements of a Jacobian miatrean be obtained using an

identity matrix as a trivial seed matr& whereS= I,,, via finite difference formula,

of 1
ax ) = g [F(x+ea) —F(x)].

The determination of a sparse Jacobian matrix can also legias a computation of

p matrix-vector product&S= B:

OF (X+1s)

/ a1 B _
o |, Ws~As=IF(x+es) ~F(]=b 2.1)

Nonzero elements iA can be recovered by solvilgS= B using a direct or indirect

method.

Definition A reduced seed matri& € RP <P is defined as
S =954,
wherej; denotes a vector containing the column indices of the naneetries in row of

A

We say thatA is determined directly, i& satisfies the property that each reduced seed
matrix S has ap; x pi submatrix that is a permuted diagonal matrix.
Structurally orthogonal column partitioning gives us acseatrixSe {0,1}"*P which

follows the properties for direct determination, where

Sl = g, I=12,...,p
J'EZI

andC, is a set of column indices that are structurally orthogo#énce, structurally or-

7



thogonal column partitioning problem can also be reformadas a seed matrix computa-
tion.
It has been observed in [8] that the seed matrix computatiool@m can be formulated

as the vertex coloring of an associated grapth).

2.3 Intractability

Polynomial-timealgorithms have worst-case running timeh) for an input sizey, and a
constank. Polynomial-time algorithms are generally consideredttiale [15]. We define
the class opolynomial-time solvablgroblems that allowpolynomial-timealgorithms for
solving them. Similarly, the class @olynomial-time verifiabl@roblems are defined as
those set of problems which, given an answer, allows to béiagmwhether the answer
corresponds to the solution or not. The clasgpofynomial-time solvabl@roblems is
denoted byP, and the class gbolynomial-time verifiabl@roblems is denoted by P. By
this definition,P C NP.

If there is apolynomial-timealgorithm which converts any input of probleBto an
equivalent input of problenA in such a way that the solution computed by an algorithm
to solveA, is also a solution to problei® and vice versa, then the conversion algorithm is
called apolynomial-time reductianA problem inNP to which all other problems iNP
can be polynomially-reduced is called BFP-Completgroblem.

As any algorithm to solve aNP-Completeproblem can solve all other problems in
NP, the class oNP-Completgroblems are considered to be the hardestih Moreover,
no polynomial-timealgorithm has been found yet to solve BP-Completeproblem. It
is generally safe to say that there is no polynomial time rélgm for an NP-Complete

problem unles® = NP.



2.4 Graph Coloring

Given a graplG = (V,E), a p-coloring is a functionp:V — {1,..., p} such thatp(u) #
@(v) if {u,v} € E. The minimum value fop is called thechromatic numbeg (G) of graph
G. It has been shown that given an arbitrary gr&hto decide whether or not it has a
p-coloringis NP-Completd15]. Since thisp-coloring problem isNP-Completefinding

the value of minimunp cannot be any easier than the decision version of the problem

2.4.1 Intersection Graph

Given a matrixA, we can construct a gragb(A) = (V,E) in a way such that each € V
corresponds to a unique column = 1,2,...,n, in A. We define the edgévi,v;} € E if
and only if columng and j share at least one nonzero in some r@A) is called the
intersection graphof A. It has been shown that coloring of the intersection gr&gh)

induces a structurally orthogonal column partition in ma# and vice versa [8].

2.5 Heuiristics

Practical way of looking into thidlP-Hard problem is to utilize heuristics. Heuristic algo-
rithms for graph coloring can be broadly categorized inteegy constructive algorithms
and meta-heuristic methods [24]. Meta-heuristic methodiide local search algorithms,
tabu search, simulated annealing, genetic and evoluticagorithms and etc. Although
there are different types of heuristics, in this thesis vgewlss greedy constructive heuristics
only, because majority of the heuristics are not practycabplicable for Jacobian determi-
nation due to the large size of the input matrix [24].
The simplest greedy constructive algorithms is the greedyeantial algorithm (SEQ),

where each vertey is assigned the lowest indexed color class which containgeraes



adjacent toy;. Carefully pre-ordered sequence of vertices to the SEQidihgocan achieve
better coloring [8].

In Largest First Ordering(LFO), the verticed/ = {vi,Vvo,...,v,} are sorted in non-
decreasing degrees in G, and then the ordering is providix tSEQ method.

Assuming that the vertice¢’ = {vq,Vn_1,...,Vi+1} have already been ordered, the
th vertex inSmallest Last OrderingSLO) is an unordered vertaxsuch thatdegu) is
minimum inG[V \ V'].

After ordering the vertice¥’ = {vi,Vvo,...,vi_1} thei-th vertex inIncidence Degree
Ordering (IDO) [8] is an unordered vertex € V \ V' such thatdegu) is maximum in

G[V’]. Ties are broken by choosing the vertex that has largesedeg6 .

Definition The chromatic degree kdag(of a vertexu is defined as the number of unique

color(s) present in the neighborhoodwof

In Saturation Degree Orderin@BDO) [5] we order and color first before choosing the next
vertex; Assume that the verticé#s = {v1,v»,...,Vvi_1} have been ordered and colored, the
i-th vertex in this order is an unordered verteguch thakdedu) is largest inG|V']. Ties
are broken by choosing the vertex that has the largest deg&y \ V'] .
Recursive-largest-firdRLF) [23] algorithm partitions the vertex sétintoVy, Vs, ..., Vp
independent sets, and construptsolor classes. The first vertex Uf is chosen in a way
such that it has the largest degredsijV \ Uij;llvj] induced graph, and adjacent vertices of
v; are added to the inadmissible &kt RLF continues adding vertices to the independent
setV;, by choosing/ which has the largest number of adjacent vertices in the sgk-th

step, and neighbors of are also added td.

10



2.6 Data Structure

In this section we are going to describe the data structuiehndtores sparse matrices in
computer memory for our heuristic algorithms. We wantedsaidata structure which can
exploit the sparsity, and simultaneously can store thesatgion graph implicitly.Com-
pressed Column Storaged Compressed Row Storagehemes appear to be a suitable fit
for our purpose and they form the backbone of our implememtatn the following sec-

tion, we describe th€ompressed Column StoragedCompressed Row Storagehemes.

2.6.1 Compressed Column Storage (CCS)

The Compressed Column Storage (CCS) puts the row indicesnafemo elements of sub-
sequent columns in an integer arrapwW_i nd). Nonzero elements are stored in the same
order in a floating point arraywél ). An integer arraydol _ptr) is created to store the be-
ginning indices of the columns irow_i nd. Assuming that we have a matéd™" with nnz
number of nonzero elements, we ne@th2+ n+ 1 number of memory locations instead of
n? to storeA.

Row indices of nonzero elements in coluare found to be asow i nd[ col _ptr[j]]

torow ind[col _ptr[j+1]-1].

2.6.2 Compressed Row Storage (CRS)

Analogous to Compressed Column Storage, Compressed Roag8t(CRS) puts column
indices of the nonzero elements of subsequent rows in agantraycol i nd. Integer
arrayr ow _ptr is created as a pointer to the column indices. In our impldéatem we do
not store nonzero elements@RSscheme to save space. Thus CRS requirest m+1

number of memory locations.

11
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A= 0 0 az3 az4 O
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1(3|5 10|11 1|3 719111

col_ptr row_ptr

ap1| Q51|42 | As2 | A23 | A33 | A14 | A34 | Q44 | Q15

value

Figure 2.2: Compressed Column and Compressed Row datéusetar the sparse matrix
A. The intersection graph of the matxis shown on the right. Integer arrayow_i nd,
stores the row indices of the nonzero elements of subsegokmhns. Nonzero elements
are stored in the same order in the floating point aviye. Integer arragol ptr stores
the beginning memory location for columnsiiow ptr. For example, shaded cells in
col _ptr androw_i nd shows the corresponding entries for column 4. These thragsar
val ue, row_i nd andcol _ptr forms the Compressed Column Storage forn@Gu. i nd
androw _ptr stores the Compressed Row Storage format, and corresgpadiries for
row 3 are shown as shaded.
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Column indices of nonzero elements in roare found to be asol _i nd[row ptr[i]]
tocol ind[row ptr[i+1]-1].

In our implementation we use bo@CSandCRS resulting in total of Bnz+ m+n+2
number of memory locations used for sparse matrix storage.

Other important data structures will be introduced and dlesd in Chapter 3.

13



Chapter 3

Efficient Implementation of Ordering and Graph Coloring

In this chapter we describe implementation details foretdéht column ordering strategies
and asymptotic complexity of the algorithms and data stmest We also describe detail
illustrations of the algorithms witRCSand other supporting data structures.

The column intersection graph need not be constructedaitkplf we use CRCSdata
structure for matricesCRCSallows us to compute the neighborhood of a colujreffi-
ciently by providing both row-oriented and column-oriehgparsity pattern. For example,
for a given columnj, we can compute the neighborhood using the algorithm desttiin
Figure 3.1. Figure 3.2 illustrates a matAxits corresponding intersection gra@ifA), and

its CRCSrepresentation.

Algorithm 2: Neighborhood Computation using CRCS
input: columnjcol

1 for jp « jpntr[jcol] to jpntr[jcol +1] — 1 do
2 ir < row_ind[jp] ;

3 | forip <« ipntr|ir] toipntrfir +1] —1do

4 ic < col_ind[ip] ;

5 /l'icis a neighbor tg.

6 end

7 end

Figure 3.1: Neighborhood computation using CRCS

3.1 Constructive Greedy Coloring

Greedy coloringalgorithm can be considered as theefactoconstructive greedy heuristics
for column partitioning. DSM [7] and ColPack [17] use greambjoring for column par-

titioning problem as well. An algorithm for greedy colorimggiven in Figure 3.4. The

14
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Figure 3.2: Compressed Column and Compressed Row datéusetar the sparse matrix
A. The intersection graph of the matxis shown on the right. Integer arrayow_i nd,
stores the row indices of the nonzero elements of subsegokmhns. Nonzero elements
are stored in the same order in the floating point aviye. Integer arragol ptr stores
the beginning memory location for columnsiiow ptr. For example, shaded cells in
col _ptr androw_i nd shows the corresponding entries for column 4. These thragsar
val ue, row_i nd andcol _ptr forms the Compressed Column Storage forn@Gu. i nd
androw _ptr stores the Compressed Row Storage format, and corresgpadiries for
row 3 are shown as shaded.
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algorithm is divided into the following major computatidiséeps:
1. Initialization, lines 1-4.
2. Neighborhood Computation, lines-7.0
3. Tagging, line 11
4. Coloring, lines 15- 25

Initialization Lines 1— 4 from the algorithm initializes necessary data structucesor
andtag,;

Neighborhood ComputationGiven a columnjcol, lines 7— 13 use<CRCSdata structure
to find all the neighbors for columjcol.

Tagging We tag the color of a neighbar with the value ofjcol as soon as we compute

inline 11.

Coloring We find the minimum color for the current columool from lines 15— 20, by
taking the first color which has not been assigned to any beigbf columnjcol.
Neighborhood computation, tagging and coloring is donesiich columnjcol, which is
taken from the given orderingrder in the loop which covers from line 6 26.

Figure 3.3: Major computational steps for sequential ¢otpr
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Algorithm 3: Sequential Coloring Algorithm

input : order, an integer array of size, containing a permutation dfL...n}
output: color, an integer array of size

1 for j<1tondo
color[j] <+ n;
tag(j] < n;

end
maxgrp< O;
for seg+ 1tondo

jcol < order[seq ;
for jp « jpntr[jcol] to jpntr[jcol + 1] — 1 do
ir « row_ind[jp] ;
for ip < ipntrlir] to ipntrfir 1] —1do
ic «— col_ind[ip] ;
tag[colorlic]] + seq
end
end

flag_newcolor« true;
for jp <+ 1to maxgrpdo
if tag[jp] # seqthen

| flag_newcolor« false
end
end
if flag_newcolor=truethen

| maxgrp« maxgrp+1;
end
25 color[jcol] < jp;
26 end

[
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Figure 3.4: Sequential Greedy Coloring

Figure 3.5 illustrates hoWWRCSdata structure aids threequential greedy algorithiho
compute a coloring without explicitly constructing theargection graph.

BesidesCRCS data structures needed &®quential coloringire : a temporary tagging
array of sizen, t ag such that ag[ c] = |, if and only if columnj has colorc assigned

to it. The given ordering is stored in the input array of sigenamedorder. The given
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seq=1 4(1(13|2]|5 5(5|5 5 5/5|5|5]|1

order colorn=5 tag
2(5|/4|5\2|13|1(3|4]|1 415(1|13|3(4|12|4(1]|2
row_ind \/ coI_iBK\
113|5|7]|10|11 113|5|7]|9(11
jpntr ipntr

seq =3 411(3|2]|5 15 1|5 3|5(5|5]3
order / colorn=5 t
2|5|4|5[2[3]|1]3]|4]1 4|5|1[3|3|4|2]|4|1]2
row_ind col_ind \l
1(3|5|7|10|11 113|5|7]19]|11
jpntr ipntr

Figure 3.5: Sequential Coloring example
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ordering for this example is,4,3,2,5. Sequential Coloringuts the result in an integer
array of sizen, namedcolor.

After initialization phase, in line 7, witlseq= 1, we pick the column 4 for coloring.
The related value gpntr for this column is, 7 and 10. Using the indice88,@ in jpntr
gives us the nonzero row entries for the current colummpwas ind[7], row_ind[8], and
row_ind[9], which happens to be 2 and ,4.

As soon as we compute a row index for a nonzero entry in cug@nimn in line 9,
we consultipntr in the same way to find out the column indices for nonzero etgsni@
the current row in lines 16-11. As an example, first row indices found to be 1 with
correspondingpntr[1] andipntr[1+1] values as 1 and 3, gives us column indices 4, and
5. These two columns form a clique in the intersection grajphthis way, we find the
neighboring columns iflNeighborhood computatigohase.

In tagging phase, color value of columndglor[5], n =15, is tagged by the current
sequence valugeg= 1. Similarly we find the other columns 3, and 2, both have therco
value of 5, which is marked with current sequence value 1.

In coloring phase, scannirigg from the beginning will find firstag value which is not
marked with current sequence value, which happens to be lcoWethe column 4 with
color 1.

Once column 4 is colored, we increasegvalue and pick the second column in the
givenorder array (column 1). Similarly we consyjpntr, row_ind, ipntr andcol_indand
compute the neighborhood as 2 and 3. Both have color 5, so wetagg5] = 2. Scanning
tag from the beginning finds the first non-neighbor color in indexand we color it with
color value of 1.

Similarly seg= 3 gives us column 3 with a neighborhood of 1 and 4, having edlor
Scanningtag from the beginning gives us the firsbn-segcolor as 2 and we assign this

color to column 3.
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In the same way we color column 2 with color value 2 and columvith color value

3.1.1 Analysis

m
Lemma 1 The greedy sequential coloring algorithm requiresppiz) operations.
i=1

Proof As stated previously in Figure 3.3, sequential algorithmlga broken into four ma-

jor computational steps. Clearly, Initialization reqsif@(n) steps. Number of operations

needed foNeighborhood computaticendTaggingis proportional to

Om:;g? (3.1)

1

M 3

J

n
J'Zl aj
|

We need not do more tha@(maxgrp < O(dega;) + 1) steps to find the smallest

unmarked color for column j. Therefore, the time complekityn columns would be
m m 2
O(> deqj)+1) <O( pi°). (3.2)
X %P

3.2 Ordering Methods
3.2.1 Degree Calculation

Compute Degree methqatovides the necessary degree information for the ordeaing
gorithms to function properly. Similar t8equential Greedy coloringcompute Degree
methodalso uses onl{CRCSdata structure. It calculates the degree information big-vis
ing the adjacent columns for each colupyrwherej € {1,...,n}. Algorithm for degree

calculation is given in Figure 3.6.
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Algorithm 4: Compute Degree Algorithm
1 for j«1tondo

2 ndedjp] < 0;

3 | tagjp]«O;

4 end

5 for jcol < 2tondo

6 | tag[jcol]«n;

7 for jp < jpntr[jcol] to jpntr[jcol +1] —1do
8 ir «row_ind[jp] ;

9 for ip < ipntrlir] to ipntr[ir + 1] — 1 do
10 ic < col_ind[ip] ;

11 if tagic] < jcol then

12 tagfic] < jcol ;

13 ndedic] + ndedic] +1 ;

14 ndedjcol] < ndedjcol] +1;

15 maxdeg— max nded jcol],ndedic], maxdeg ;
16 end

17 end

18 end

19 end

Figure 3.6: Algorithm for Degree calculation

m
Traversing all the adjacent columns for each colummesults in ¥ p; number of
3j7.0

i=1
operations, wherg; is number of nonzero entries in a raw Hence the complexity for

ComputeDegree method is proportional to

i ip.: 0i2. (3.3)

j=1a
i

3.2.2 Priority Queue

We often need to use @riority queuefor our ordering algorithms described later in the

chapter. In this section, we are going to describe the pyiauieue data structure and
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0|5(3(4]0 21212|3]|1
head ndeg

0(1]2|0]0 head3] H
next head?2 H

2(3|/0(0(0 =

previous headl] H

Figure 3.7: Bucket data structure example

related algorithms, as well as their asymptotic complexiti

Our priority queue is structured byucketswhich is a common implementation for
priority queues [14]. Given that the maximum priorityds a priority queue can be imple-
mented withK-array of pointerdiead], whereheadk| points to thekth bucket.

Each bucket is implemented asr-way linked listor easy deletion and addition. Two
additional integer arraysiextandprey, are used, wheneex{ j| is the element immediately
following j in a bucket, andore\(j] is the element immediately preceding If the next
(or previous) element is empty, theextj] = 0 (or preV{j| = 0). Figure 3.7 shows the
data structures and a graphical representation of a grigueue. Note that functionality

of two-way linked lis$ are accomplished by integer arrays only.

Build Priority Queue

Figure 3.8 shows the algorithm to build a priority queue giaa integer array containing

degree information (priority). Build Priority Queue Algthm has a runtime complexity of

O(n).
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Algorithm 5: Build Priority Queue
input : ndeg an integer array of size, containing degree information of columns

{1...n}

input : headnext andprey, integer arrays used for priority queue data structure
output: Priority Queue constructed imead next, previous

1 for jp+ 1tondo

2 numdeg— ndegjp];

3 previousjp| < 0;

4 | nextjp] + headnumdeg
5 if headnumdeg> O then
6 | previougheadnumdegj < jp;
7 end

8 headnumdeg <« jp;

9 end

Figure 3.8: Algorithm for initializing priority queue frordegree information list

Add Column in Priority Queue

Algorithm for adding a columrjcol with priority numdegn a priority queue is given in

Figure 3.9 and it has a complexity 61).

Algorithm 6: Add a column in priority queue.
input : headnext andprey, integer arrays used for priority queue data structure
output: Column jcol added in priority queue in appropriate location

previousjcol] < 0;
next jcol] «<— headnumdeg
if headnumdeg > O then
| previougheadnumdegj <+ jcol;
end
headnumdeg« jcol;

o g b~ W N P

Figure 3.9: Algorithm for adding a column in a priority queue
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Delete Column From Priority Queue

Algorithm for deleting a columrjcol with priority numdegfrom a priority queue has a

complexity ofO(1) and is shown in Figure 3.10.

Algorithm 7: Delete a column from priority queue.
input : headnext andprey, integer arrays used for priority queue data structure
output: Priority Queue with columncol removed

1 if previougjcol] = 0then

2 | headnumdeg« nextjcol];

3 else

4 | nexipreviougjcol]] < nextjcol];

5 end

6 if nextjcol] > Othen

7 | previougnextjcol]] + previougjcol];
s end

Figure 3.10: Algorithm for deleting a column from a priorgyeue

3.2.3 Largest-First Ordering

Largest first ordering is the simplest of all the orderingsitiig the vertice¥ = {v1,vo,...,Vn}
in non-increasing degrees in G, represents largest firsriogl

Figure 3.11 describes the algorithm for Largest-First onde At the first phase the
priority queue is constructed from the degree informatiomputed by theomputeDegree
method, which takéd(n) number of steps. Then the priority queue is used to sort the
vertices inorder array in non-decreasing order of degree information. kb &&esO(n)
number of steps. We can see that the running timeaogest First Orderings dominated
by the complexity ofcomputeDegreenethod. So the runtime complexity &FO is the

same asomputeDegree
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Pi= ) Pi- (3.4)
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Algorithm 8: Largest First Ordering Algorithm

input : ndeg an integer array of size, containing degree information of columns

{1...n}

output: order, an integer array of size

1 maxdeg— —1;

2 for jp+1tondo

3 headjp—1]«+0;

4 maxdeg— maxmaxdegndedjp]) ;

5 end

6 buildPriorityQueuén, ndeghead next previous ;

7 for numord« 1to ndo

/* choose a colum jcol of maxinal degree */
8 jeol «+ 0;

while jcol <0do

10 jcol <~ headmaxdeg;

11 if jcol <O0then

12 | maxdeg— maxdeg-1;
13 end

14 end

15 | order[numord <« jcol ;
16 if numord< nthen

/* Delete Jcol fromthe head of the |ist *|
17 headmaxdeg < next jcol] ;
18 if next jcol] > Othen
19 | previousnext jcol]] < 0;
20 end
21 end

22 end

Figure 3.11: Largest First Ordering Algorithm
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3.2.4 Smallest-Last Ordering

Assume the verticeg’ = {vn,Vn_1,...,Vi11} have already been ordered. Tikih vertex in
this order is an unordered vertaxsuch thadegu) is minimum inG[V \ V'].
Figure 3.12 shows the algorithm for Smallest-last orderifige major computational

steps for Smallest-last ordering algorithms are

1. Initialization Lines 1-6,0(n) time is required for initializing of data structures in-

cludingt ag integer array, and constructing priority queue from degné&mation.

2. Choosing a columnin lines 12-14, we remove a colunjrfrom the priority queue
with the minimal degree iG[V \ V'], place it in theor der array, and tag it, which

requiresO(1) operation for a single columjp

3. Neighborhood Computation In lines, 16—-19 we compute the neighborhood for a
column j. As seen previously, searching neighborhood for a singlento takes

O( 3 pi) number of operations.
gj#0

4. Tagging and Updating of degree/priority In lines 20—-23 tagging and updating of
degree is performed for the neighbors of coluinwhich takegO(1) operations.
Choosing a ColumandNeighborhood Computatioexecutes fon times, which gives

m
us a computational complexity @(n) , and ¥ pi?. As Tagging and Computatiois
i=1

m
done along with the same loop in neighborhood computatiway, &lso execute fof 02
i=1

number of times, resulting a computational complexity of

c 2
i;pi .
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Algorithm 9: Smallest-last Ordering Algorithm

input : ndeg an integer array of size containing a degree information for columns

{1...n}

output: order, an integer array of size

1 mindeg+ n;
2 BuildPriorityQueuéndeghead next previous;
3 for jp<1tondo
4 | tagjp] < n;
5 mindeg«— min(mindegndedjp));
6 end
7 maximalClique— 0O;
g for numord« nto 1do
9 if (mindegt+ 1 = numordand(maximalClique= 0) then
10 \ maximalCliqgue— numord
11 end
[* find colum jcol with mninal degree */

12 (jcol,mindeg <+ ExtractMin();
13 | order[numord < jcol;

14 | tag[jcol] < 0;

15 if numord> 1 then

16 for jp < jpntr[jcol]tojpntr[jcol +1] — 1 do
17 ir < row_ind[jp];

18 for ip < ipntr]ir]toipntr|ir + 1] —1do
19 ic < col_ind(ip];

20 if tag[ic] > numordthen

21 tagfic| «— numord

22 numdeg— DecreaseDegree);
23 mindeg«— min(mindegnumdey;
24 end

25 end

26 end

27 end

28 end

Figure 3.12: Smallest-Last Ordering Algorithm
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SLO

\V4 deg(u) is smallesi
A%

V' = Colored/ordered Vertices
G =G(V,E)

Figure 3.13: Smallest-Last Greedy Coloring
3.2.5 Incidence-Degree Ordering

Assume the verticeg¢’ = {vi, Vo, ...,Vi_1} have been ordered. Thh vertex in this order
is an unordered vertaxsuch thatleg u) is maximum inG[V’]. Ties are broken by choosing

the vertex that has largest degreé&sn The algorithm is shown in Figure 3.16

IDO and SDO

V' : Colored/ordered vertices
G =G(V,E)

Figure 3.14: SD and ID Greedy Coloring

Incidence Degree Ordering similar toSmallest Largest First Orderingnd the largest
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computational cost is incurred by search for adjacent cokiaf chosen columpin each

step. Hence the complexity afo is
m
Z\pi2
i=
Index Sort

Index sort is used in Incidence Degree ordering, and the toaty for this algorithm is

O(n). The algorithm is given in Figure 3.15.
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Algorithm 10: Index Sort Algorithm

© 00 N o 0o A~ W N P

R
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12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

input : ndeg an integer array of size, containing degree information of columns

{1...n}.

modeindicates the desired sorting
output: Sortedindex with last, nextaccording tanode
for i + 0to nmaxdo
| lastfi] « O;
end
for k<— 1tondo
| <— numk];
nextk| < last]l];
last[l] « k;
end
if mode= Othen
| return;
end

/* store the pointers to the sorted array in index.

i« 1;
if mode> 0 then
jl +0;
ju < nmax
else
jl < nmax
ju<«0;
end
or j« jl to judo
k < last[j];
while k # 0 do
indeXi] < k;
i+—i+1;
k < nextk];
end
end

—h

*|

Figure 3.15: Index Sort Algorithm
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Algorithm 11: Incidence-Degree Ordering Algorithm

input :ndeg an integer array of size containing a degree information for columns

{1...n}

output: order, an integer array of size

1 indexsorfn,n— 1, ndeg —1,tag, previousnext);

2 BuildPriorityQueuéhead next previoustag);

3 Initialization();

4 ComputeMaximumSearchLength

5 for numord<— 1to ndo

6 U pdateMaximalCliqué);

I * choose a colum jcol of maxinal incidence degree */

7 j + ChooseColumnJWithMaximumSatDgg

8 j « SearchMaxLenghtToFindBetterChojge

9 order|j] < numord

10 numord<«— numord+ 1;

11 if numord< N then

12 deleteColumfhead next previousmaxing j);

13 tag(j] < n;

14 forall the j’ € adj(j) do

15 if tag[j] < numordthen

16 tag[j] +— numord

17 incidence«~ order[j’];

18 order|j'] + order[j’] + 1;

19 deleteColumfhead next previousincidencej’);
20 addColumithead next, previousincidencert 1, j);
21 end
22 end
23 end
24 end

25
26
27
28
2
30

©

for jcol + 1tondo

| previousorderjcol]] + jcol;
end
for jp<1tondo

\ order]jp] « previousjp];
end

Figure 3.16: Incidence-Degree Ordering Algorithm
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3.2.6 Saturation-Degree Ordering

Assume the verticeé¢’ = {v1,V,...,Vi_1} have been ordered and colored. Ttk vertex
in Saturation-Degree orderinig an unordered vertaxsuch thakdedu) is largest inG[V \
V’]. Ties are broken by choosing the vertex that has the largesed inG(V \ V') .

Figure 3.17 describes the algorithm for saturation degréering algorithm. The major

computational steps in the algorithm are :

1. Initialization Lines 1-2,0(n) time is required for initialization of necessary data

structures and construct the priority queue.

2. Choosing a ColumnLine 4, Choosing the next column to color is don&if®;dmax)
time, wheredmay is the maximum degree iG(V ), andd; is the degree of colump

in G(V \V').

3. Finding Smallest Unmarked ColorLine 4. We search the neighborhood of chosen

column j, and mark all the corresponding colors@{ ¥ pj) steps. To find the
aijI#O
smallest color it does not take more tha(®;) operations.
4. Neighborhood ComputationLines 9-19, updates the saturation degree and induced

degree of the adjacent vertices of colupnlt takesO( y pj) time to search the
aijl#o
neighborhood of columi.

5. Tagging and Updating of Degree/Priority In Lines 10-18 tagging and updating of
degree for each adjacent column is done. Tagging is donaenli. To find out
whether the color chosen for columrexists in the neighborhood ¢f we consult a
simplebitsettable with the dimension afolor x nin line 12. If the color assigned
to columnj introduces a new color in the neighborhood of colujha adj(j), we

increase the saturation degree of colujhim line 14.
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m
Complexity ofSaturation-degreerdering has been found to &dmax 5 pi%) as com-
i=1

puted as follows:

]Z Omaxd] + Z Z#l = 6ma>63] + lel

n

m
=5 5i+ S pi?
maxlz Z i

il 2 il 2
< 6maxigl Pi”+ iZi Pi

m
=9 P’ (3.5)
maxi; |
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Algorithm 12: Saturation Degree Ordering Algorithm

input :ndeg an integer array of size containing a degree information for columns

{1...n}

output: color, an integer array of size

BuildPriorityQueuéhead next previousndegtag);
Initialization();
for numord<« 1to ndo
Find a columnj with maximumsaturationdegree anéhduceddegree;
Find smallest feasible col@ol for columnj;
color|j] + col;
numord<— numord+ 1;
tag[j] <,
forall the |’ € adj(j) do
if tag[j’] < numordthen
tag[j’] +— numord
if bitsefcol][j’] = false then
bitsefcol]['] + true;
satDedj'] + satDedj’] +1;
end
inducedDegj’] + inducedDegj’] — 1;
update priority of columrj’ in the priority queue;
end
end
end
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Figure 3.17: Saturation Degree Ordering Algorithm
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3.2.7 Recursive-Largest-First Coloring

Recursive-largest-first(RLF) algorithm partitions theteg setV into Vq,Vs,...,V, inde-
pendent sets, and constructs a structurally orthogonahaolpartition withp number of
column groups.

The first vertex oV is chosen in a way such that it has the largest dengé\lrjij‘:llvj
induced graph, adjacent vertices of the chosen vertex atedam the inadmissible set.
RLF continues adding vertices to the independendseby choosingv which has the
largest number of adjacent vertices in the dedt k-th step, and neighbors of are also

added tdJ. Figure 3.18 gives an overview of RLF, and Figure 3.19 dbssrthe algorithm.

Algorithm 1 Recursive Largest First Algorithm

1. InitializeU =@, C=¢q, V' =V, andg=0.
2. Choose the vertey with the maximum degree M’. Increment and proceed to 3.

3. Coloryv with color g and move it fromv’ to C. Find all the adjacent vertices o
and move them fronw’ toU. If V' is not empty then proceed to 4. =V then
exit. Otherwise, move the vertices frdihtoVV’, and proceed to 2.

4. Choose a vertex frov’ which has the maximum number of adjacent verticed in
Goto 3

Figure 3.18: Overview of Recursive Largest First Algorithm

We identify the major computational steps for Recursivegeat First algorithm from
Figure 3.19 as:

1. Initialization Lines 1-3 performs initialization and it tak€xn) operations.

2. Choosing a ColumnLines 5-10 chooses a column to be inserted into the current

color class. It take®(maxdeg operations.
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3. Coloring Line 11, Coloring and tagging tak&¥(1) operation, as we have a prede-

fined color already.

4. Neighborhood Computation Lines 16-31 computes the distance 2 neighborhood
for column j, moves columns fronv’ to U, updates the degree information in the

priority queue.

5. Reinitialization Lines 32-37. If the set of admissible columWsis empty, we reini-
tialize the data structures needed, and start construgtivegv color class. It requires

O(n) operations.

Time Complexity of RLF ordering can be computed ta®@Kmax> " 1 pi2) as follows,

whereKmax is the maximum number of nonzeroes in a column, and the number of

partitions:
P m n m n m
pir = O Pi ajj # O][ayj #
qui: gl vz male JleZl J °
a,,;éOa,/] #0
m n
=p> pi ) [aj#0 i #0)
) .J; | # ]za #0]
m n
= pz Z [aj # O]
=1 =
m Jn
Sp_ Pi Z[au?éo]Kmax
1= =
"
= meax.Z Pi (3.6)

Il
=
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Algorithm 13: Recursive Largest First Algorithm
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Initialization();

BuildPriorityQueuéhead next previousndeg;
BuildPriorityQueuéuhead unext uprevious0);
for numord<— 1to ndo

if newColorClass= true then
newColorClass- false

(j,maxdeg = FindMaxFromPriorityQueug/);

else

| (j,u_maxdeg = FindMaxFromPriorityQueu@J );

end
color[j] «+—q; tag[j]+ m;
if numord = nthen
| break;
end
DeleteColumfj,V); DeleteColumfj,U);
forall the |’ € adj(j) do
if tag[j’] < numordthen
tag[j’] «+ numord
priority_queuedecreaséj’,V);
if i’ ZU then
U+U+{j};
u_queueremoveéj’);
forall the j” € adj(j’) do
if j” eV and u_tagj"] # j’ then
u_tag[j”] < j’;
u_queueincreas€j”);
end
end
end
end
end
if V= @then
g« qg+1;
newColorClass- true;
Reinitialize VU and u_tag
BuildPriorityQueudU );
end

end

Figure 3.19: Recursive Largest First Algorithm
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3.2.8 RLF-SLO coloring

RLF-SLOis a parametrized hybrid coloring based RbF andSLQ This algorithm runs
RLF coloring on firstp columns, then switches ®LOordering and colors the remaining
(n— p) columns. The motivation behind this hybrid approach is totige better coloring

results ofRLF with better timing results o5LQ

3.3 Storage Format

We provide necessary code with examples to read the matsgriggions from Matrix
Market Exchange Format files. As DSJM depends on the cliesie to supply the matrix
description, user can use any other suitable file formats asklarwell-Boeing Exchange

Format
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Chapter 4

Computational Experiments

In this chapter we present computational results for therdlgns implemented in DSIM
toolkit. In Section 4.2 we present the data sets for our empeits. Numerical results
are given in Section 4.3. Tables listing the numbers of sotdstained can be found in

Section 4.3.1. We present the experimental results forithgatoring in Section 4.4

4.1 Test Environment

Experiments were done on an IBM PC witt8Z5Hz Intel Pentium CPU, 1 GB RAM, and
512 KB L2 cache running 32-bit Linux.

4.2 Data Sets

We describe two different sets of sparse matrices for ouex@ntal results. Table 4.1
lists the first set of matrices along with their structuradperties. The test matrices were
obtained from the University of Florida Sparse Matrix Cotlen [10]. These matrices
were also reported for presenting experimental resultd & [Matrix af23560 is a com-
putational fluid dynamics problem. Matrices with the prdfixin their names are linear
programming problems from Netlib. THier-matrices come from chemical process sim-
ulation problems. Theagematrices are models used in DNA electrophoresis. Matrices
€30r2000 and e40r0100 arise in modeling 2D fluid flow.

Columns labeledan, n, andnnzdenote the number of rows, columns and non-zeroes
respectively, in the matricepmax and pmin are maximum and minimum number of non-

zeroes in any row, angis arithmetic mean of number of non-zeroes in each row.

Table 4.2 lists matrices from Harwell-Boeing test matri@ss 1, 2] and the University
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Table 4.1: Matrix Statistics for Set 1

Matrix Name m n nnz Prmax P Pmin
af23560 23560 23560 484256 21 20 11
cagell 39082 39082 559722 31 14 3
cagel?2 130228 130228 2032536 33 15 5
e30r2000 9661 9661 306356 62 31 8
e40r0100 17281 17281 553956 62 32 8
lhr10 10672 10672 232633 63 21 1
lhr14 14270 14270 307858 63 21 1
lhr34 35152 35152 764014 63 21 1
lhr71c 70304 70304 1528092 63 21 1
Ipcrea 3516 7248 18168 360 5 1
Ipcreb 9648 77137 260785 844 27 1
Ipcred 8926 73948 246614 808 27 1
Ipfit2d 25 10524 129042 10500 5161 1427
lpdflo01 6071 12230 35632 228 5 2
Ipken11l 14694 21349 49058 122 3 1
Ipken13 28632 42659 97246 170 3 1
Ipken18 105127 154699 358171 325 3 1
Ipmarosr7 3136 9408 144848 48 46 6
lppds10 16558 49932 107605 96 6 18
lppds20 33874 108175 232647 96 6 1
Ipstocfor3 16675 23541 76473 15 4 1
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of Florida Matrix Collection [10] translated from Netlib [3 These matrices were also

reported in [18] to present computational results.
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Table 4.2: Matrix Statistics for Set 2

Matrix Name m n NNZ Pmax P Pmin
abb313 313 176 1557 6 4
adlittle 56 138 424 27 7
agg 488 615 2862 19 5
agg2 516 758 4740 49 9
agg3 516 758 4756 49 9
arc130 130 130 1282 124 9
ash219 219 85 438 2 2
ash292 292 292 2208 14 7
ash331 331 104 662 2 2
ash608 608 188 1216 2 2
ash958 958 292 1916 2 2
blend 74 114 522 29 7
bore3d 233 334 1448 73 6
bp0 822 822 3276 266 3
bp1000 822 822 4661 308 5
bp1200 822 822 4726 311 5
bp1400 822 822 4790 311 5
bp1600 822 822 4841 304 5
bp200 822 822 3802 283 4
bp400 822 822 4028 295 4
bp600 822 822 4172 302 5
bp800 822 822 4534 304 5
canl054 1054 1054 12196 35 11
canl072 1072 1072 12444 35 11
can256 256 256 2916 83 11
can268 268 268 3082 37 11
can292 292 292 2540 35 8
can634 634 634 7228 28 11
can715 715 715 6665 105 9
curtisb4 54 54 291 12 5
dwt1007 1007 1007 8575 10 8
dwt1242 1242 1242 10426 12 8
dwt2680 2680 2680 25026 19 9
dwt419 419 419 3563 13 8
dwt59 59 59 267 6 4
eris1176 1176 1176 18552 99 15
fsb411 541 541 4285 11 7
fs5412 541 541 4285 11 7

Continued on next page.
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Table 4.2: Matrix Statistics for Set 2 (Continued)

Matrix Name m n NNZ Pmax P Pmin
gentl13 113 113 655 20 5 1
ibm32 32 32 126 8 3 2
impcola 207 207 572 8 2 1
impcolb 59 59 312 7 5 2
impcolc 137 137 411 8 3 1
impcold 425 425 1339 10 3 1
impcole 225 225 1308 12 5 1
israel 174 316 2443 119 14 2
lunda 147 147 2449 21 16 5
lundb 147 147 2441 21 16 5
scagr25 471 671 1725 10 3 1
scagr7 129 185 465 10 3 1
shlO 663 663 1687 422 2 1
shl200 663 663 1726 440 2 1
shl400 663 663 1712 426 2 1
stair 356 614 4003 36 11 2
standata 359 1274 3230 745 8 2
strO 363 363 2454 34 6 1
str200 363 363 3068 30 8 1
str400 363 363 3157 33 8 1
tuff 333 628 4561 113 13 0
vtpbase 198 346 1051 38 5 1
watt2 1856 1856 11550 128 6 1
west0067 67 67 294 6 4 1
west0381 381 381 2157 25 5 1
west0497 497 497 1727 28 3 1
will199 199 199 701 6 3 1
will57 57 57 281 11 4 2

4.3 Numerical Results

4.3.1 Partitioning Results

Table 4.3 lists the number of structurally orthogonal gaphieved by DSJIM for each

constructive heuristics for data set 1. On the left side eftdble we list the name of the
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matrices and their structural properties. On the right,side list the number of colors
obtained for each constructive heuristics in their respeaolumns. Table 4.4 lists the
number of colors obtained for data set 2 respectively Thebmuirm boldface represents
the best(smallest) partitioning(coloring) for the respecproblem instance.

PmaxiS @ lower bound of the number of groups in a structurally @gtimal partition of
the columns. Though a maximal clique in a graph can be a weedribound, we found
Pmax t0 be a good one. The ordering algorithms SLO and IDO find a malxclique as
a by-product in the column intersection graBbA). We list maximal clique larger than
Pmax IN parentheses in themax column. We observed that we often cannot find clique
which is larger in size thapmax and in many casesmax proves to be optimal number of
groups in a structurally orthogonal partition of the coliankiVe foundpmax to be optimal
for 15 matrices out of 21 in data set 1. For data set 2, it was fiou 49 matrices out
of 65. Moreover, the summation of exact coloring values F& inatrices in data set 2
was computed in [18], and found to be 6447.The summatiquy@fis 6408 over all the
matrices. So, we considemax as a good lower bound for the test data sets, as well as in
practice.

RLF produced the best partitioning in 19 out of 21 problentanses for data set 1,
with optimal coloring for 14 for them. We have observed theERroduces better coloring
when there is a larger gap between number of colors and krmmer lbound. For example,
for matricesaf2356(Q cagell cagel2and Ipmarosr7the number of colors obtained is
lower than the known lower bound by 35. For test data set 1, Rioduced 2.05 fewer
colors on average compared to other heuristics. For theealm®ntioned four matrices,
RLF produced 9 fewer colors on average. Total number of ssiadtructurally orthogonal
column groups over the test instances for the ordering dlgos are 14170, while RLF
produced 14172 colors.

On test set 2, RLF is as good as any of the other ordering aqetdatmed the other

44



Table 4.3: Coloring Results using DSJM for Data Set 1

Matrix Name m n nnz Pmax RLF IDO SLO LFO SDO
af23560 23560 23560 484256 21(30) 37 43 41 44 41
cagell 39082 39082 559722 31 54 65 62 68 59
cagel? 130228 130228 2032536 33 56 70 68 72 60
e30r2000 9661 9661 306356 62 65 72 70 66 70
e40r0100 17281 17281 553956 6 67 70 71 66 68
Ihr10 10672 10672 232633 68 64 64 63 64 63
Ihr14 14270 14270 307858 6B 63 64 63 64 63
Ihr34 35152 35152 764014 6B 63 64 63 64 63
Ihr7lc 70304 70304 1528092 68 63 64 63 64 63
Ipcrea 3516 7248 18168 360 360 360 360 360 360
Ipcreb 9648 77137 260785 844 844 844 845 844 844
Ipcred 8926 73948 246614 808 808 808 808 808 808
Ipfit2d 25 10524 129042 1050010500 10500 10500 10500 10500
Ipdflool 6071 12230 35632 228 228 228 228 228 228
Ipkenll 14694 21349 49058 122 122 123 125 128 122
Ipken13 28632 42659 97246 170 170 170 171 174 170
Ipken18 105127 154699 358171 325 325 326 325 328 325
Ipmarosr7 3136 9408 144848 48(62) 76 85 83 100 90
Ippds10 16558 49932 107605 96 96 96 96 96 96
Ippds20 33874 108175 232647 96 96 96 96 96 96
Ipstocfor3 16675 23541 76473 15 15 15 15 15 15
Total 14073 | 14172 14227 14216 14249 14204

ordering on 11 of the instances. Total number of smalleatgirally orthogonal column

groups over the test instances for the ordering algoritha$453.
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Table 4.4: Coloring Results using DSJM for Data Set 2

Matrix Name m n nnz Pmax RLF IDO SLO LFO SDO

abb313 313 176 1557 6(10) 10 11 10 11 11
adlittle 56 138 424 27 27 27 27 27 27
agg 488 615 2862 19 19 19 20 21 19
agg2 516 758 4740 49 49 50 49 50 49
agg3 516 758 4756 49 49 50 49 50 49
arc130 130 130 1282 124 124 124 124 124 124
ash219 219 85 438 2 (4 4 4 4 5 4
ash292 292 292 2208 14 14 14 14 16 14
ash331 331 104 662 2 (6 6 6 6 6 6
ash608 608 188 1216 2(5 6 6 6 6 6
ash958 958 292 1916 2(6 6 6 6 6 6
blend 74 114 522 29 29 29 29 29 29
bore3d 233 334 1448 73 73 73 73 73 73
bpO 822 822 3276 266 266 266 266 266 266
bp1000 822 822 4661 308 308 308 308 308 308
bp1200 822 822 4726 311 311 311 311 311 311
bp1400 822 822 4790 311 311 311 311 311 311
bp1600 822 822 4841 304 304 304 304 304 304
bp200 822 822 3802 283 283 283 283 283 283
bp400 822 822 4028 29% 295 295 295 295 295
bp600 822 822 4172 302 302 302 302 302 302
bp800 822 822 4534 304 304 304 304 304 304
canl054 1054 1054 12196 35 35 35 35 35 35
canl072 1072 1072 12444 35 35 35 35 35 35
can256 256 256 2916 83 83 83 83 83 83
can268 268 268 3082 37 37 37 37 37 37
can292 292 292 2540 35 35 35 35 35 35
can634 634 634 7228 28 28 28 28 30 28
can/15 715 715 6665 10% 105 105 105 105 105
curtis54 54 54 201 120 12 12 12 12 12
dwt1007 1007 1007 8575 10 10 12 11 12 10
dwt1242 1242 1242 10426 12 13 14 14 15 13
dwt2680 2680 2680 25026 19 19 19 19 21 19
dwt419 419 419 3563 13(14) 15 16 16 17 15
dwt59 59 59 267 6 6 6 7 7 6
eris1176 1176 1176 18552 99 99 99 99 99 99
fs5411 541 541 4285 11 12 13 13 14 12
fs5412 541 541 4285 11 12 13 13 14 12

Continued on next page
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Table 4.4: Coloring Results using DSJM for Data Set 2 (Car@d)

Matrix Name m n nnz Pmax RLF IDO SLO LFO SDO

gentl113 113 113 655 20 20 20 20 20 20
ibm32 32 32 126 8 8 8 8 8 8
impcola 207 207 572 8 8 8 8 8 8
impcolb 59 59 312 7(10 10 11 11 11 10
impcolc 137 137 411 8 8 8 8 9 8
impcold 425 425 1339 10 10 11 11 12 10
impcole 225 225 1308 12(20) =21 21 21 21 21
israel 174 316 2443 119 119 119 119 119 119
lunda 147 147 2449 21 22 24 24 27 21
lundb 147 147 2441 21 23 24 24 27 22
scagr25 471 671 1725 10 10 10 10 10 10
scagr? 129 185 465 19 10 10 10 10 10
shlO 663 663 1687 422 422 422 422 422 422
shl200 663 663 1726 440 440 440 440 440 440
shl400 663 663 1712 426 426 426 426 426 426
stair 356 614 4003 36 36 36 36 36 36
standata 359 1274 3230 74% 745 745 745 745 745
strO 363 363 2454 34 34 34 34 34 34
str200 363 363 3068 30 30 30 30 30 30
str400 363 363 3157 33 33 33 33 33 33
tuff 333 628 4561 113 114 114 114 114 114
vtpbase 198 346 1051 38 38 38 38 38 38
watt2 1856 1856 11550 128 128 128 128 128 128
west0067 67 67 294 6 (7) 8 9 9 9 8
west0381 381 381 2157 25(27) 28 29 30 29 28
west0497 497 497 1727 28 28 28 28 28 28
will199 199 199 701 6 (7 7 7 7 8 7
will57 57 57 281 117 11 11 11 11 11
Total 6408 | 6453 6459 6468 6492 6452

4.3.2 Significance of fewer function evaluations in Jacoidatrix Computation

Most of the time, Jacobian is computed as part of anothextitermethod. We have stated
earlier in Chapter 1, how Jacobian computation is a part aftbie's method. Since Ja-

cobian is computed in each iteration, the number of savectifumevaluation from fewer
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color groups can add up to a significant performance gainarctintext of the iterative
method. We present results of Newton’s method from experismein by Bouaricha and
Schnabel [4] in Table 4.5. The Newton’s algorithm used inrtegperiment computed Ja-
cobian once in each iteration, and uses finite differenciethod to do so. In the first and
second column of the table, we list the number of iteratiowsfanction evaluations needed
to solve the problems. Detail of the problems and the algoritised can be found in [4].
In the third and fourth column, we calculate a hypothetiogbiovement if we could have
achieved one and two less function evaluations, respégtiveeach iteration. From the
table, we can see that, even one less function evaluationiead up to 24% performance

gain.

4.3.3 Running Time

Table 4.6 lists the running time of each constructive héisasmplemented in DSIJM. The
experiments were run on a dedicated machine with minimaesysoad. Moreover the
running time reported is the average of 5 runs of the resgeadidering algorithm, to
reduce any variation incurred by a sudden spike of increasade of the CPU. We have
tried to follow the instructions from [12] to gain the bestfeemance from the computer
system. It includes CPU time for both ordering and sequkakiprithm. Reported time
discards the running time for I/O operations (e.g readimgnifatrix description from file).
The left side of the table contains the name of the matricddlanstructural properties. On
the right side, we list running time in seconds for each andealgorithm in their respected
columns. The smaller size of matrices in data set 2 resuligny short running time, so

we refrain us to report the running time for data set 2.
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Table 4.5: Experimental results for Newton’s Method

. . I
Matrix Iterations| Fevals Improvement%
Dimensionn i F =1 | =2
LTS problem 24 467 | 5.14%| 10.28%
313 46 866 | 5.31%| 10.62%
GRST problem 50 831| 6.02%| 12.03%
324 68| 1065| 6.38%| 12.77%

72| 1176| 6.12%| 12.24%
LGNDR problem 74 375| 19.73%| 39.47%
50 75 381 | 19.69%)| 39.37%
Trigonometric problem 28 425| 6.59%| 13.18%
300 18 225| 8.00%| 16.00%
66 939 | 7.03%| 14.06%
Broyden banded problem 22 184 | 11.96%| 23.91%
300 37 321 | 11.53%)| 23.05%
44 411 | 10.71%| 21.41%
Broyden tridiagonal problem 14 60 | 23.33%| 46.67%
300 27 112 | 24.11%| 48.21%
31 151 | 20.53%| 41.06%
Variable dimension problen 24| 7525| 0.32%| 0.64%
300 44| 13546, 0.32%| 0.65%
44| 13546, 0.32%| 0.65%
Distillation column problem 5 72| 6.94%| 13.89%
31 19 280 | 6.79%| 13.57%
26 357 | 7.28%| 14.57%
Distillation column problem 8 136| 5.88%| 11.76%
99 20 315| 6.35%]| 12.70%
26 436 | 5.96%| 11.93%

This tables presents the number of Iterations and Funct@tuations for Newton'’s
Method for some known problems from Bouaricha and Schnaleiperiments [4] and
calculates a hypothetical improvements if fewer functiealeations would have been
achieved in each iteration.
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Table 4.6: Timing Results using DSJIM for Data Set 1

Matrix Name m n nnz Pmax RLF IDO SLO LFO SDO

af23560 23560 23560 484256 21 484 054 052 0.36 0.88
cagell 39082 39082 559722 31 858 0.69 0.69 0.43 1.33
cagel?2 130228 130228 2032536 335435 397 392 207 6.34
e30r2000 9661 9661 306356 62 5.09 050 050 0.37 0.72
e40r0100 17281 17281 553956 6 9.30 0.92 091 0.68 1.30
Ihr10 10672 10672 232633 68 1.26 0.48 0.47 0.37 0.62
Ihri4 14270 14270 307858 68 1.68 0.63 0.63 0.48 0.82
Ihr34 35152 35152 764014 68 4.14 158 157 120 2.04
Ihr71c 70304 70304 1528092 63 8.30 3.15 3.12 240 4.08
Ipcrea 3516 7248 18168 360 1.22 0.05 0.04 0.03 0.18
Ipcreb 9648 77137 260785 844244.83 3.51 3.41 1.83 12.14
Ipcred 8926 73948 246614 808251.88 3.58 3.47 1.84 12.22
Ipdflo01 6071 12230 35632 228 0.67 0.07 0.06 0.03 0.22
Ipken11 14694 21349 49058 12 0.63 0.10 0.09 0.05 0.29
Ipkenl3 28632 42659 97246 170 192 0.25 0.24 0.13 0.75
Ipkenl18 105127 154699 358171 3251791 197 182 092 5.27
Ipmarosr7 3136 9408 144848 48 4.26 0.32 0.30 0.21 0.1
Ippds10 16558 49932 107605 96 0.87 0.15 0.14 0.08 0.43
Ippds20 33874 108175 232647 96 2.04 0.34 0.34 0.19 0.97
Ipstocfor3 16675 23541 76473 15 0.17 0.05 0.05 0.03 0.10
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Table 4.7: Timing Results for Incidence Degree Partitignin

Matrix Name m n nnz ColPack DSJIM

ot pt ot pt

af23560 23560 23560 484256 1.096 0.324 0.33 0.208
cagell 39082 39082 5597221.954 0.314 0.472 0.214
cagel2 130228 130228 203253867.912 1.3| 3.018 0.952
e30r2000 9661 9661 306356 0.946 0.362 0.262 0.24
e40r0100 17281 17281 5539%61.704 0.664 0.478 0.44
Ihr10 10672 10672 232633 0.802 0.368 0.234 0.246
Ihr14 14270 14270 307858 1.074 0.486| 0.304 0.324
Ihr34 35152 35152 764014 2.646 1.208 0.77 0.81
Ihr71c 70304 70304 1528092 5.324 2.41] 153 1.618
Ipcrea 3516 7248 18168 0.292 0.022 0.038 0.012
Ipcreb 9648 77137 26078514.368 1.498 2.516 0.992
Ipcred 8926 73948 24661414.178 1.524 2.572 1.008
Ipdflo01 6071 12230 35632 0.402 0.022 0.05 0.018
Ipken11 14694 21349 49058 0.414 0.034 0.072 0.024
Ipken13 28632 42659 97246 1.236 0.088 0.188 0.064
Ipken18 105127 154699 35817115.822 0.634 1.5 0.472
I[pmarosr7 3136 9408 144848 0.786 0.206 0.186 0.138
Ippds10 16558 49932 107605 0.582 0.048 0.12 0.034
Ippds20 33874 108175 232647 1.354 0.112 0.258 0.086
Ipstocfor3 16675 23541 76473 0.346 0.0221 0.04 0.014

4.3.4 Comparison

Table 4.7 presents a comparison for running time for ColRawk DSJM toolkit. For
comparison we are showing running time for Incidence Degrédering in this table. On
the left side, we list the name and structural propertiehefmatrices. On the right side,
we list the ordering timeit) and partitioning timegt) for each software. We can see that
ordering time is significantly larger than partitioning #nm each case. Table 4.7 clearly
shows that DSJM is efficient in terms of CPU cycles, as it nexpuiess amount of time to

perform the orderings. Figure 4.1 also compares the rurtiimgbetween them.
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Figure 4.1: Comparison of Running time for IDO between CokPand DSJM. Running
time for Colpack is indicated by lighter shade, and darkedstbars represent DSJM.

In addition to efficient execution, DSJM is also partitiogithe columns into less num-
ber of structurally orthogonal groups. Table 4.8 presenteraparison of the coloring

results from both of the package. We list only the best partifor each of the package.

4.4 Hybrid Coloring

RLF’s superior partitioning results comes with increaseohputational time, as seen ear-
lier in this chapter. Hybrid coloring can be used as a parameet version of RLF, which

helps to trade off quality of partitioning for faster exeoatof RLF algorithm. Hybrid Col-
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Table 4.8: Partitioning Results

Matrix Name

m n nnz Pmax ColPack DSJIM
af23560 23560 23560 484256 21 41 (SLO) 37 (RLF)
cagell 39082 39082 559722 31 62(SLO) 54 (RLF)
cagel? 130228 130228 2032536 33 68 (SLO) 56 (RLF)

e30r2000 9661 9661 306356 62 68 (LFO) 65 (RLF)
e40r0100 17281 17281 553956 62 66 (LFO) 66 (LFO)
Ihr10 10672 10672 232633 68 63 (SLO) 63 (SLO)
Ihr14 14270 14270 307858 68 63 (SLO) 63 (RLF,SLO)
Ihr34 35152 35152 764014 68 63 (SLO) 63 (RLF, SLO)
Ihr7lc 70304 70304 1528092 63 63 (SLO) 63 (RLF, SLO)
Ipcrea 3516 7248 18168 360 360 (ALL) 360 (ALL)
Ipcreb 9648 77137 260785 844 844 (IDO) 844 (RLF,IDO,LFO,SDO)
Ipcred 8926 73948 246614 808 808 (ALL) 808 (ALL)
Ipdflo01l 6071 12230 35632 228 228 (ALL) 228 (ALL)
Ipkenll 14694 21349 49058 122 123 (IDO) 122 (RLF)
Ipken13 28632 42659 97246 170171 (IDO,SLO) 170 (RLF, IDO, SDO)
Ipken18 105127 154699 358171 325 325(SLO) 325 (RLF,SLO)

Ipmarosr7 3136 9408 144848 48 70 (LFO) 76 (RLF)
Ippds10 16558 49932 107605 96 96 (ALL) 96 (ALL)
Ippds20 33874 108175 232647 96 96 (ALL) 96 (ALL)

Ipstocfor3 16675 23541 76473 15 15 (ALL) 15 (ALL)

Total 3573 3693 3670
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oring employs RLF and SLO to achieve better partitioningiteshile keeping running

time low. SLO ordering was chosen as the accompanied oglalgorithm because:
1. SLO ordering is closer to RLF in performance with respegdrtitioning.

2. SLO fits naturally with RLF since SLO and RLF produces thdeong at the oppo-

site ends.

Table 4.9 lists number of colors and running time for hybridFRSLO coloring. We
list the number of colors obtained from RLF in column 2. If war@gmetrize RLF-SLO
to process the first 10 percentage of vertices in SLO befoitetswg to RLF, it partitions
the columns in less time, but with usually higher number fcttirally orthogonal column
groups. Numerical observations for parametrized valde=010% is given in column 3
and column 4. Similar results for parameter valué &d 08 is given in the subsequent

columns.

4.5 Summary

RLF clearly outperforms all other ordering algorithm inrtex of number of structurally
orthogonal partitions produced. RLF running time can bgdathan running time of other
ordering routines. In many cases, Jacobian matrices has éstbmated repeatedly, while
the ordering can be done only once. So, spending more timé&t& obtain less colors
is justified in most cases. DSJM also performs faster in terimanning time for similar
algorithms implemented by ColPack. The efficient executian be attributed to the data
structures used by DSJM, which uses flat array data strydtuwe utilizing hierarchical

memory architecture.
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Table 4.9: Number of Colors and Required time in seconds fdf-BLO , with RLF
running over first 1040, 80 percentage of vertices.

Matrix RLF 0.1 0.4 0.8 \
Color | Color  Time| Color Time | Color Time
af23560 37 41 1.858 40 4.246 37 5.486
cagell 54 62 2.64 60 5.686 59 8.526
cagel?2 56 67 14.614 65 34.678 63 52.238
e30r2000 65 68 1.988 68 4.88 66 6.042
e40r0100 67 70 3.718 69 9.068 67 11.154

lhr10 64 64 0.814 64 1.404 64 1.626
lhr14 63 63 1.09 63 1.844 63 2.168
Ihr34 63 63 2.698 63 4.556 63 5.402
lhr71c 63 63 5.376 63 9.11 63 10.814
Ipcrea 360 360 0.106] 360 0.118] 360 0.378
Ipcreb 844 | 845 18.076] 845 122.0220 844 229.046
Ipcred 808 | 808 20.682 808 135.942 808 246.188

Ipdflo01 228 | 228 0.144) 228 0.202] 228 0.392
Ipken11 122 | 123 0.186] 122 0.208, 122 0.45
Ipken13 170| 171 0.476] 170 0.528 170 1.216
Ipkenl8 325| 326 3.2 325 3.456] 325 12.15
[pmarosr7 76 85 0.62 88 1.092 81 3.608
Ippds10 96 96 0.338 96 0.552 96 0.754
Ippds20 96 96 0.798 96 1.332 96 1.796
Ipstocfor3 15 15 0.102 15 0.122 16 0.17
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis we have studied methods for estimation of &pdacobian matrices. We felt
that there has been a gap for a modern tool for estimationasésplacobian matrices since
DSM's [7] release in 1984. This thesis has been an effort twige a modern software
toolkit for estimating Jacobian matrices. We have providedtl known algorithms along
with some new ones for column partitioning problem. Thouglt+Ras been used previ-
ously for graph coloring, we have implemented it for colunamtpioning problem for the
first time. We have found that RLF produces better results titlaer widely used heuristics
for column partitioning problem. Our implementation hasdito exploit the data structures
used for sparse matrices. We have seen that the softwaké fwolved to be competitive in
both running time and number of partitions achieved. We igley C++, C and MATLAB
interfaces for the algorithms for better integration witiséing applications. We hope that

it will be widely adopted by both practitioners and researsh

5.2 Future Research Direction

1. We want to extend the algorithms for Column Segmentedixngi]. A column
segmented matrix can be partitioned without explicitly stomcting it. Moreover,
the number of groups for a column segmented matrix will ncaelarger than the

partitions achieved for the original matrix. This work isgrogress.

2. We would like to extend the toolkit for distributed comimgtenvironment, we have
been looking into Condor[6] to exploit idle CPU power tygdigaavailable to aca-

demic and corporate settings to solve column partitionno@lem for large instances.
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A distributed computing environment allows us to run difiet branches of a par-
titioning problem in different machines simultaneouslyheTheuristics can be re-

implemented with minimal communication overheads betwbemunning instances

to minimize turnover time.
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Appendix A

Compilation and Usage

A.1 Use Case Scenario

Read Matrix File

f f DSJM System |
Client Code\
_»(Run Ordering AIgorithm]

Run Sequential Algorithm

Create Matrix Object &
Feed Data

Partition Matrix

Y

[Retreive Partitioning Information]

Figure A.1: Use Case of DSJM Software Toolkit

DSJM[20] software toolkit is used to find a structurally agjonal partition of large
sparse matrices. The client code will read sparsity inféionaof the matrix and construct
a Matrix object provided by DSJM. The following steps delsera use case scenario for
the client code:

1. Creates Matrix object provided bypSIM

2. Reads the row and column indices for each non-zero eleafiehe sparse matrix,
and construct &Matrix object.

3. Run an ordering and greedy coloring method provided byp®béMtoolkit to obtain
a structurally orthogonal partition.

A.2 Compilation

In a C++ settings, one can include our source code in her datigui unit, and directly use
theMatrix class. Alternatively, the toolkit can be accessed as aatBtiinked library. We
provide aMakefilebased build process to obtain the statically linked library

You can compile the source code@$JIMtoolkit with the following commands given
in the top directory of DSJM source distribution:
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.Iconfigure
make

The compiled library is a statically linkable fildmatrix.a and can be found on the
src directory. You can link against this library for compilingyr application.
A.2.1 Linking againstlibmartix.a

Assuming you are using++ compiler,you can link your application agairgtmatrix.a
with the following way:

$ g++ your _application.cpp libmatrix.a -i /path/to/dsjm source

A.3 User Interface

Features provided by DSJM toolkit has been exposed throngtCa-+ key class, named
Matrix.

In this section we will describe how to use thatrix class.

We assume the client code has at least the following infaomatbout the target sparse
matrix:

1. M, number of rows in the matrix.
2. N, number of columns in the matrix.
3. nnz number of nonzero elements in the matrix.

To get the functionality of DSJM we have to create an objetheMatrix class.
Matrix matrix(M N, nnz, fal se);

After creating the object we have to provide the sparsitygpat(row humber and col-
umn number) to the matrix object.

Note A.3.1 The indices in the Matrix object are counted frdymot fromO.

Then we call four preprocessing functions on the matrix ctiged the matrix data
structure will be ready for ordering or coloring algorithnesrun. conput eCCS method
constructs Compressed Column Storage from the sparsigrpatonpr ess method finds
duplicate entries, and discards theconmput eCRS method constructs a Compressed Row
Storage, andonput eDegr ee method computes the degree information in the intersection
graphG(A).
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mat ri x. conmput eCCS() ;

int nnz = matrix.conpress();
mat ri X. comput eCRS() ;

mat ri x. conput edegree() ;

To run any of theslo,Ifo or ido ordering methods we have to call two separate func-
tions, one is the desired ordering function, and then we t@eall the greedy partitioning

functiongreedycolor
As an example, folfo ordering, we have to execute the following instructions:

int *order = new int[N+1];

matrix. | fo(order);

int *color = new int[N+1];

int maxgrp = matrix. greedycol or(order,color);

But rlf andsdoorderings method have the partitioning algorithm builtso,for par-
titioning the columns through RLF and SLO heuristicsnmast not call gr eedycol or ()
method. For example, RLF we do the following

int *color = new int[N+1];
int maxgrp = matrix.rlf(color);
/1 Don't call matrix.greedycolor() after rlf.

By this point, every column is assigned to one of the strattyiorthogonal groups
which are numbered from 1 to maxgrp and the related groupaoin eolumn is stored in
thecol or array such that color[i] represents the group number ofraalu

A.3.1 Example Usage of Matrix Object

Matrix matrix(M N nnz, false);

for(int i =1 ; i <=nnz;, i++)
{
int row, colum;
r eadNext Nonzer oLocat i on( & ow, &ol um) ;
Il Cient Code supplied Method
Il ,may al so be supplied from
Il an array

matri x.entry(row,col);
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mat ri x. conmput eCCS() ;

int nnz = matrix.conpress();
mat ri x. comput eCRS() ;

mat ri x. conput edegree();

int *order = new int[N+1];
matrix.|fo(order);

int *color = new int[N+1];
int maxgrp = matrix. greedycol or(order,color);
/1 Don’t use this function for RLF

for (int j =1, ] <= N, j+4)
{

}

A.4 Matrix Class

printf("Colum J belongs to % partition\n",color[i]);

Following functions are available to the usemt ri x class.

A4l Matrix(int M int N, int nz,
bool val ues)

Constructor of the class. The parameters represent theemohtows, number of columns,
and number of nonzero values in the matrix. If the fourth peater,val ues is true then
the matrix object stores values of the nonzero items. Otiserwt only stores the sparsity
pattern and disregards the original values.

A.4.2 bool conputeCCS()

Purpose ComputesCompressed Column Storage(CG@&mat of the sparse matrix. The
CCS format stores the columns of matAxin three member arrays in Matrix ob-
ject: <id:jpntr>, <id:indRow> and<i d: x>. Data membecki d: x> is empty if
<i d: val ue>, a boolean member variable evaluates to false.

Pre-condition Assumes that the matrix definition is stored in co-ordinatenft in<i d: i ndRow>
and<i d: i ndCol > integer array. For every non-zero position in the sparseixnat
there is two entryi ndRow i ] andi ndCol [i] holding therow, andcolumncoordi-
nate of the nonzero entry. 4 d: val ue> is true therx[ i ] stores the corresponding
nonzero item.

Post-condition Column-oriented definition of the sparse matrix is storethetwo array
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<i d:jpntr>and<id:indRow>. If value of the nonzero items are being stored , then
<i d: x> is also organized in column oriented definition.

Return value Returng r ue when the function is executed successfully, otherwisemstu
fal se.

A.4.3 bool conput eCRS()

Purpose ComputesCompressed Row Storage(CRIgfinition of the sparse matrix. The
CRS format stores the rows of matriin two member arrays in Matrix object:
<id:ipntr>, and<id:indCol >. Value array<i d: x> is not stored in row oriented
definition.

Pre-condition Assumes that the matrix definition is stored in CCS format it i ndRow>
and<i d: j pntr> integer array and duplicate entries has been removed bpngall
conput eCCS() method anatonpr ess() method.

Post-condition Row-oriented definition of the sparse matrix is stored in tiwe array
<id:ipntr>and<id:indCol >.

Return value Returng r ue when the function is executed successfully, otherwisemstu
fal se.
A.4.4 int conpress()

Purpose Removes duplicate entries from the column-oriented dedmitf the sparse ma-
trix, and compresses the member arrayd: i ndRow>, <i d: | pntr> and<i d: x>
array.

Pre-condition Assumes that the sparsity pattern has been stored in cotuiemted def-
inition in <i d: j pntr>, <i d: i ndRow> and<i d: x> array by callingconput eCCS()
method.

Post-condition Removes duplicate entry and reorganiges. i ndRow>, <i d: j pntr>and
<i d: x> array.

Return value Returns number of unique nonzero items when the functioxesged suc-
cessfully, otherwise returns zero.

A.4.5 bool conputedegree()

Purpose Given the sparsity pattern of a matex this method determines the degree se-
guence of the sparse matAxof the vertices of the column intersection GrapA)).
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Pre-Condition The matrix objectis nonempty. Assumes thatdbeput eCCS() , conpr ess()
andcomput eCRS() has been called prior calling this function, such that madh-
ject holds the sparsity pattern in Compressed Column andp@ssed Row storage
format.

Post-Condition Degree information for the columns of maté graphG(A)) is stored in
the data membedi d: ndeg>, an integer array of size+ 1, such that ik = ndeg] j ]
then the columrj has degre&, wherej =1,2,...,n.

Return value Returng r ue when the function is executed successfully, otherwisemstu
fal se.

A.4.6 bool slo(int *order)

Purpose ComputesSmallest-Last Ordering (SL®@J the columns of a sparse matAxi.e.
the vertices of the column intersection gra@tA)).

Pre-condition The matrix object is nonempty. Assumes that the degree oftdhemns
have already been computed in the data memberndeg>, an integer array of size
n+ 1, usingconput edegr ee() method.

Post-condition The SLO ordering of matri (graphG(A)) is stored in the out-parameter
<i d: order>, an integer array of siza+ 1, such that itk = order[j] then the
columnj is thek-th elementk=1,2,...,n, in the SLO ordering, angl=1,2,...,n.

Parameters Out-parametexi d: or der >, an integer pointer to an array of siae-1. The
array will contain the ordering information when the fuoctinormally returns.

Return value Returng r ue when the function is executed successfully, otherwisemstu
fal se.

A.4.7 bool ido(int =*order)

Purpose Computedncidence-Degree Ordering (IDQ)f the columns of a sparse matrix
A (i.e. the vertices of the column intersection gra&g(id)).

Pre-condition The matrix object is nonempty. Assumes that the degree oftahemns
have already been computed in the data membérndeg> integer array of size
n+ 1 usingconput eDegr ee() method.

Post-condition ThelDO ordering of matrixA ( graphG(A) ) is stored in the out-parameter
<i d: order >, aninteger array of size+ 1, such thatik=or der[j ] then the column
j is thek-th elementk=1,2,....n, inthe IDO ordering, and =1,2,...,n.

Parameters Out-parametexi d: or der >, an integer pointer to an array of siae-1. The
array will contain the ordering information when the fuoctinormally returns.
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Return value Returng r ue when the function is executed successfully, otherwisemstu
fal se.

A.4.8 bool |fo(int =*order)

Purpose Computed argest-First Ordering (LFOPf the columns of a sparse matAXi.e.
the vertices of the column intersection grapth)).

Pre-condition The matrix object is nonempty. Assumes that the degree oftahemns
have already been computed in the data memberndeg>, an integer array of size
n+ 1, usingconput eDegr ee() method.

Post-condition TheLFO ordering of matrixA (graphG(A)) is stored in the out-parameter
<i d: order>, an integer array of siza+ 1, such that itk = order[j] then the
columnj is thek-th elementk=1,2,...,n, in the LFO ordering, ang=1,2,...,n.

Parameters Out-parametexi d: or der >, an integer pointer to an array of siae- 1. The
array will contain the ordering information when the fuoctinormally returns.

Return value Returng r ue when the function is executed successfully, otherwisemstu
fal se.

A.49 int sdo(int *color)

Purpose ComputesSaturation-Degree ColoringDO) of the columns of a sparse matrix
A (i.e. the vertices of the column intersection gra&g(d)).

Pre-condition The matrix object is nonempty. Assumes that the degree oftahemns
have already been computed in the data memberndeg>, an integer array of size
n+ 1, usingconput eDegr ee() method.

Post-condition SDOcoloring of Matrix A (graphG(A)) is stored in the in-out-parameter
<i d:col or>, an integer array of siza+ 1, such that ifk = col or[j] then the
columnj is colored with colok, wherej =1,2,...,n.

Parameters Out-parametexi d: col or >, an integer pointer to an array of siae- 1. The
array will contain the color values of the columns in suctdssompletion. The
integer array uses 1-based indexing.

Return value Returns the number of colors if succeeds, otherwise retufasro).

A.4.10 int greedycol or
(int xorder, int =*color)

Purpose Computes the greedy coloring of the columns of a sparse xmafjiie. the ver-
tices of the column intersection grafiA)).
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Pre-condition The matrix object is nonempty. Assumes that an ordering leas Ipro-
vided in the in-parameteti d: or der >, an integer array of sizea+ 1, such that
order[1],...,order[n] is a permutation ofl,...,n}.

Post-condition The greedy coloring of MatriA (graph G(A)) is stored in the in-out-
parameteki d: col or >, an integer array of siza+ 1, such that itk = col or [ ]
then the columrj is colored with colok, wherej =1,2,...,n.

Parameters In-parameteki d: or der >, an integer pointer to an array of sime- 1, con-
taining a permutation of1,...,n}. The integer array uses 1-based indexing.

In-out-parametexi d: col or >, an integer pointer to an array of sime- 1, it stores
the color values of the columns in successful completioa.ifteger array uses 1-
based indexing.

Return value Returns the number of colors if succeeds, otherwise retufmsro).

A4.11 int rlf(int =color)

Purpose ComputesRecursive Largest-Firstoloring (RLF) of the columns of a sparse
matrix A (i.e. the vertices of the column intersection gr&p(h)).

Pre-condition The matrix object is nonempty. Assumes that the degree ofahemns
have already been computed in the data memberndeg>, an integer array of size
n+ 1, usingconput eDegr ee() method.

Post-condition RLF coloring of MatrixA (graphG(A)) is stored in the in-out-parameter
<i d: col or >, aninteger array of size+ 1, such thatik=col or[j ] then the column
j is colored with colok, wherej =1,2,....n.

Parameters Out-parametexi d: col or >, an integer pointer to an array of siae-1. The
array will contain the color values of the columns in sucttdssompletion. The
integer array uses 1-based indexing.

Return value Returns the number of colors if succeeds, otherwise refi(zeso).

A.4.12 void rlf_slo(int *ngrp, int p)

Purpose Computes RLF and SLO coloring (Hybrid Coloring) of the cohsrof a sparse
matrix A (i.e. the vertices of the column intersection grapfA) ), partitions first
p columns according tRLF ordering and then colors remaining columns wshO
ordering algorithm.

Pre-condition The matrix object is nonempty. Assumes that the degree otahemns
have already been computed in the data memberndeg>, an integer array of size
n+ 1, usingconput eDegr ee() method.

67



Post-condition RLF-SLO coloring of MatrixA (graphG(A)) is stored in the in-out-parameter
<i d: col or >, aninteger array of size+ 1, such thatik=col or[j ] then the column
j is colored with colok, wherej =1,2,....n.

Parameters Out-parametexi d: col or >, an integer pointer to an array of siae-1. The
array will contain the color values of the columns in sucttdssompletion. The
integer array uses 1-based indexing.

Return value voi d.

A.5 Reading Matrix Market Data File

DSJMcode depends on the application’s code to supply the datedfgarse matrix. We
also provide a way to reddatrix Marketexchange format.

A.5.1 Reading Matrix Market Banner

Matrix Marketformat provides a banner which lists meta-data for the mafithe following
code snippet can retrieve important meta-data by readibgfile.

MM t ypecode nmat code;
int ret_code;

FILE *f;
f = fopen("filenane.nmtx", "r");
i f (nmread_banner (f, &mtcode) != 0)
{
fprintf (stderr,
“filename.nmtx -> Coul d not process Matrix Market banner.\n");
exit (1);

* This is how one can screen matrix types if their applicaiton
* only supports a subset of the Matrix Market data types.

*'k/

if (mm.is_conplex (matcode) & mmis _matrix (matcode) &&
mm.is_sparse (matcode))
{
printf ("Sorry, this application does not support ");
printf ("Market Market type: [%]\n", nmmtypecode to _str (nmatcode));
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exit (1);
}

/**

*

* Find out the size of the sparse matrix

*'k/

if ((ret_code = nmread ntx crd_size (f, &M &N, &nz)) != 0)
exit (1);

Is_symretric = mmis_symmetric(nmatcode);
is_pattern = mm.is_pattern(mtcode);
nz =2 * nz;

A.5.2 Reading sparsity pattern

The client code can provide the data to b r i x object using the following code.

Il As we are not going to use the value, we are sinply using
/'l this placehol der variable 'value’ to read each |ine
[l fromthe input matrix.

doubl e val ue;

for (int i =1 rowcol ; i <=nz;, i++)
{
if (is_pattern)
{
fscanf (f, "% %\ n", & ow, &col);
}
el se
{
fscanf (f, "% % %g\n", & ow, &col, &value);
}

mat ri x->set | ndRowent ry(i, row);
mat ri x->set | ndCol Entry(i, col);
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i f(is_symretric)

{
mat ri x- >set | ndRowentry(i + nz,col);
mat ri x->set I ndCol Entry(i + nz,row);
}
}
if (f '=stdin)
fclose(f);

A.6 Matlab Usage

The functionalities of th®SJMtoolkit has been exposed through tteg ncol or () func-
tion. This function requires two parameters, a MATLAB sgargatrix and a method name.
For example, to obtai®mallest-Last-Coloringn a matrixA in MATLAB we would have
to call the function in the following way:

B = dsjntolor (A ‘slo);

The coloring assignment will be stored in tBenatrix, i.e.,ith column will be in the
orthogonal column grouB(i ), wherei € {1,...,n}.
The following functions of th&®SJMcan be called througltsj ntol or () :

1. Matrix Class

e Largest First Ordering Coloring.
B = dsjntolor(A ‘I1fo);

e Smallest Last Ordering Coloring.
B = dsjntolor(A ‘slo);

¢ Incidence Degree Coloring.
B = dsjntolor(A ‘ido);

e Saturation Degree Coloring.
B = dsjntolor (A ‘sdo’);

e Recursive Largest First Coloring.
B = dsjncolor(A ‘rlf");

DSJM functionalities are exposed tdATLAB throughMEX(MATLAB executable)
interface.
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A.6.1 Compiling for Matlab

MEX source codes are locatednex directory in source distribution. To compile the mex
files, you have to perform the following steps :

1. Compile and build static librafyi bmat ri x. a. See section (A.2) for details on com-
pilation of the static library.

2. Editnmex/ Makefi | e such that:

(a) MATLABHOME contains the Matlab installation path.
MATLABHOME = /path/to/ matlab/installation

(b) MEX variable contains the full path-name of tiex executable.

MEX = [ path/t o/ mex/ execut abl e

3. Runneke in nex directory to compile thé&. mexgl h files.
$ meke

A.6.2 Calling Matrix functions from Matlab
Setup Path

Before callingDSJMfunctions from MATLAB , make sure thatex directory is added to
the Matlab search path. You can type the following commanithéat | ab console so
that MATLAB is setup correctly to finddSIJMmex files.

>> addpat h(’ /path/to/ mex/directory’)
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