
DSJM: A Software Toolkit for Direct Determination of Sparse Jacobian Matrices

Mahmudul Hasan
Bachelor of Science, Islamic University of Technology, Bangladesh, 2006

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c©Mahmudul Hasan, 2011

DSJM: A SOFTWARE TOOLKIT FOR DIRECT DETERMINATION OF SPARSE
JACOBIAN MATRICES

MAHMUDUL HASAN

Approved:

Signature Date

Supervisor:

Committee Member:

Committee Member:

Chair, Thesis Examination Committee:

I dedicate this thesis to my parents.

iii

Abstract

DSJM is a software toolkit written in portable C++ that enables direct determination of

sparse Jacobian matrices whose sparsity pattern is a prioriknown. Using the seed matrix

S∈ Rn×p, the JacobianA∈ Rm×n can be determined by solvingAS= B, whereB∈ Rm×p

has been obtained via finite difference approximation or forward automatic differentiation.

Seed matrixS is defined by the nonzero unknowns inA. DSJM includes well-known as

well as new column ordering heuristics. Numerical testing is highly promising both in

terms of running time and the number of matrix-vector products needed to determineA.

iv

Acknowledgments

I express my deep acknowledgment and gratitude towards my M.Sc. supervisor Dr. Shaha-

dat Hossain. Without his guidance and effort this thesis would have never been complete.

Contents of this thesis is based on the joint research work I have done with Dr. Hossain.

I also express my gratitude towards my M.Sc. supervisory committee members Dr.

Daya Gaur, and Dr. Saurya Das for their valuable advice and guidance. I am thankful to

Dr. Trond Steihaug, for his feedback and ideas on the research work.

I am grateful to Dr. Hossain, and Graduate School of University of Lethbridge for

providing me the financial resources needed to support the research work.

I thank my friends, colleagues and families for their support and forbearance.

v

Contents

Approval/Signature Page ii

Dedication iii

Abstract iv

Acknowledgments v

Table of Contents vi

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Contribution . 4

2 Background and Sparse Matrix Data Structure 6
2.1 Graph . 6
2.2 Seed matrix computation .6
2.3 Intractability . 8
2.4 Graph Coloring . 9

2.4.1 Intersection Graph . 9
2.5 Heuristics . 9
2.6 Data Structure . 11

2.6.1 Compressed Column Storage (CCS) 11
2.6.2 Compressed Row Storage (CRS) 11

3 Efficient Implementation of Ordering and Graph Coloring 14
3.1 Constructive Greedy Coloring .. . 14

3.1.1 Analysis . 20
3.2 Ordering Methods . 20

3.2.1 Degree Calculation . 20
3.2.2 Priority Queue . 21
3.2.3 Largest-First Ordering . 24
3.2.4 Smallest-Last Ordering . 26
3.2.5 Incidence-Degree Ordering .28
3.2.6 Saturation-Degree Ordering .32
3.2.7 Recursive-Largest-First Coloring 35
3.2.8 RLF-SLO coloring . 38

3.3 Storage Format . 38

vi

4 Computational Experiments 39
4.1 Test Environment . 39
4.2 Data Sets . 39
4.3 Numerical Results . 43

4.3.1 Partitioning Results . 43
4.3.2 Significance of fewer function evaluations in Jacobian Matrix Com-

putation . 47
4.3.3 Running Time . 48
4.3.4 Comparison . 51

4.4 Hybrid Coloring . 52
4.5 Summary . 54

5 Conclusion and Future Work 56
5.1 Conclusion . 56
5.2 Future Research Direction .. 56

Bibliography 58

A Compilation and Usage 60
A.1 Use Case Scenario . 60
A.2 Compilation . 60

A.2.1 Linking againstlibmartix.a . 61
A.3 User Interface . 61

A.3.1 Example Usage of Matrix Object 62
A.4 Matrix Class . 63

A.4.1 Matrix(int M, int N, int nz,
bool values) . 63

A.4.2 bool computeCCS() . 63
A.4.3 bool computeCRS() . 64
A.4.4 int compress() . 64
A.4.5 bool computedegree() . 64
A.4.6 bool slo(int *order) . 65
A.4.7 bool ido(int *order) . 65
A.4.8 bool lfo(int *order) . 66
A.4.9 int sdo(int *color) . 66
A.4.10 int greedycolor

(int *order, int *color) . 66
A.4.11 int rlf(int *color) . 67
A.4.12 void rlf_slo(int *ngrp, int p) 67

A.5 Reading Matrix Market Data File .. . 68
A.5.1 Reading Matrix Market Banner 68
A.5.2 Reading sparsity pattern . 69

A.6 Matlab Usage . 70

vii

A.6.1 Compiling for Matlab . 71
A.6.2 Calling Matrix functions from Matlab 71

viii

List of Tables

4.1 Matrix Statistics for Set 1 .. . 40
4.2 Matrix Statistics for Set 2 .. . 42
4.2 Matrix Statistics for Set 2 (Continued) 43
4.3 Coloring Results using DSJM for Data Set 1 45
4.4 Coloring Results using DSJM for Data Set 2 46
4.4 Coloring Results using DSJM for Data Set 2 (Continued) 47
4.5 Experimental results for Newton’s Method 49
4.6 Timing Results using DSJM for Data Set 1 50
4.7 Timing Results for Incidence Degree Partitioning. 51
4.8 Partitioning Results .. 53
4.9 Number of Colors and Required time in seconds for RLF-SLO, with RLF

running over first 10,40,80 percentage of vertices. 55

ix

List of Figures

1.1 Model Newton’s Algorithm . 1
1.2 Structure of a Jacobian Matrix .. . 3

2.1 A GraphG= (V,E) . 6
2.2 Compressed Column and Compress Row data structure for the sparse ma-

trix A . 12

3.1 Neighborhood computation using CRCS 14
3.2 Compressed Column and Compress Row data structure for the sparse ma-

trix A . 15
3.3 Major computational steps for sequential coloring 16
3.4 Sequential Greedy Coloring .. 17
3.5 Sequential Coloring example .. . 18
3.6 Algorithm for Degree calculation 21
3.7 Bucket data structure example .. . 22
3.8 Algorithm for initializing priority queue from degree information list 23
3.9 Algorithm for adding a column in a priority queue 23
3.10 Algorithm for deleting a column from a priority queue 24
3.11 Largest First Ordering Algorithm 25
3.12 Smallest-Last Ordering Algorithm 27
3.13 Smallest-Last Greedy Coloring 28
3.14 SD and ID Greedy Coloring . 28
3.15 Index Sort Algorithm .30
3.16 Incidence-Degree Ordering Algorithm 31
3.17 Saturation Degree Ordering Algorithm 34
3.18 Overview of Recursive Largest First Algorithm 35
3.19 Recursive Largest First Algorithm 37

4.1 Comparison of Running time for IDO between ColPack and DSJM. 52

A.1 Use Case of DSJM Software Toolkit .. 60

x

Chapter 1

Introduction

An important computational step in many numerical algorithms solving complex scientific

and engineering problems is to compute or estimate the first or higher-order derivatives of a

vector function of several independent variables [11, 26].Complex real-world phenomena

e.g., atmospheric dynamics are usually studied by buildingmodels (differential equations)

for constituent natural processes. The numerical procedures in those models often require

the solution of systems of nonlinear equations or minimization of some nonlinear function

of large number of variables. A frequently used algorithm tosolve these problem is some

variant of Newton’s method.

Algorithm 1: Newton’s method for solving system of nonlinear equations
input : For an initial approximationx ∈ Rn

1 for j← 0 to convergencedo
2 Evaluateb= F(x) ;
3 DetermineJ = F ′(x) ;
4 Solve forJs=−b ;
5 x← x+s ;
6 end

Figure 1.1: Model Newton’s Algorithm

Newton’s method finds a solution of a system of nonlinear equations specified by

F(x) = 0

whereF(x) : Rn 7→ Rm is a vector valued function onx. Starting from an initial approxi-

mation, newton’s method improves the solution iteratively.

Each iteration requires one evaluation ofF(x) and its derivativeF ′(x) at a given point

1

x. So, in a large number of scientific and engineering problemsdetermination of derivatives

or Jacobian ofF(x) is a necessary computational step.

In most of the cases we can only approximate the value of the JacobianF ′(x) using

numerical methods, most notably finite differencing or automatic differentiation [19]. Sci-

entific and engineering problems often produces large Jacobian matrices which are sparse,

or has structural patterns in them. Though there has been a significant improvement in the

algorithmic methods for determining the Jacobian of a function, there is a gap between the-

ory and implementation. In our thesis, we present a softwaretoolkit which tries to fill the

gap by providing a tool to determine large Jacobian matricesefficiently by exploiting the

sparsity frequently found in the real-world problems. Though important, the implementa-

tion does not try to use the known specific structural patternof the sparsity (i.e. tri-diagonal

matrix, banded matrix).

Given a nonlinear vector function

F(x) = [f1(x) f2(x) . . . fm(x)]T , x ∈ Rn (1.1)

we want to compute the Jacobian matrixF ′(x) at a givenx, whereF ′(x) is given by

F ′(x) =













∂ f1
∂x1

∂ f1
∂x2

. . .
∂ f1
∂xi

. . .
∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

. . .
∂ f2
∂xi

. . .
∂ f2
∂xn

∂ fm
∂x1

∂ fm
∂x2

. . .
∂ fm
∂xi

. . .
∂ fm
∂xn













(1.2)

Finite differencing can approximaten columns of Jacobian matrix withn+1 function

evaluations. In the forward difference formula

∂ f
∂xi

(a)≈
1
ε
[F(a+ εei)−F(a)], (1.3)

2

one needs to evaluateF at a andn neighboring points(a+ εei) where,i = 1,2, . . . ,n, and

ε > 0 is a small interval andei is ith co-ordinate vector.

A=



















0 × ·· · 0 0 0
× × ·· · 0 0 0
× 0 · · · 0 × 0
...

... · · ·
...

...
× 0 · · · 0 × ×
0 × ·· · 0 0 ×



















j k

Figure 1.2: Structure of a Jacobian Matrix

Definition Two columns are calledstructurally orthogonal, if they do not have nonzero

entries in same row.

In Figure 1.2, columnsj andk are structurally orthogonal as they do not have overlapping

nonzero entries in the same row position. Curtis, Powell andReid [9] showed that if two

columns j andk are structurally orthogonal ,these two columns can be approximated in a

single evaluation instead of two, noting that

A j +Ak ≈
1
ε
[F(a+ ε(ej +ek))−F(a)]. (1.4)

They proposed that by grouping then columns intop structurally orthogonal groups ,

the number of function evolutions required to compute largesparse Jacobian matrices can

be reduced significantly, thus introducing column partitioning problem as a kernel opera-

tion in determining Jacobians efficiently.

Further analysis on Jacobian determination problem is given in [16], [22] and [21].

Coleman and Moré [8] first showed that this problem can be modeled also as a graph col-

oring problem. Considering each column as a vertex in an intersection graph (see Section

3

2.4.1), Coleman and Moré developed efficient heuristics forcolumn partitioning. Further

development on this idea was carried out in [21] by constructing CSegGraph [21].

We assume that the sparsity pattern of the Jacobian matrix isknown a priori and is

independent of the actual values ofx, or can be computed as in Automatic Differentiation

[19]. We also assume that for one or more components ofF(x) we need to compute the

whole vectorF(x). It is more efficient to evaluate vectorF than to evaluate each component

of F separately, as

• common sub-expressions are evaluated only once, and

• F might be a computer subroutine that returns the vectorF evaluated atx whose code

is not available directly to users.

DSM [7] was the only software since its release in 1983 for determining Jacobian ma-

trices. DSM is very efficient and works well on the target problem. But as DSM was

programmed in FORTRAN(F77) it cannot take advantage of dynamic memories, and other

modern development in programming languages e.g. object orientation.Colpack[17] and

DSJMare two softwares that address the same problem using modernimplementation.Col-

packmodels column partitioning problem as bipartite graph, wherein DSJMbuilds sparse

matrix primitives where graph theoretic techniques are implemented using efficient sparse

data structures.

1.1 Contribution

DSJM implements proven coloring and ordering heuristics, as well as some novel ones. It

also makes available a heuristic coloring technique with noknown alternative implemen-

tation, which proved to be of more effective than the other known heuristics. Graph algo-

rithms typically display relatively small floating-point operations count per memory access

4

resulting in degraded performance on traditional hierarchical-memory computer systems.

Our implementation of the ordering and coloring algorithms, with the help of efficient

sparse data structures, allow the kernel operations to be performed in a cache-friendly way

to minimizecache missesdue to irregular data access. Choice of C++ as implementation

language equips DSJM with dynamic and efficient memory management, as well as wider

scope for extensibility and ease of use through object oriented design. Along with mak-

ing available itself as a linkable C++ library, the routinescan also be used from MATLAB

tools. DSJM was successfully interfaced with MAD (Matlab Automatic Differentiation)

[13]. Part of this work has been published as an extended abstract in SIAM workshop on

Combinatorial Scientific Computing, 2009. It was also presented as a talk in IBM Cascon

Conference, 2010, and University of Lethbridge Optimization Seminar, as well as a poster

in CORS/MITACS conference, 2010.

5

Chapter 2

Background and Sparse Matrix Data Structure

In this chapter we review some preliminary graph theoretic definitions necessary for this

thesis, and introduce sparse matrix data structure for representing graphs.

2.1 Graph

A graphG is a pair(V,E), whereV is a finite set of vertices andE is a binary relation over

V. Each element inE is called an edge and is a set{u,v} such thatu,v∈V.

v1 v2

v3 v4 v5

Figure 2.1: A GraphG = (V,E), where V = {v1,v2,v3,v4,v5} and edge setE =
{{v1,v2},{v1,v3},{v2,v4},{v3,v4},{v4,v5}}. The vertices are shown as circles and edges
as lines connecting two vertices.

We call two verticesu andv adjacentif and only if {u,v} ∈ E. The neighborhood,

N(v), of a vertexv is defined as the set of all verticesu 6= v, such that{u,v} ∈ E. The

degreeof a vertexv is defined asd(v) = |N(v)|.

The graph induced byV ′ ⊂V, denotedG[V ′] = (V ′,E′), is the subgraph ofG= (V,E)

whereE′ = {{u,v} ∈ E|u,v∈V ′} .

2.2 Seed matrix computation

In this thesis we consider the problem of finding minimum cardinality structurally orthogo-

nal column partitioning of a Jacobian matrix. The main goal of this thesis is the design and

6

implementation of efficient data structure and partitioning related algorithms. As we have

seen in Chapter 1, the nonzero elements of a Jacobian matrix,A, can be obtained using an

identity matrix as a trivial seed matrixS, whereS= In, via finite difference formula,

∂ f
∂xi

(x)≈
1
ε
[F(x+ εei)−F(x)].

The determination of a sparse Jacobian matrix can also be viewed as a computation of

p matrix-vector productsAS= B:

∂F(x+ ts)
∂t

∣

∣

∣

∣

t=0
= F ′(x)s≈ As=

1
ε
[F(x+ εs)−F(x)]≡ b. (2.1)

Nonzero elements inA can be recovered by solvingAS= B using a direct or indirect

method.

Definition A reduced seed matrix̂Si ∈ Rρi×p is defined as

Ŝi = S(Ji, :),

whereJi denotes a vector containing the column indices of the nonzero entries in rowi of

A.

We say thatA is determined directly, ifSsatisfies the property that each reduced seed

matrix Ŝi has aρi×ρi submatrix that is a permuted diagonal matrix.

Structurally orthogonal column partitioning gives us a seed matrixS∈ {0,1}n×p which

follows the properties for direct determination, where

S(:, l) = ∑
j∈Cl

ej , l = 1,2, . . . , p

andCl is a set of column indices that are structurally orthogonal.Hence, structurally or-

7

thogonal column partitioning problem can also be reformulated as a seed matrix computa-

tion.

It has been observed in [8] that the seed matrix computation problem can be formulated

as the vertex coloring of an associated graph,G(A).

2.3 Intractability

Polynomial-timealgorithms have worst-case running time ofO(nk) for an input sizen, and a

constantk. Polynomial-time algorithms are generally considered tractable [15]. We define

the class ofpolynomial-time solvableproblems that allowspolynomial-timealgorithms for

solving them. Similarly, the class ofpolynomial-time verifiableproblems are defined as

those set of problems which, given an answer, allows to be verified whether the answer

corresponds to the solution or not. The class ofpolynomial-time solvableproblems is

denoted byP, and the class ofpolynomial-time verifiableproblems is denoted byNP. By

this definition,P⊂ NP.

If there is apolynomial-timealgorithm which converts any input of problemB to an

equivalent input of problemA in such a way that the solution computed by an algorithm

to solveA, is also a solution to problemB and vice versa, then the conversion algorithm is

called apolynomial-time reduction. A problem inNP to which all other problems inNP

can be polynomially-reduced is called anNP-Completeproblem.

As any algorithm to solve anNP-Completeproblem can solve all other problems in

NP, the class ofNP-Completeproblems are considered to be the hardest inNP. Moreover,

no polynomial-timealgorithm has been found yet to solve anNP-Completeproblem. It

is generally safe to say that there is no polynomial time algorithm for an NP-Complete

problem unlessP= NP.

8

2.4 Graph Coloring

Given a graphG = (V,E), a p-coloring is a functionφ : V → {1, . . . , p} such thatφ(u) 6=

φ(v) if {u,v} ∈ E. The minimum value forp is called thechromatic numberχ(G) of graph

G. It has been shown that given an arbitrary graphG, to decide whether or not it has a

p-coloring is NP-Complete[15]. Since thisp-coloringproblem isNP-Complete, finding

the value of minimump cannot be any easier than the decision version of the problem.

2.4.1 Intersection Graph

Given a matrixA, we can construct a graphG(A) = (V,E) in a way such that eachvi ∈V

corresponds to a unique columni, i = 1,2, . . . ,n, in A. We define the edge{vi ,v j} ∈ E if

and only if columnsi and j share at least one nonzero in some row.G(A) is called the

intersection graphof A. It has been shown that coloring of the intersection graphG(A)

induces a structurally orthogonal column partition in matrix A and vice versa [8].

2.5 Heuristics

Practical way of looking into thisNP-Hardproblem is to utilize heuristics. Heuristic algo-

rithms for graph coloring can be broadly categorized into greedy constructive algorithms

and meta-heuristic methods [24]. Meta-heuristic methods include local search algorithms,

tabu search, simulated annealing, genetic and evolutionary algorithms and etc. Although

there are different types of heuristics, in this thesis we discuss greedy constructive heuristics

only, because majority of the heuristics are not practically applicable for Jacobian determi-

nation due to the large size of the input matrix [24].

The simplest greedy constructive algorithms is the greedy sequential algorithm (SEQ),

where each vertexvi is assigned the lowest indexed color class which contains novertices

9

adjacent tovi . Carefully pre-ordered sequence of vertices to the SEQ algorithm can achieve

better coloring [8].

In Largest First Ordering(LFO), the verticesV = {v1,v2, . . . ,vn} are sorted in non-

decreasing degrees in G, and then the ordering is provided tothe SEQ method.

Assuming that the verticesV ′ = {vn,vn−1, . . . ,vi+1} have already been ordered, thei-

th vertex inSmallest Last Ordering(SLO) is an unordered vertexu such thatdeg(u) is

minimum inG[V \V ′].

After ordering the verticesV ′ = {v1,v2, . . . ,vi−1} the i-th vertex inIncidence Degree

Ordering (IDO) [8] is an unordered vertexu ∈ V \V ′ such thatdeg(u) is maximum in

G[V ′]. Ties are broken by choosing the vertex that has largest degree inG .

Definition The chromatic degree kdeg(u) of a vertexu is defined as the number of unique

color(s) present in the neighborhood ofu.

In Saturation Degree Ordering(SDO) [5] we order and color first before choosing the next

vertex; Assume that the verticesV ′ = {v1,v2, . . . ,vi−1} have been ordered and colored, the

i-th vertex in this order is an unordered vertexu such thatkdeg(u) is largest inG[V ′]. Ties

are broken by choosing the vertex that has the largest degreein G[V \V ′] .

Recursive-largest-first(RLF) [23] algorithm partitions the vertex setV intoV1,V2, . . . ,Vp

independent sets, and constructsp color classes. The first vertex ofVi is chosen in a way

such that it has the largest degree inG[V \
⋃i−1

j=1Vj] induced graph, and adjacent vertices of

v1 are added to the inadmissible setU . RLF continues adding vertices to the independent

setVi , by choosingvk which has the largest number of adjacent vertices in the setU atk-th

step, and neighbors ofvk are also added toU .

10

2.6 Data Structure

In this section we are going to describe the data structure which stores sparse matrices in

computer memory for our heuristic algorithms. We wanted to use a data structure which can

exploit the sparsity, and simultaneously can store the intersection graph implicitly.Com-

pressed Column StorageandCompressed Row Storageschemes appear to be a suitable fit

for our purpose and they form the backbone of our implementation. In the following sec-

tion, we describe theCompressed Column StorageandCompressed Row Storageschemes.

2.6.1 Compressed Column Storage (CCS)

The Compressed Column Storage (CCS) puts the row indices of nonzero elements of sub-

sequent columns in an integer array (row_ind). Nonzero elements are stored in the same

order in a floating point array (val). An integer array (col_ptr) is created to store the be-

ginning indices of the columns inrow_ind. Assuming that we have a matrixAm×n with nnz

number of nonzero elements, we need 2nnz+n+1 number of memory locations instead of

n2 to storeA.

Row indices of nonzero elements in columnj are found to be asrow_ind[col_ptr[j]]

to row_ind[col_ptr[j+1]-1].

2.6.2 Compressed Row Storage (CRS)

Analogous to Compressed Column Storage, Compressed Row Storage (CRS) puts column

indices of the nonzero elements of subsequent rows in an integer array,col_ind. Integer

arrayrow_ptr is created as a pointer to the column indices. In our implementation we do

not store nonzero elements inCRSscheme to save space. Thus CRS requiresnnz+m+1

number of memory locations.

11

A=













0 0 0 a14 a15
a21 0 a23 0 0
0 0 a33 a34 0
0 a42 0 a44 0

a51 a52 0 0 0













1

2

3

4 5

2 5 4 5 2 3 1 3 4 1

row_ind

1 3 5 7 10 11

col_ptr

4 5 1 3 3 4 2 4 1 2

col_ind

1 3 5 7 9 11

row_ptr

a21 a51 a42 a52 a23 a33 a14 a34 a44 a15

value

Figure 2.2: Compressed Column and Compressed Row data structure for the sparse matrix
A. The intersection graph of the matrixA is shown on the right. Integer array,row_ind,
stores the row indices of the nonzero elements of subsequentcolumns. Nonzero elements
are stored in the same order in the floating point arrayvalue. Integer arraycol_ptr stores
the beginning memory location for columns inrow_ptr. For example, shaded cells in
col_ptr androw_ind shows the corresponding entries for column 4. These three arrays,
value, row_ind andcol_ptr forms the Compressed Column Storage format.Col_ind
androw_ptr stores the Compressed Row Storage format, and corresponding entries for
row 3 are shown as shaded.

12

Column indices of nonzero elements in rowi are found to be ascol_ind[row_ptr[i]]

to col_ind[row_ptr[i+1]-1].

In our implementation we use bothCCSandCRS, resulting in total of 3nnz+m+n+2

number of memory locations used for sparse matrix storage.

Other important data structures will be introduced and described in Chapter 3.

13

Chapter 3

Efficient Implementation of Ordering and Graph Coloring

In this chapter we describe implementation details for different column ordering strategies

and asymptotic complexity of the algorithms and data structures. We also describe detail

illustrations of the algorithms withCRCSand other supporting data structures.

The column intersection graph need not be constructed explicitly if we useCRCSdata

structure for matrices.CRCSallows us to compute the neighborhood of a columnj effi-

ciently by providing both row-oriented and column-oriented sparsity pattern. For example,

for a given columnj, we can compute the neighborhood using the algorithm described in

Figure 3.1. Figure 3.2 illustrates a matrixA, its corresponding intersection graphG(A), and

its CRCSrepresentation.

Algorithm 2: Neighborhood Computation using CRCS
input : column jcol

1 for jp← jpntr[jcol] to jpntr[jcol+1]−1 do
2 ir ← row_ind[jp] ;
3 for ip← ipntr[ir] to ipntr[ir +1]−1 do
4 ic← col_ind[ip] ;
5 // ic is a neighbor toj.
6 end
7 end

Figure 3.1: Neighborhood computation using CRCS

3.1 Constructive Greedy Coloring

Greedy coloringalgorithm can be considered as thede factoconstructive greedy heuristics

for column partitioning. DSM [7] and ColPack [17] use greedycoloring for column par-

titioning problem as well. An algorithm for greedy coloringis given in Figure 3.4. The

14

A=













0 0 0 a14 a15
a21 0 a23 0 0
0 0 a33 a34 0
0 a42 0 a44 0

a51 a52 0 0 0













1

2

3

4 5

2 5 4 5 2 3 1 3 4 1

row_ind

1 3 5 7 10 11

col_ptr

4 5 1 3 3 4 2 4 1 2

col_ind

1 3 5 7 9 11

row_ptr

a21 a51 a42 a52 a23 a33 a14 a34 a44 a15

value

Figure 3.2: Compressed Column and Compressed Row data structure for the sparse matrix
A. The intersection graph of the matrixA is shown on the right. Integer array,row_ind,
stores the row indices of the nonzero elements of subsequentcolumns. Nonzero elements
are stored in the same order in the floating point arrayvalue. Integer arraycol_ptr stores
the beginning memory location for columns inrow_ptr. For example, shaded cells in
col_ptr androw_ind shows the corresponding entries for column 4. These three arrays,
value, row_ind andcol_ptr forms the Compressed Column Storage format.Col_ind
androw_ptr stores the Compressed Row Storage format, and corresponding entries for
row 3 are shown as shaded.

15

algorithm is divided into the following major computational steps:

1. Initialization, lines 1−4.

2. Neighborhood Computation, lines 7−10

3. Tagging, line 11

4. Coloring, lines 15−25

Initialization Lines 1− 4 from the algorithm initializes necessary data structures, color
andtag.;
Neighborhood ComputationGiven a columnjcol, lines 7−13 usesCRCSdata structure
to find all the neighbors for columnjcol.
Tagging We tag the color of a neighboric with the value ofjcol as soon as we computeic
in line 11.
Coloring We find the minimum color for the current columnjcol from lines 15−20, by
taking the first color which has not been assigned to any neighbor of columnjcol.
Neighborhood computation, tagging and coloring is done foreach columnjcol, which is
taken from the given orderingorder in the loop which covers from line 6−26.

Figure 3.3: Major computational steps for sequential coloring

16

Algorithm 3: Sequential Coloring Algorithm
input : order, an integer array of sizen, containing a permutation of{1. . .n}
output: color, an integer array of sizen

1 for j← 1 to n do
2 color[j]← n ;
3 tag[j]← n ;
4 end
5 maxgrp← 0;
6 for seq← 1 to n do
7 jcol← order[seq] ;
8 for jp← jpntr[jcol] to jpntr[jcol+1]−1 do
9 ir ← row_ind[jp] ;

10 for ip← ipntr[ir] to ipntr[ir +1]−1 do
11 ic← col_ind[ip] ;
12 tag[color[ic]]← seq;
13 end
14 end
15 f lag_newcolor← true ;
16 for jp← 1 to maxgrpdo
17 if tag[jp] 6= seqthen
18 f lag_newcolor← f alse;
19 end
20 end
21 if f lag_newcolor= true then
22 maxgrp←maxgrp+1;
23 end
2525 color[jcol]← jp ;
26 end

Figure 3.4: Sequential Greedy Coloring

Figure 3.5 illustrates howCRCSdata structure aids thesequential greedy algorithmto

compute a coloring without explicitly constructing the intersection graph.

BesidesCRCS, data structures needed forsequential coloringare : a temporary tagging

array of sizen, tag such thattag[c] = j, if and only if column j has colorc assigned

to it. The given ordering is stored in the input array of sizen, namedorder. The given

17

4 1 3 2 5

order

seq = 1

2 5 4 5 2 3 1 3 4 1

row_ind

1 3 5 7 10 11

jpntr

4 5 1 3 3 4 2 4 1 2

col_ind

1 3 5 7 9 11

ipntr

5 5 5 1 5

color,n= 5

5 5 5 5 1

tag

4 1 3 2 5

order

seq = 2

2 5 4 5 2 3 1 3 4 1

row_ind

1 3 5 7 10 11

jpntr

4 5 1 3 3 4 2 4 1 2

col_ind

1 3 5 7 9 11

ipntr

1 5 5 1 5

color,n= 5

5 5 5 5 2

tag

4 1 3 2 5

order

seq = 3

2 5 4 5 2 3 1 3 4 1

row_ind

1 3 5 7 10 11

jpntr

4 5 1 3 3 4 2 4 1 2

col_ind

1 3 5 7 9 11

ipntr

1 5 2 1 5

color,n= 5

3 5 5 5 3

tag

Figure 3.5: Sequential Coloring example

18

ordering for this example is 4,1,3,2,5. Sequential Coloringputs the result in an integer

array of sizen, namedcolor.

After initialization phase, in line 7, withseq= 1, we pick the column 4 for coloring.

The related value ofjpntr for this column is, 7 and 10. Using the indices 7,8,9 in jpntr

gives us the nonzero row entries for the current column, asrow_ind[7], row_ind[8], and

row_ind[9], which happens to be 1,3 and ,4.

As soon as we compute a row index for a nonzero entry in currentcolumn in line 9,

we consultipntr in the same way to find out the column indices for nonzero elements in

the current row in lines 10− 11. As an example, first row indices found to be 1 with

correspondingipntr[1] and ipntr[1+1] values as 1 and 3, gives us column indices 4, and

5. These two columns form a clique in the intersection graph.In this way, we find the

neighboring columns inNeighborhood computationphase.

In tagging phase, color value of column 5,color[5] , n = 5, is tagged by the current

sequence valueseq= 1. Similarly we find the other columns 3, and 2, both have the color

value of 5, which is marked with current sequence value 1.

In coloring phase, scanningtag from the beginning will find firsttagvalue which is not

marked with current sequence value, which happens to be 1. Wecolor the column 4 with

color 1.

Once column 4 is colored, we increaseseqvalue and pick the second column in the

givenorder array (column 1). Similarly we consultjpntr, row_ind, ipntr andcol_indand

compute the neighborhood as 2 and 3. Both have color 5, so we mark tag[5] = 2 . Scanning

tag from the beginning finds the first non-neighbor color in index1, and we color it with

color value of 1.

Similarly seq= 3 gives us column 3 with a neighborhood of 1 and 4, having colors 1.

Scanningtag from the beginning gives us the firstnon-seqcolor as 2 and we assign this

color to column 3.

19

In the same way we color column 2 with color value 2 and column 5with color value

3.

3.1.1 Analysis

Lemma 1 The greedy sequential coloring algorithm requires O(
m
∑

i=1
ρi

2) operations.

Proof As stated previously in Figure 3.3, sequential algorithm can be broken into four ma-

jor computational steps. Clearly, Initialization requires O(n) steps. Number of operations

needed forNeighborhood computationandTaggingis proportional to

n

∑
j=1

m

∑
ai j 6=0
i=1

ρi =
m

∑
i=1

ρi
2
. (3.1)

We need not do more thanO(maxgrp) ≤ O(deg(a j) + 1) steps to find the smallest

unmarked color for column j. Therefore, the time complexityfor n columns would be

O(
m

∑
i=1

deg(j)+1)≤O(
m

∑
i=1

ρi
2). (3.2)

3.2 Ordering Methods

3.2.1 Degree Calculation

Compute Degree methodprovides the necessary degree information for the orderingal-

gorithms to function properly. Similar toSequential Greedy coloring, Compute Degree

methodalso uses onlyCRCSdata structure. It calculates the degree information by visit-

ing the adjacent columns for each columnj, where j ∈ {1, . . . ,n}. Algorithm for degree

calculation is given in Figure 3.6.

20

Algorithm 4: Compute Degree Algorithm

1 for j← 1 to n do
2 ndeg[jp]← 0 ;
3 tag[jp]← 0 ;
4 end
5 for jcol← 2 to n do
6 tag[jcol]← n ;
7 for jp← jpntr[jcol] to jpntr[jcol+1]−1 do
8 ir ← row_ind[jp] ;
9 for ip← ipntr[ir] to ipntr[ir +1]−1 do

10 ic← col_ind[ip] ;
11 if tag[ic]< jcol then
12 tag[ic]← jcol ;
13 ndeg[ic]← ndeg[ic]+1 ;
14 ndeg[jcol]← ndeg[jcol]+1 ;
15 maxdeg←max(ndeg[jcol],ndeg[ic],maxdeg) ;
16 end
17 end
18 end
19 end

Figure 3.6: Algorithm for Degree calculation

Traversing all the adjacent columns for each columnj, results in
m
∑

ai j 6=0
i=1

ρi number of

operations, whereρi is number of nonzero entries in a rowi. Hence the complexity for

ComputeDegree method is proportional to

n

∑
j=1

m

∑
ai j 6=0
i=1

ρi =
m

∑
i=1

ρi
2
. (3.3)

3.2.2 Priority Queue

We often need to use apriority queuefor our ordering algorithms described later in the

chapter. In this section, we are going to describe the priority queue data structure and

21

0 5 3 4 0

head

0 1 2 0 0

next

2 3 0 0 0

previous

2 2 2 3 1

ndeg

head[3] 4

head[2] 3 2 1

head[1] 5

Figure 3.7: Bucket data structure example

related algorithms, as well as their asymptotic complexities.

Our priority queue is structured bybucketswhich is a common implementation for

priority queues [14]. Given that the maximum priority isK, a priority queue can be imple-

mented withK-array of pointershead[], wherehead[k] points to thekth bucket.

Each bucket is implemented as atwo-way linked listfor easy deletion and addition. Two

additional integer arrays,nextandprev, are used, wherenext[j] is the element immediately

following j in a bucket, andprev[j] is the element immediately precedingj. If the next

(or previous) element is empty, thennext[j] = 0 (or prev[j] = 0). Figure 3.7 shows the

data structures and a graphical representation of a priority queue. Note that functionality

of two-way linked lists are accomplished by integer arrays only.

Build Priority Queue

Figure 3.8 shows the algorithm to build a priority queue given an integer array containing

degree information (priority). Build Priority Queue Algorithm has a runtime complexity of

O(n).

22

Algorithm 5: Build Priority Queue
input : ndeg, an integer array of sizen, containing degree information of columns

{1. . .n}
input : head,next, andprev, integer arrays used for priority queue data structure
output: Priority Queue constructed inhead, next, previous

1 for jp← 1 to n do
2 numdeg← ndeg[jp];
3 previous[jp]← 0;
4 next[jp]← head[numdeg];
5 if head[numdeg]> 0 then
6 previous[head[numdeg]]← jp;
7 end
8 head[numdeg]← jp;
9 end

Figure 3.8: Algorithm for initializing priority queue fromdegree information list

Add Column in Priority Queue

Algorithm for adding a columnjcol with priority numdegin a priority queue is given in

Figure 3.9 and it has a complexity ofO(1).

Algorithm 6: Add a column in priority queue.
input : head,next, andprev, integer arrays used for priority queue data structure
output: Column jcol added in priority queue in appropriate location

1 previous[jcol]← 0;
2 next[jcol]← head[numdeg];
3 if head[numdeg]> 0 then
4 previous[head[numdeg]]← jcol;
5 end
6 head[numdeg]← jcol;

Figure 3.9: Algorithm for adding a column in a priority queue

23

Delete Column From Priority Queue

Algorithm for deleting a columnjcol with priority numdegfrom a priority queue has a

complexity ofO(1) and is shown in Figure 3.10.

Algorithm 7: Delete a column from priority queue.
input : head,next, andprev, integer arrays used for priority queue data structure
output: Priority Queue with columnjcol removed

1 if previous[jcol] = 0 then
2 head[numdeg]← next[jcol];
3 else
4 next[previous[jcol]]← next[jcol];
5 end
6 if next[jcol]> 0 then
7 previous[next[jcol]]← previous[jcol];
8 end

Figure 3.10: Algorithm for deleting a column from a priorityqueue

3.2.3 Largest-First Ordering

Largest first ordering is the simplest of all the orderings. Sorting the verticesV = {v1,v2, . . . ,vn}

in non-increasing degrees in G, represents largest first ordering.

Figure 3.11 describes the algorithm for Largest-First ordering. At the first phase the

priority queue is constructed from the degree information computed by thecomputeDegree

method, which takeO(n) number of steps. Then the priority queue is used to sort the

vertices inorder array in non-decreasing order of degree information. It also takesO(n)

number of steps. We can see that the running time ofLargest First Orderingis dominated

by the complexity ofcomputeDegreemethod. So the runtime complexity ofLFO is the

same ascomputeDegree,

24

n

∑
j=1

m

∑
ai j 6=0
i=1

ρi =
m

∑
i=1

ρi
2
. (3.4)

Algorithm 8: Largest First Ordering Algorithm
input : ndeg, an integer array of sizen, containing degree information of columns

{1. . .n}
output: order, an integer array of sizen

1 maxdeg←−1 ;
2 for jp← 1 to n do
3 head[jp−1]← 0 ;
4 maxdeg←max(maxdeg,ndeg[jp]) ;
5 end
6 buildPriorityQueue(n,ndeg,head,next, previous) ;
7 for numord← 1 to n do

/* choose a column jcol of maximal degree */
8 jcol← 0;
9 while jcol ≤ 0 do

10 jcol← head[maxdeg] ;
11 if jcol ≤ 0 then
12 maxdeg←maxdeg−1 ;
13 end
14 end
15 order[numord]← jcol ;
16 if numord< n then

/* Delete Jcol from the head of the list */
17 head[maxdeg]← next[jcol] ;
18 if next[jcol]> 0 then
19 previous[next[jcol]]← 0;
20 end
21 end
22 end

Figure 3.11: Largest First Ordering Algorithm

25

3.2.4 Smallest-Last Ordering

Assume the verticesV ′ = {vn,vn−1, . . . ,vi+1} have already been ordered. Thei-th vertex in

this order is an unordered vertexu such thatdeg(u) is minimum inG[V \V ′].

Figure 3.12 shows the algorithm for Smallest-last ordering. The major computational

steps for Smallest-last ordering algorithms are

1. Initialization Lines 1–6,O(n) time is required for initializing of data structures in-

cludingtag integer array, and constructing priority queue from degreeinformation.

2. Choosing a columnIn lines 12-14, we remove a columnj from the priority queue

with the minimal degree inG[V \V ′], place it in theorder array, and tag it, which

requiresO(1) operation for a single columnj.

3. Neighborhood Computation In lines, 16–19 we compute the neighborhood for a

column j. As seen previously, searching neighborhood for a single column takes

O(∑
ai j 6=0

ρi) number of operations.

4. Tagging and Updating of degree/priority In lines 20–23 tagging and updating of

degree is performed for the neighbors of columnj, which takesO(1) operations.

Choosing a ColumnandNeighborhood Computationexecutes forn times, which gives

us a computational complexity ofO(n) , and
m
∑

i=1
ρi

2. As Tagging and Computationis

done along with the same loop in neighborhood computation, they also execute for
m
∑

i=1
ρi

2

number of times, resulting a computational complexity of

m

∑
i=1

ρi
2
.

26

Algorithm 9: Smallest-last Ordering Algorithm
input : ndeg, an integer array of sizen, containing a degree information for columns

{1. . .n}
output: order, an integer array of sizen

1 mindeg← n;
2 BuildPriorityQueue(ndeg,head,next, previous);
3 for jp← 1 to n do
4 tag[jp]← n;
5 mindeg←min(mindeg,ndeg[jp]);
6 end
7 maximalClique← 0;
8 for numord← n to 1 do
9 if (mindeg+1= numord)and(maximalClique= 0) then

10 maximalClique← numord;
11 end

/* find column jcol with minimal degree */
12 (jcol,mindeg)← ExtractMin();
13 order[numord]← jcol;
14 tag[jcol]← 0;
15 if numord> 1 then
16 for jp← jpntr[jcol]to jpntr[jcol+1]−1 do
17 ir ← row_ind[jp];
18 for ip← ipntr[ir]toipntr[ir +1]−1 do
19 ic← col_ind[ip];
20 if tag[ic]> numordthen
21 tag[ic]← numord;
22 numdeg← DecreaseDegree(ic);
23 mindeg←min(mindeg,numdeg);
24 end
25 end
26 end
27 end
28 end

Figure 3.12: Smallest-Last Ordering Algorithm

27

V’
V\V’

deg(u) is smallest

u

SLO

G = G(V,E)

V’ = Colored/ordered Vertices

Figure 3.13: Smallest-Last Greedy Coloring

3.2.5 Incidence-Degree Ordering

Assume the verticesV ′ = {v1,v2, . . . ,vi−1} have been ordered. Thei-th vertex in this order

is an unordered vertexusuch thatdeg(u) is maximum inG[V ′]. Ties are broken by choosing

the vertex that has largest degree inG . The algorithm is shown in Figure 3.16

u v1

2

4

5

6

7

3

IDO and SDO

V’
V\V’

G = G(V,E)
V’ : Colored/ordered vertices

Figure 3.14: SD and ID Greedy Coloring

Incidence Degree Orderingis similar toSmallest Largest First Ordering, and the largest

28

computational cost is incurred by search for adjacent columns of chosen columnj in each

step. Hence the complexity ofido is
m

∑
i=1

ρi
2

Index Sort

Index sort is used in Incidence Degree ordering, and the complexity for this algorithm is

O(n). The algorithm is given in Figure 3.15.

29

Algorithm 10: Index Sort Algorithm
input : ndeg, an integer array of sizen, containing degree information of columns

{1. . .n}.
modeindicates the desired sorting

output: Sortedindex, with last, nextaccording tomode
1 for i← 0 to nmaxdo
2 last[i]← 0;
3 end
4 for k← 1 to n do
5 l ← num[k];
6 next[k]← last[l];
7 last[l]← k;
8 end
9 if mode= 0 then

10 return ;
11 end

/* store the pointers to the sorted array in index. */
12 i← 1;
13 if mode> 0 then
14 jl ← 0;
15 ju← nmax;
16 else
17 jl ← nmax;
18 ju← 0;
19 end
20 for j← jl to ju do
21 k← last[j];
22 while k 6= 0 do
23 index[i]← k;
24 i← i +1;
25 k← next[k];
26 end
27 end

Figure 3.15: Index Sort Algorithm

30

Algorithm 11: Incidence-Degree Ordering Algorithm
input : ndeg, an integer array of sizen, containing a degree information for columns

{1. . .n}
output: order, an integer array of sizen

1 indexsort(n,n−1,ndeg,−1, tag, previous,next);
2 BuildPriorityQueue(head,next, previous, tag);
3 Initialization();
4 ComputeMaximumSearchLength();
5 for numord← 1 to n do
6 U pdateMaximalClique();

/* choose a column jcol of maximal incidence degree */
7 j←ChooseColumnJWithMaximumSatDeg();
8 j← SearchMaxLenghtToFindBetterChoice();
9 order[j]← numord;

10 numord← numord+1;
11 if numord≤ N then
12 deleteColumn(head,next, previous,maxinc, j);
13 tag[j]← n;
14 forall the j ′ ∈ ad j(j) do
15 if tag[j]< numordthen
16 tag[j]← numord;
17 incidence← order[j ′];
18 order[j ′]← order[j ′]+1;
19 deleteColumn(head,next, previous, incidence, j ′);
20 addColumn(head,next, previous, incidence+1, j ′);
21 end
22 end
23 end
24 end
25 for jcol← 1 to n do
26 previous[order[jcol]]← jcol;
27 end
28 for jp← 1 to n do
29 order[jp]← previous[jp];
30 end

Figure 3.16: Incidence-Degree Ordering Algorithm

31

3.2.6 Saturation-Degree Ordering

Assume the verticesV ′ = {v1,v2, . . . ,vi−1} have been ordered and colored. Thei-th vertex

in Saturation-Degree orderingis an unordered vertexu such thatkdeg(u) is largest inG[V \

V ′]. Ties are broken by choosing the vertex that has the largest degree inG(V \V ′) .

Figure 3.17 describes the algorithm for saturation degree ordering algorithm. The major

computational steps in the algorithm are :

1. Initialization Lines 1-2,O(n) time is required for initialization of necessary data

structures and construct the priority queue.

2. Choosing a ColumnLine 4, Choosing the next column to color is done inO(δ jδmax)

time, whereδmax is the maximum degree inG(V), andδ j is the degree of columnj

in G(V \V ′).

3. Finding Smallest Unmarked ColorLine 4. We search the neighborhood of chosen

column j, and mark all the corresponding colors inO(∑
i

ai j 6=0

ρi) steps. To find the

smallest color it does not take more thanO(δ j) operations.

4. Neighborhood ComputationLines 9-19, updates the saturation degree and induced

degree of the adjacent vertices of columnj. It takesO(∑
i

ai j 6=0

ρi) time to search the

neighborhood of columnj.

5. Tagging and Updating of Degree/Priority In Lines 10-18 tagging and updating of

degree for each adjacent column is done. Tagging is done in line 11. To find out

whether the color chosen for columnj exists in the neighborhood ofj, we consult a

simplebitsettable with the dimension ofcolor×n in line 12. If the color assigned

to column j introduces a new color in the neighborhood of columnj ′ ∈ ad j(j), we

increase the saturation degree of columnj ′ in line 14.

32

Complexity ofSaturation-degreeordering has been found to beO(δmax

m
∑

i=1
ρi

2) as com-

puted as follows:

n

∑
j=1

δmaxδ j +
n

∑
j=1

m

∑
i=1

ai j 6=0

ρi′ =
n

∑
j=1

δmaxδ j +
m

∑
i=1

ρi
2

= δmax

n

∑
j=1

δ j +
m

∑
i=1

ρi
2

≤ δmax

m

∑
i=1

ρi
2+

m

∑
i=1

ρi
2

= δmax

m

∑
i=1

ρi
2 (3.5)

33

Algorithm 12: Saturation Degree Ordering Algorithm
input : ndeg, an integer array of sizen, containing a degree information for columns

{1. . .n}
output: color, an integer array of sizen

1 BuildPriorityQueue(head,next, previous,ndeg, tag);
2 Initialization();
3 for numord← 1 to n do
4 Find a columnj with maximumsaturationdegree andinduceddegree;
5 Find smallest feasible colorcol for column j;
6 color[j]← col;
7 numord← numord+1;
8 tag[j]← n;
9 forall the j ′ ∈ ad j(j) do

10 if tag[j ′]< numordthen
11 tag[j ′]← numord;
12 if bitset[col][j ′] = false then
13 bitset[col][j ′]← true;
14 satDeg[j ′]← satDeg[j ′]+1;
15 end
16 inducedDeg[j ′]← inducedDeg[j ′]−1;
17 update priority of columnj ′ in the priority queue;
18 end
19 end
20 end

Figure 3.17: Saturation Degree Ordering Algorithm

34

3.2.7 Recursive-Largest-First Coloring

Recursive-largest-first(RLF) algorithm partitions the vertex setV into V1,V2, . . . ,Vp inde-

pendent sets, and constructs a structurally orthogonal column partition withp number of

column groups.

The first vertex ofVi is chosen in a way such that it has the largest degree inV \
⋃i−1

j=1Vj

induced graph, adjacent vertices of the chosen vertex are added to the inadmissible setU .

RLF continues adding vertices to the independent setVi , by choosingvk which has the

largest number of adjacent vertices in the setU at k-th step, and neighbors ofvk are also

added toU . Figure 3.18 gives an overview of RLF, and Figure 3.19 describes the algorithm.

Algorithm 1 Recursive Largest First Algorithm

1. InitializeU = φ, C= φ, V ′ =V, andq= 0.

2. Choose the vertexvk with the maximum degree inV ′. Incrementq and proceed to 3.

3. Colorvk with color q and move it fromV ′ to C. Find all the adjacent vertices ofvk

and move them fromV ′ to U . If V ′ is not empty then proceed to 4. IfC = V then
exit. Otherwise, move the vertices fromU toV ′, and proceed to 2.

4. Choose a vertex fromV ′ which has the maximum number of adjacent vertices inU .
Goto 3

Figure 3.18: Overview of Recursive Largest First Algorithm

We identify the major computational steps for Recursive Largest First algorithm from

Figure 3.19 as:

1. Initialization Lines 1-3 performs initialization and it takesO(n) operations.

2. Choosing a ColumnLines 5-10 chooses a column to be inserted into the current

color class. It takesO(maxdeg) operations.

35

3. Coloring Line 11, Coloring and tagging takesO(1) operation, as we have a prede-

fined color already.

4. Neighborhood Computation Lines 16-31 computes the distance 2 neighborhood

for column j, moves columns fromV ′ to U , updates the degree information in the

priority queue.

5. Reinitialization Lines 32-37. If the set of admissible columnsV ′ is empty, we reini-

tialize the data structures needed, and start constructinga new color class. It requires

O(n) operations.

Time Complexity of RLF ordering can be computed to beO(pκmax∑m
i=1ρi

2) as follows,

whereκmax is the maximum number of nonzeroes in a column, andp is the number of

partitions:

p

∑
q=1

m

∑
i=1

n

∑
j=1

ai j 6=0

m

∑
i′=1

ai′ j 6=0

ρi′ = δmax

m

∑
i=1

ρi

n

∑
j=1

m

∑
i′=1

[ai j 6= 0][ai′ j 6= 0]

= p
m

∑
i=1

ρi

n

∑
j=1

[ai j 6= 0]
m

∑
i′=1

[ai′ j 6= 0]

= p
m

∑
i=1

ρi

n

∑
j=1

[ai j 6= 0]κ j

≤ p
m

∑
i=1

ρi

n

∑
j=1

[ai j 6= 0]κmax

= pκmax

m

∑
i=1

ρi
2 (3.6)

36

Algorithm 13: Recursive Largest First Algorithm

1 Initialization();
2 BuildPriorityQueue(head,next, previous,ndeg);
3 BuildPriorityQueue(uhead,unext,uprevious,0);
4 for numord← 1 to n do
5 if newColorClass= true then
6 newColorClass= false;
7 (j,maxdeg) = FindMaxFromPriorityQueue(V);
8 else
9 (j,u_maxdeg) = FindMaxFromPriorityQueue(U);

10 end
11 color[j]← q; tag[j]← n;
12 if numord = nthen
13 break;
14 end
15 DeleteColumn(j,V); DeleteColumn(j,U);
16 forall the j ′ ∈ ad j(j) do
17 if tag[j ′]< numordthen
18 tag[j ′]← numord;
19 priority_queue.decrease(j ′,V);
20 if j ′ 6∈U then
21 U ←U +{ j ′};
22 u_queue.remove(j ′);
23 forall the j ′′ ∈ ad j(j ′) do
24 if j ′′ ∈V and u_tag[j ′′] 6= j ′ then
25 u_tag[j ′′]← j ′;
26 u_queue.increase(j ′′);
27 end
28 end
29 end
30 end
31 end
32 if V = φ then
33 q← q+1;
34 newColorClass= true;
35 Reinitialize V,U and u_tag;
36 BuildPriorityQueue(U);
37 end
38 end

Figure 3.19: Recursive Largest First Algorithm

37

3.2.8 RLF-SLO coloring

RLF-SLOis a parametrized hybrid coloring based onRLF andSLO. This algorithm runs

RLF coloring on firstp columns, then switches toSLOordering and colors the remaining

(n− p) columns. The motivation behind this hybrid approach is to get the better coloring

results ofRLF with better timing results ofSLO.

3.3 Storage Format

We provide necessary code with examples to read the matrix descriptions from Matrix

Market Exchange Format files. As DSJM depends on the client code to supply the matrix

description, user can use any other suitable file formats such asHarwell-Boeing Exchange

Format.

38

Chapter 4

Computational Experiments

In this chapter we present computational results for the algorithms implemented in DSJM

toolkit. In Section 4.2 we present the data sets for our experiments. Numerical results

are given in Section 4.3. Tables listing the numbers of colors obtained can be found in

Section 4.3.1. We present the experimental results for hybrid coloring in Section 4.4

4.1 Test Environment

Experiments were done on an IBM PC with 2.8 GHz Intel Pentium CPU, 1 GB RAM, and

512 KB L2 cache running 32-bit Linux.

4.2 Data Sets

We describe two different sets of sparse matrices for our experimental results. Table 4.1

lists the first set of matrices along with their structural properties. The test matrices were

obtained from the University of Florida Sparse Matrix Collection [10]. These matrices

were also reported for presenting experimental results in [16]. Matrix af23560 is a com-

putational fluid dynamics problem. Matrices with the prefixlp in their names are linear

programming problems from Netlib. Thelhr-matrices come from chemical process sim-

ulation problems. Thecage-matrices are models used in DNA electrophoresis. Matrices

e30r2000 and e40r0100 arise in modeling 2D fluid flow.

Columns labeledm, n, andnnzdenote the number of rows, columns and non-zeroes

respectively, in the matrices.ρmax andρmin are maximum and minimum number of non-

zeroes in any row, and̄ρ is arithmetic mean of number of non-zeroes in each row.

Table 4.2 lists matrices from Harwell-Boeing test matrices[25, 1, 2] and the University

39

Table 4.1: Matrix Statistics for Set 1

Matrix Name m n nnz ρmax ρ̄ ρmin

af23560 23560 23560 484256 21 20 11
cage11 39082 39082 559722 31 14 3
cage12 130228 130228 2032536 33 15 5
e30r2000 9661 9661 306356 62 31 8
e40r0100 17281 17281 553956 62 32 8
lhr10 10672 10672 232633 63 21 1
lhr14 14270 14270 307858 63 21 1
lhr34 35152 35152 764014 63 21 1
lhr71c 70304 70304 1528092 63 21 1
lpcrea 3516 7248 18168 360 5 1
lpcreb 9648 77137 260785 844 27 1
lpcred 8926 73948 246614 808 27 1
lpfit2d 25 10524 129042 10500 5161 1427
lpdfl001 6071 12230 35632 228 5 2
lpken11 14694 21349 49058 122 3 1
lpken13 28632 42659 97246 170 3 1
lpken18 105127 154699 358171 325 3 1
lpmarosr7 3136 9408 144848 48 46 6
lppds10 16558 49932 107605 96 6 18
lppds20 33874 108175 232647 96 6 1
lpstocfor3 16675 23541 76473 15 4 1

40

of Florida Matrix Collection [10] translated from Netlib [3]. These matrices were also

reported in [18] to present computational results.

41

Table 4.2: Matrix Statistics for Set 2

Matrix Name m n nnz ρmax ρ̄ ρmin

abb313 313 176 1557 6 4 1
adlittle 56 138 424 27 7 1
agg 488 615 2862 19 5 2
agg2 516 758 4740 49 9 2
agg3 516 758 4756 49 9 2
arc130 130 130 1282 124 9 1
ash219 219 85 438 2 2 2
ash292 292 292 2208 14 7 4
ash331 331 104 662 2 2 2
ash608 608 188 1216 2 2 2
ash958 958 292 1916 2 2 2
blend 74 114 522 29 7 2
bore3d 233 334 1448 73 6 1
bp0 822 822 3276 266 3 1
bp1000 822 822 4661 308 5 1
bp1200 822 822 4726 311 5 1
bp1400 822 822 4790 311 5 1
bp1600 822 822 4841 304 5 1
bp200 822 822 3802 283 4 1
bp400 822 822 4028 295 4 1
bp600 822 822 4172 302 5 1
bp800 822 822 4534 304 5 1
can1054 1054 1054 12196 35 11 6
can1072 1072 1072 12444 35 11 6
can256 256 256 2916 83 11 4
can268 268 268 3082 37 11 4
can292 292 292 2540 35 8 4
can634 634 634 7228 28 11 2
can715 715 715 6665 105 9 2
curtis54 54 54 291 12 5 3
dwt1007 1007 1007 8575 10 8 3
dwt1242 1242 1242 10426 12 8 2
dwt2680 2680 2680 25026 19 9 4
dwt419 419 419 3563 13 8 6
dwt59 59 59 267 6 4 2
eris1176 1176 1176 18552 99 15 2
fs5411 541 541 4285 11 7 1
fs5412 541 541 4285 11 7 1

Continued on next page. . .

42

Table 4.2: Matrix Statistics for Set 2 (Continued)

Matrix Name m n nnz ρmax ρ̄ ρmin

gent113 113 113 655 20 5 1
ibm32 32 32 126 8 3 2
impcola 207 207 572 8 2 1
impcolb 59 59 312 7 5 2
impcolc 137 137 411 8 3 1
impcold 425 425 1339 10 3 1
impcole 225 225 1308 12 5 1
israel 174 316 2443 119 14 2
lunda 147 147 2449 21 16 5
lundb 147 147 2441 21 16 5
scagr25 471 671 1725 10 3 1
scagr7 129 185 465 10 3 1
shl0 663 663 1687 422 2 1
shl200 663 663 1726 440 2 1
shl400 663 663 1712 426 2 1
stair 356 614 4003 36 11 2
standata 359 1274 3230 745 8 2
str0 363 363 2454 34 6 1
str200 363 363 3068 30 8 1
str400 363 363 3157 33 8 1
tuff 333 628 4561 113 13 0
vtpbase 198 346 1051 38 5 1
watt2 1856 1856 11550 128 6 1
west0067 67 67 294 6 4 1
west0381 381 381 2157 25 5 1
west0497 497 497 1727 28 3 1
will199 199 199 701 6 3 1
will57 57 57 281 11 4 2

4.3 Numerical Results

4.3.1 Partitioning Results

Table 4.3 lists the number of structurally orthogonal groups achieved by DSJM for each

constructive heuristics for data set 1. On the left side of the table we list the name of the

43

matrices and their structural properties. On the right side, we list the number of colors

obtained for each constructive heuristics in their respective columns. Table 4.4 lists the

number of colors obtained for data set 2 respectively The number in boldface represents

the best(smallest) partitioning(coloring) for the respective problem instance.

ρmax is a lower bound of the number of groups in a structurally orthogonal partition of

the columns. Though a maximal clique in a graph can be a weak lower bound, we found

ρmax to be a good one. The ordering algorithms SLO and IDO find a maximal clique as

a by-product in the column intersection graphG(A). We list maximal clique larger than

ρmax, in parentheses in theρmax column. We observed that we often cannot find clique

which is larger in size thanρmax, and in many casesρmax proves to be optimal number of

groups in a structurally orthogonal partition of the columns. We foundρmax to be optimal

for 15 matrices out of 21 in data set 1. For data set 2, it was true for 49 matrices out

of 65. Moreover, the summation of exact coloring values for the matrices in data set 2

was computed in [18], and found to be 6447.The summation ofρmax is 6408 over all the

matrices. So, we considerρmax as a good lower bound for the test data sets, as well as in

practice.

RLF produced the best partitioning in 19 out of 21 problem instances for data set 1,

with optimal coloring for 14 for them. We have observed that RLF produces better coloring

when there is a larger gap between number of colors and known lower bound. For example,

for matricesaf23560, cage11, cage12and lpmarosr7 the number of colors obtained is

lower than the known lower bound by 35. For test data set 1, RLFproduced 2.05 fewer

colors on average compared to other heuristics. For the above mentioned four matrices,

RLF produced 9 fewer colors on average. Total number of smallest structurally orthogonal

column groups over the test instances for the ordering algorithms are 14170, while RLF

produced 14172 colors.

On test set 2, RLF is as good as any of the other ordering and outperformed the other

44

Table 4.3: Coloring Results using DSJM for Data Set 1

Matrix Name m n nnz ρmax RLF IDO SLO LFO SDO

af23560 23560 23560 484256 21 (30) 37 43 41 44 41
cage11 39082 39082 559722 31 54 65 62 68 59
cage12 130228 130228 2032536 33 56 70 68 72 60
e30r2000 9661 9661 306356 62 65 72 70 66 70
e40r0100 17281 17281 553956 62 67 70 71 66 68
lhr10 10672 10672 232633 63 64 64 63 64 63
lhr14 14270 14270 307858 63 63 64 63 64 63
lhr34 35152 35152 764014 63 63 64 63 64 63
lhr71c 70304 70304 1528092 63 63 64 63 64 63
lpcrea 3516 7248 18168 360 360 360 360 360 360
lpcreb 9648 77137 260785 844 844 844 845 844 844
lpcred 8926 73948 246614 808 808 808 808 808 808
lpfit2d 25 10524 129042 10500 10500 10500 10500 10500 10500
lpdfl001 6071 12230 35632 228 228 228 228 228 228
lpken11 14694 21349 49058 122 122 123 125 128 122
lpken13 28632 42659 97246 170 170 170 171 174 170
lpken18 105127 154699 358171 325 325 326 325 328 325
lpmarosr7 3136 9408 144848 48 (62) 76 85 83 100 90
lppds10 16558 49932 107605 96 96 96 96 96 96
lppds20 33874 108175 232647 96 96 96 96 96 96
lpstocfor3 16675 23541 76473 15 15 15 15 15 15
Total 14073 14172 14227 14216 14249 14204

ordering on 11 of the instances. Total number of smallest structurally orthogonal column

groups over the test instances for the ordering algorithms are 6453.

45

Table 4.4: Coloring Results using DSJM for Data Set 2

Matrix Name m n nnz ρmax RLF IDO SLO LFO SDO
abb313 313 176 1557 6 (10) 10 11 10 11 11
adlittle 56 138 424 27 27 27 27 27 27
agg 488 615 2862 19 19 19 20 21 19
agg2 516 758 4740 49 49 50 49 50 49
agg3 516 758 4756 49 49 50 49 50 49
arc130 130 130 1282 124 124 124 124 124 124
ash219 219 85 438 2 (4) 4 4 4 5 4
ash292 292 292 2208 14 14 14 14 16 14
ash331 331 104 662 2 (6) 6 6 6 6 6
ash608 608 188 1216 2 (5) 6 6 6 6 6
ash958 958 292 1916 2 (6) 6 6 6 6 6
blend 74 114 522 29 29 29 29 29 29
bore3d 233 334 1448 73 73 73 73 73 73
bp0 822 822 3276 266 266 266 266 266 266
bp1000 822 822 4661 308 308 308 308 308 308
bp1200 822 822 4726 311 311 311 311 311 311
bp1400 822 822 4790 311 311 311 311 311 311
bp1600 822 822 4841 304 304 304 304 304 304
bp200 822 822 3802 283 283 283 283 283 283
bp400 822 822 4028 295 295 295 295 295 295
bp600 822 822 4172 302 302 302 302 302 302
bp800 822 822 4534 304 304 304 304 304 304
can1054 1054 1054 12196 35 35 35 35 35 35
can1072 1072 1072 12444 35 35 35 35 35 35
can256 256 256 2916 83 83 83 83 83 83
can268 268 268 3082 37 37 37 37 37 37
can292 292 292 2540 35 35 35 35 35 35
can634 634 634 7228 28 28 28 28 30 28
can715 715 715 6665 105 105 105 105 105 105
curtis54 54 54 291 12 12 12 12 12 12
dwt1007 1007 1007 8575 10 10 12 11 12 10
dwt1242 1242 1242 10426 12 13 14 14 15 13
dwt2680 2680 2680 25026 19 19 19 19 21 19
dwt419 419 419 3563 13 (14) 15 16 16 17 15
dwt59 59 59 267 6 6 6 7 7 6
eris1176 1176 1176 18552 99 99 99 99 99 99
fs5411 541 541 4285 11 12 13 13 14 12
fs5412 541 541 4285 11 12 13 13 14 12

Continued on next page

46

Table 4.4: Coloring Results using DSJM for Data Set 2 (Continued)

Matrix Name m n nnz ρmax RLF IDO SLO LFO SDO
gent113 113 113 655 20 20 20 20 20 20
ibm32 32 32 126 8 8 8 8 8 8
impcola 207 207 572 8 8 8 8 8 8
impcolb 59 59 312 7 (10) 10 11 11 11 10
impcolc 137 137 411 8 8 8 8 9 8
impcold 425 425 1339 10 10 11 11 12 10
impcole 225 225 1308 12 (20) 21 21 21 21 21
israel 174 316 2443 119 119 119 119 119 119
lunda 147 147 2449 21 22 24 24 27 21
lundb 147 147 2441 21 23 24 24 27 22
scagr25 471 671 1725 10 10 10 10 10 10
scagr7 129 185 465 10 10 10 10 10 10
shl0 663 663 1687 422 422 422 422 422 422
shl200 663 663 1726 440 440 440 440 440 440
shl400 663 663 1712 426 426 426 426 426 426
stair 356 614 4003 36 36 36 36 36 36
standata 359 1274 3230 745 745 745 745 745 745
str0 363 363 2454 34 34 34 34 34 34
str200 363 363 3068 30 30 30 30 30 30
str400 363 363 3157 33 33 33 33 33 33
tuff 333 628 4561 113 114 114 114 114 114
vtpbase 198 346 1051 38 38 38 38 38 38
watt2 1856 1856 11550 128 128 128 128 128 128
west0067 67 67 294 6 (7) 8 9 9 9 8
west0381 381 381 2157 25 (27) 28 29 30 29 28
west0497 497 497 1727 28 28 28 28 28 28
will199 199 199 701 6 (7) 7 7 7 8 7
will57 57 57 281 11 11 11 11 11 11
Total 6408 6453 6459 6468 6492 6452

4.3.2 Significance of fewer function evaluations in Jacobian Matrix Computation

Most of the time, Jacobian is computed as part of another iterative method. We have stated

earlier in Chapter 1, how Jacobian computation is a part of Newton’s method. Since Ja-

cobian is computed in each iteration, the number of saved function evaluation from fewer

47

color groups can add up to a significant performance gain in the context of the iterative

method. We present results of Newton’s method from experiments run by Bouaricha and

Schnabel [4] in Table 4.5. The Newton’s algorithm used in their experiment computed Ja-

cobian once in each iteration, and uses finite differencing method to do so. In the first and

second column of the table, we list the number of iterations and function evaluations needed

to solve the problems. Detail of the problems and the algorithm used can be found in [4].

In the third and fourth column, we calculate a hypothetical improvement if we could have

achieved one and two less function evaluations, respectively, in each iteration. From the

table, we can see that, even one less function evaluations can lead up to 24% performance

gain.

4.3.3 Running Time

Table 4.6 lists the running time of each constructive heuristics implemented in DSJM. The

experiments were run on a dedicated machine with minimal system load. Moreover the

running time reported is the average of 5 runs of the respective ordering algorithm, to

reduce any variation incurred by a sudden spike of increasedusage of the CPU. We have

tried to follow the instructions from [12] to gain the best performance from the computer

system. It includes CPU time for both ordering and sequential algorithm. Reported time

discards the running time for I/O operations (e.g reading the matrix description from file).

The left side of the table contains the name of the matrices and the structural properties. On

the right side, we list running time in seconds for each ordering algorithm in their respected

columns. The smaller size of matrices in data set 2 results invery short running time, so

we refrain us to report the running time for data set 2.

48

Table 4.5: Experimental results for Newton’s Method

Matrix Iterations Fevals Improvement
i ∗ l
F

Dimensionn i F l = 1 l = 2

LTS problem 24 467 5.14% 10.28%
313 46 866 5.31% 10.62%

GRST problem 50 831 6.02% 12.03%
324 68 1065 6.38% 12.77%

72 1176 6.12% 12.24%

LGNDR problem 74 375 19.73% 39.47%
50 75 381 19.69% 39.37%

Trigonometric problem 28 425 6.59% 13.18%
300 18 225 8.00% 16.00%

66 939 7.03% 14.06%

Broyden banded problem 22 184 11.96% 23.91%
300 37 321 11.53% 23.05%

44 411 10.71% 21.41%

Broyden tridiagonal problem 14 60 23.33% 46.67%
300 27 112 24.11% 48.21%

31 151 20.53% 41.06%

Variable dimension problem 24 7525 0.32% 0.64%
300 44 13546 0.32% 0.65%

44 13546 0.32% 0.65%

Distillation column problem 5 72 6.94% 13.89%
31 19 280 6.79% 13.57%

26 357 7.28% 14.57%

Distillation column problem 8 136 5.88% 11.76%
99 20 315 6.35% 12.70%

26 436 5.96% 11.93%
This tables presents the number of Iterations and Function evaluations for Newton’s
Method for some known problems from Bouaricha and Schnabel’s experiments [4] and
calculates a hypothetical improvements if fewer function evaluations would have been
achieved in each iteration.

49

Table 4.6: Timing Results using DSJM for Data Set 1

Matrix Name m n nnz ρmax RLF IDO SLO LFO SDO

af23560 23560 23560 484256 21 4.84 0.54 0.52 0.36 0.88
cage11 39082 39082 559722 31 8.58 0.69 0.69 0.43 1.33
cage12 130228 130228 2032536 33 54.35 3.97 3.92 2.07 6.34
e30r2000 9661 9661 306356 62 5.09 0.50 0.50 0.37 0.72
e40r0100 17281 17281 553956 62 9.30 0.92 0.91 0.68 1.30
lhr10 10672 10672 232633 63 1.26 0.48 0.47 0.37 0.62
lhr14 14270 14270 307858 63 1.68 0.63 0.63 0.48 0.82
lhr34 35152 35152 764014 63 4.14 1.58 1.57 1.20 2.04
lhr71c 70304 70304 1528092 63 8.30 3.15 3.12 2.40 4.08
lpcrea 3516 7248 18168 360 1.22 0.05 0.04 0.03 0.18
lpcreb 9648 77137 260785 844244.83 3.51 3.41 1.83 12.14
lpcred 8926 73948 246614 808251.88 3.58 3.47 1.84 12.22
lpdfl001 6071 12230 35632 228 0.67 0.07 0.06 0.03 0.22
lpken11 14694 21349 49058 122 0.63 0.10 0.09 0.05 0.29
lpken13 28632 42659 97246 170 1.92 0.25 0.24 0.13 0.75
lpken18 105127 154699 358171 325 17.91 1.97 1.82 0.92 5.27
lpmarosr7 3136 9408 144848 48 4.26 0.32 0.30 0.21 0.51
lppds10 16558 49932 107605 96 0.87 0.15 0.14 0.08 0.43
lppds20 33874 108175 232647 96 2.04 0.34 0.34 0.19 0.97
lpstocfor3 16675 23541 76473 15 0.17 0.05 0.05 0.03 0.10

50

Table 4.7: Timing Results for Incidence Degree Partitioning.

Matrix Name m n nnz ColPack DSJM

ot pt ot pt

af23560 23560 23560 484256 1.096 0.324 0.33 0.208
cage11 39082 39082 559722 1.954 0.314 0.472 0.214
cage12 130228 130228 20325367.912 1.3 3.018 0.952

e30r2000 9661 9661 306356 0.946 0.362 0.262 0.24
e40r0100 17281 17281 553956 1.704 0.664 0.478 0.44

lhr10 10672 10672 232633 0.802 0.368 0.234 0.246
lhr14 14270 14270 307858 1.074 0.486 0.304 0.324
lhr34 35152 35152 764014 2.646 1.208 0.77 0.81
lhr71c 70304 70304 1528092 5.324 2.41 1.53 1.618
lpcrea 3516 7248 18168 0.292 0.022 0.038 0.012
lpcreb 9648 77137 26078514.368 1.498 2.516 0.992
lpcred 8926 73948 24661414.178 1.524 2.572 1.008

lpdfl001 6071 12230 35632 0.402 0.022 0.05 0.018
lpken11 14694 21349 49058 0.414 0.034 0.072 0.024
lpken13 28632 42659 97246 1.236 0.088 0.188 0.064
lpken18 105127 154699 35817115.822 0.634 1.5 0.472

lpmarosr7 3136 9408 144848 0.786 0.206 0.186 0.138
lppds10 16558 49932 107605 0.582 0.048 0.12 0.034
lppds20 33874 108175 232647 1.354 0.112 0.258 0.086

lpstocfor3 16675 23541 76473 0.346 0.022 0.04 0.014

4.3.4 Comparison

Table 4.7 presents a comparison for running time for ColPackand DSJM toolkit. For

comparison we are showing running time for Incidence Degreeordering in this table. On

the left side, we list the name and structural properties of the matrices. On the right side,

we list the ordering time(ot) and partitioning time(pt) for each software. We can see that

ordering time is significantly larger than partitioning time in each case. Table 4.7 clearly

shows that DSJM is efficient in terms of CPU cycles, as it requires less amount of time to

perform the orderings. Figure 4.1 also compares the runningtime between them.

51

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

af
23

56
0

ca
ge

11

ca
ge

12

e3
0r

20
00

e4
0r

01
00

lhr
10

lhr
14

lhr
34

lhr
71

c

lpc
re

a

lpc
re

b

lpc
re

d

lpd
fl0

01

lpk
en

11

lpk
en

13

lpk
en

18

lpm
ar

os
r7

lpp
ds

10

lpp
ds

20

lps
to

cfo
r3

ru
n

n
in

g
tim

e
in

se
co

n
d

s

Figure 4.1: Comparison of Running time for IDO between ColPack and DSJM. Running
time for Colpack is indicated by lighter shade, and darker shade bars represent DSJM.

In addition to efficient execution, DSJM is also partitioning the columns into less num-

ber of structurally orthogonal groups. Table 4.8 presents acomparison of the coloring

results from both of the package. We list only the best partition for each of the package.

4.4 Hybrid Coloring

RLF’s superior partitioning results comes with increased computational time, as seen ear-

lier in this chapter. Hybrid coloring can be used as a parametrized version of RLF, which

helps to trade off quality of partitioning for faster execution of RLF algorithm. Hybrid Col-

52

Table 4.8: Partitioning Results

Matrix Name m n nnz ρmax ColPack DSJM

af23560 23560 23560 484256 21 41 (SLO) 37 (RLF)
cage11 39082 39082 559722 31 62 (SLO) 54 (RLF)
cage12 130228 130228 2032536 33 68 (SLO) 56 (RLF)

e30r2000 9661 9661 306356 62 68 (LFO) 65 (RLF)
e40r0100 17281 17281 553956 62 66 (LFO) 66 (LFO)

lhr10 10672 10672 232633 63 63 (SLO) 63 (SLO)
lhr14 14270 14270 307858 63 63 (SLO) 63 (RLF,SLO)
lhr34 35152 35152 764014 63 63 (SLO) 63 (RLF, SLO)
lhr71c 70304 70304 1528092 63 63 (SLO) 63 (RLF, SLO)
lpcrea 3516 7248 18168 360 360 (ALL) 360 (ALL)
lpcreb 9648 77137 260785 844 844 (IDO) 844 (RLF,IDO,LFO,SDO)
lpcred 8926 73948 246614 808 808 (ALL) 808 (ALL)

lpdfl001 6071 12230 35632 228 228 (ALL) 228 (ALL)
lpken11 14694 21349 49058 122 123 (IDO) 122 (RLF)
lpken13 28632 42659 97246 170171 (IDO,SLO) 170 (RLF, IDO, SDO)
lpken18 105127 154699 358171 325 325 (SLO) 325 (RLF,SLO)

lpmarosr7 3136 9408 144848 48 70 (LFO) 76 (RLF)
lppds10 16558 49932 107605 96 96 (ALL) 96 (ALL)
lppds20 33874 108175 232647 96 96 (ALL) 96 (ALL)

lpstocfor3 16675 23541 76473 15 15 (ALL) 15 (ALL)
Total 3573 3693 3670

53

oring employs RLF and SLO to achieve better partitioning result while keeping running

time low. SLO ordering was chosen as the accompanied ordering algorithm because:

1. SLO ordering is closer to RLF in performance with respect to partitioning.

2. SLO fits naturally with RLF since SLO and RLF produces the ordering at the oppo-

site ends.

Table 4.9 lists number of colors and running time for hybrid RLF-SLO coloring. We

list the number of colors obtained from RLF in column 2. If we parametrize RLF-SLO

to process the first 10 percentage of vertices in SLO before switching to RLF, it partitions

the columns in less time, but with usually higher number of structurally orthogonal column

groups. Numerical observations for parametrized value 0.1≡ 10% is given in column 3

and column 4. Similar results for parameter value 0.4 and 0.8 is given in the subsequent

columns.

4.5 Summary

RLF clearly outperforms all other ordering algorithm in terms of number of structurally

orthogonal partitions produced. RLF running time can be larger than running time of other

ordering routines. In many cases, Jacobian matrices has to be estimated repeatedly, while

the ordering can be done only once. So, spending more time in RLF to obtain less colors

is justified in most cases. DSJM also performs faster in termsof running time for similar

algorithms implemented by ColPack. The efficient executioncan be attributed to the data

structures used by DSJM, which uses flat array data structure, thus utilizing hierarchical

memory architecture.

54

Table 4.9: Number of Colors and Required time in seconds for RLF-SLO , with RLF
running over first 10,40,80 percentage of vertices.

Matrix RLF 0.1 0.4 0.8
Color Color Time Color Time Color Time

af23560 37 41 1.858 40 4.246 37 5.486
cage11 54 62 2.64 60 5.686 59 8.526
cage12 56 67 14.614 65 34.678 63 52.238
e30r2000 65 68 1.988 68 4.88 66 6.042
e40r0100 67 70 3.718 69 9.068 67 11.154
lhr10 64 64 0.814 64 1.404 64 1.626
lhr14 63 63 1.09 63 1.844 63 2.168
lhr34 63 63 2.698 63 4.556 63 5.402
lhr71c 63 63 5.376 63 9.11 63 10.814
lpcrea 360 360 0.106 360 0.118 360 0.378
lpcreb 844 845 18.076 845 122.022 844 229.046
lpcred 808 808 20.682 808 135.942 808 246.188
lpdfl001 228 228 0.144 228 0.202 228 0.392
lpken11 122 123 0.186 122 0.208 122 0.45
lpken13 170 171 0.476 170 0.528 170 1.216
lpken18 325 326 3.2 325 3.456 325 12.15
lpmarosr7 76 85 0.62 88 1.092 81 3.608
lppds10 96 96 0.338 96 0.552 96 0.754
lppds20 96 96 0.798 96 1.332 96 1.796
lpstocfor3 15 15 0.102 15 0.122 16 0.17

55

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis we have studied methods for estimation of Sparse Jacobian matrices. We felt

that there has been a gap for a modern tool for estimation of sparse Jacobian matrices since

DSM’s [7] release in 1984. This thesis has been an effort to provide a modern software

toolkit for estimating Jacobian matrices. We have providedwell known algorithms along

with some new ones for column partitioning problem. Though RLF has been used previ-

ously for graph coloring, we have implemented it for column partitioning problem for the

first time. We have found that RLF produces better results than other widely used heuristics

for column partitioning problem. Our implementation has tried to exploit the data structures

used for sparse matrices. We have seen that the software toolkit proved to be competitive in

both running time and number of partitions achieved. We provided C++, C and MATLAB

interfaces for the algorithms for better integration with existing applications. We hope that

it will be widely adopted by both practitioners and researchers.

5.2 Future Research Direction

1. We want to extend the algorithms for Column Segmented matrix [21]. A column

segmented matrix can be partitioned without explicitly constructing it. Moreover,

the number of groups for a column segmented matrix will not beany larger than the

partitions achieved for the original matrix. This work is inprogress.

2. We would like to extend the toolkit for distributed computing environment, we have

been looking into Condor[6] to exploit idle CPU power typically available to aca-

demic and corporate settings to solve column partitioning problem for large instances.

56

A distributed computing environment allows us to run different branches of a par-

titioning problem in different machines simultaneously. The heuristics can be re-

implemented with minimal communication overheads betweenthe running instances

to minimize turnover time.

57

Bibliography

[1] URL: http://math.nist.gov/MatrixMarket/collections/hb.html. [Online; accessed July-
2009].

[2] URL: http://math.nist.gov/MatrixMarket/matrices.html. [Online; accessed July-
2009].

[3] URL: http://www.netlib.org/lp/data/. [Online; accessed July-2009].

[4] A. Bouaricha and R.B. Schnabel. Tensor methods for largesparse systems of nonlin-
ear equations.Mathematical programming, 82(3):377–400, 1998.

[5] D. Brélaz. New methods to color the vertices of a graph.Communications of the
ACM, 22(4):251–256, 1979.

[6] A. Bricker, M. Litzkow, and M. Livny. Condor technical summary. Technical report,
Citeseer, 1991.

[7] T.F. Coleman, B.S. Garbow, and J.J. More. Software for estimating sparse Jaco-
bian matrices.ACM Transactions on Mathematical Software (TOMS), 10(3):329–345,
1984.

[8] T.F. Coleman and J.J. Moré. Estimation of sparse jacobian matrices and graph color-
ing problems.SIAM Journal on Numerical Analysis, 20(1):187–209, 1983.

[9] AR Curtis, M.J.D. Powell, and J.K. Reid. On the estimation of sparse Jacobian ma-
trices.J. Inst. Math. Appl, 13:117–119, 1974.

[10] T. Davis. University of Florida sparse matrix collection. NA Digest, 97(23):7, 1997.
[Online; accessed July-2009].

[11] J.E. Dennis and R.B. Schnabel.Numerical methods for unconstrained optimization
and nonlinear equations. Society for Industrial Mathematics, 1996.

[12] Thomas Ericsson. URL: http://www.math.chalmers.se/thomas/PDC/springer.pdf.
http://www.math.chalmers.se/~thomas/PDC/springer.pdf. [Online; ac-
cessed July-2009].

[13] S.A. Forth. An efficient overloaded implementation of forward mode automatic
differentiation in matlab. ACM Transactions on Mathematical Software (TOMS),
32(2):195–222, 2006.

[14] G. Gallo and S. Pallottino. Shortest path algorithms.Annals of Operations Research,
13(1):1–79, 1988.

58

[15] M.R. Garey and D.S. Johnson.Computers and intractability. Freeman San Francisco,
1979.

[16] A.H. Gebremedhin, F. Manne, and A. Pothen. What color isyour Jacobian? Graph
coloring for computing derivatives.SIAM REVIEW, 47(4):629, 2005.

[17] AH Gebremedhin, A. Tarafdar, D. Nguyen, and A. Pothen. ColPack.

[18] M. Goyal. Graph coloring in sparse derivative matrix computation. 2005. [M.Sc
Thesis].

[19] A. Griewank and A. Walther.Evaluating derivatives: principles and techniques of
algorithmic differentiation. Society for Industrial and Applied Mathematics (SIAM),
2008.

[20] M. Hasan, S. Hossain, and T. Steihaug. DSJM: A Software Toolkit for Direct Deter-
mination of Sparse Jacobian Matrices.SIAM workshop on Combinatorial Scientific
Computing, 2009.

[21] S. Hossain. Cseggraph: a graph colouring instance generator. International Journal
of Computer Mathematics, 86(10):1956–1967, 2009.

[22] S. Hossain and T. Steihaug. Graph coloring in the estimation of sparse derivative
matrices: Instances and applications.Discrete Applied Mathematics, 156(2):280–
288, 2008.

[23] F.T. Leighton. A graph coloring algorithm for large scheduling problems.Journal of
Research of the National Bureau of Standards, 84(6):489–503, 1979.

[24] E. Malaguti and P. Toth. A survey on vertex coloring problems. International Trans-
actions in Operational Research, 2009.

[25] M. Market. URL: http://math. nist. gov.http://math.nist.gov/. [Online; ac-
cessed July-2009].

[26] Y. Saad and Y. Saad.Iterative methods for sparse linear systems. PWS Pub. Co.,
1996.

59

Appendix A

Compilation and Usage

A.1 Use Case Scenario

Client Code

Read Matrix File

Partit ion Matrix

Create Matrix Object &
Feed Data

Run Ordering Algorithm

Run Sequential Algorithm

Retreive Partit ioning Information

DSJM System

Figure A.1: Use Case of DSJM Software Toolkit

DSJM[20] software toolkit is used to find a structurally orthogonal partition of large
sparse matrices. The client code will read sparsity information of the matrix and construct
a Matrix object provided by DSJM. The following steps describe a use case scenario for
the client code:

1. Creates aMatrix object provided byDSJM.

2. Reads the row and column indices for each non-zero elementof the sparse matrix,
and construct aMatrix object.

3. Run an ordering and greedy coloring method provided by theDSJMtoolkit to obtain
a structurally orthogonal partition.

A.2 Compilation

In a C++ settings, one can include our source code in her compilation unit, and directly use
theMatrix class. Alternatively, the toolkit can be accessed as a statically linked library. We
provide aMakefilebased build process to obtain the statically linked library.

You can compile the source code ofDSJMtoolkit with the following commands given
in the top directory of DSJM source distribution:

60

./configure
make

The compiled library is a statically linkable filelibmatrix.a and can be found on the
src directory. You can link against this library for compiling your application.

A.2.1 Linking againstlibmartix.a

Assuming you are usingg++ compiler,you can link your application againstlibmatrix.a
with the following way:

$ g++ your_application.cpp libmatrix.a -i /path/to/dsjm/source

A.3 User Interface

Features provided by DSJM toolkit has been exposed through one C++ key class, named
Matrix.

In this section we will describe how to use theMatrix class.
We assume the client code has at least the following information about the target sparse

matrix:

1. M, number of rows in the matrix.

2. N, number of columns in the matrix.

3. nnz, number of nonzero elements in the matrix.

To get the functionality of DSJM we have to create an object oftheMatrix class.

Matrix matrix(M,N,nnz,false);

After creating the object we have to provide the sparsity pattern (row number and col-
umn number) to the matrix object.

Note A.3.1 The indices in the Matrix object are counted from1, not from0.

Then we call four preprocessing functions on the matrix object,and the matrix data
structure will be ready for ordering or coloring algorithmsto run. computeCCS method
constructs Compressed Column Storage from the sparsity pattern.compress method finds
duplicate entries, and discards them.computeCRS method constructs a Compressed Row
Storage, andcomputeDegree method computes the degree information in the intersection
graphG(A).

61

matrix.computeCCS();
int nnz = matrix.compress();
matrix.computeCRS();
matrix.computedegree();

To run any of theslo,lfo or ido ordering methods we have to call two separate func-
tions, one is the desired ordering function, and then we haveto call the greedy partitioning
functiongreedycolor.

As an example, forlfo ordering, we have to execute the following instructions:

int *order = new int[N+1];
matrix.lfo(order);
int *color = new int[N+1];
int maxgrp = matrix.greedycolor(order,color);

But rlf andsdoorderings method have the partitioning algorithm built in,so for par-
titioning the columns through RLF and SLO heuristics wemust not call greedycolor()
method. For example, RLF we do the following

int *color = new int[N+1];
int maxgrp = matrix.rlf(color);
// Don’t call matrix.greedycolor() after rlf.

By this point, every column is assigned to one of the structurally orthogonal groups
which are numbered from 1 to maxgrp and the related group for each column is stored in
thecolor array such that color[i] represents the group number of column i.

A.3.1 Example Usage of Matrix Object

Matrix matrix(M,N,nnz, false);

for(int i = 1 ; i <= nnz; i++)
{

int row, column;
readNextNonzeroLocation(&row,&column);
// Client Code supplied Method
// ,may also be supplied from
// an array

matrix.entry(row,col);
}

62

matrix.computeCCS();
int nnz = matrix.compress();
matrix.computeCRS();
matrix.computedegree();

int *order = new int[N+1];
matrix.lfo(order);

int *color = new int[N+1];
int maxgrp = matrix.greedycolor(order,color);
// Don’t use this function for RLF

for (int j = 1; j <= N; j++)
{

printf("Column J belongs to %d partition\n",color[i]);
}

A.4 Matrix Class

Following functions are available to the user ofMatrix class.

A.4.1 Matrix(int M, int N, int nz,
bool values)

Constructor of the class. The parameters represent the number of rows, number of columns,
and number of nonzero values in the matrix. If the fourth parameter,values is true then
the matrix object stores values of the nonzero items. Otherwise, it only stores the sparsity
pattern and disregards the original values.

A.4.2 bool computeCCS()

Purpose ComputesCompressed Column Storage(CCS)format of the sparse matrix. The
CCS format stores the columns of matrixA in three member arrays in Matrix ob-
ject: <id:jpntr>, <id:indRow> and<id:x>. Data member<id:x> is empty if
<id:value>, a boolean member variable evaluates to false.

Pre-condition Assumes that the matrix definition is stored in co-ordinate format in<id:indRow>
and<id:indCol> integer array. For every non-zero position in the sparse matrix
there is two entry:indRow[i] andindCol[i] holding therow, andcolumncoordi-
nate of the nonzero entry. If<id:value> is true thenx[i] stores the corresponding
nonzero item.

Post-condition Column-oriented definition of the sparse matrix is stored inthe two array

63

<id:jpntr> and<id:indRow>. If value of the nonzero items are being stored , then
<id:x> is also organized in column oriented definition.

Return value Returnstrue when the function is executed successfully, otherwise returns
false.

A.4.3 bool computeCRS()

Purpose ComputesCompressed Row Storage(CRS)definition of the sparse matrix. The
CRS format stores the rows of matrixA in two member arrays in Matrix object:
<id:ipntr>, and<id:indCol>. Value array<id:x> is not stored in row oriented
definition.

Pre-condition Assumes that the matrix definition is stored in CCS format in<id:indRow>
and<id:jpntr> integer array and duplicate entries has been removed by calling
computeCCS() method andcompress() method.

Post-condition Row-oriented definition of the sparse matrix is stored in thetwo array
<id:ipntr> and<id:indCol>.

Return value Returnstrue when the function is executed successfully, otherwise returns
false.

A.4.4 int compress()

Purpose Removes duplicate entries from the column-oriented definition of the sparse ma-
trix, and compresses the member arrays<id:indRow>, <id:jpntr> and <id:x>
array.

Pre-condition Assumes that the sparsity pattern has been stored in column-oriented def-
inition in <id:jpntr>, <id:indRow> and<id:x> array by callingcomputeCCS()
method.

Post-condition Removes duplicate entry and reorganizes<id:indRow>, <id:jpntr> and
<id:x> array.

Return value Returns number of unique nonzero items when the function is executed suc-
cessfully, otherwise returns zero.

A.4.5 bool computedegree()

Purpose Given the sparsity pattern of a matrixA, this method determines the degree se-
quence of the sparse matrixA (of the vertices of the column intersection GraphG(A)).

64

Pre-Condition The matrix object is nonempty. Assumes that thecomputeCCS(), compress()
andcomputeCRS() has been called prior calling this function, such that matrix ob-
ject holds the sparsity pattern in Compressed Column and Compressed Row storage
format.

Post-Condition Degree information for the columns of matrixA(graphG(A)) is stored in
the data member<id:ndeg>, an integer array of sizen+1, such that ifk= ndeg[j]
then the columnj has degreek, where j = 1,2, . . . ,n.

Return value Returnstrue when the function is executed successfully, otherwise returns
false.

A.4.6 bool slo(int *order)

Purpose ComputesSmallest-Last Ordering (SLO)of the columns of a sparse matrixA (i.e.
the vertices of the column intersection graphG(A)).

Pre-condition The matrix object is nonempty. Assumes that the degree of thecolumns
have already been computed in the data member<id:ndeg>, an integer array of size
n+1, usingcomputedegree() method.

Post-condition The SLO ordering of matrixA (graphG(A)) is stored in the out-parameter
<id:order>, an integer array of sizen+ 1, such that ifk = order[j] then the
column j is thek-th element,k= 1,2, . . . ,n, in the SLO ordering, andj = 1,2, . . . ,n.

Parameters Out-parameter<id:order>, an integer pointer to an array of sizen+1. The
array will contain the ordering information when the function normally returns.

Return value Returnstrue when the function is executed successfully, otherwise returns
false.

A.4.7 bool ido(int *order)

Purpose ComputesIncidence-Degree Ordering (IDO)of the columns of a sparse matrix
A (i.e. the vertices of the column intersection graphG(A)).

Pre-condition The matrix object is nonempty. Assumes that the degree of thecolumns
have already been computed in the data member<id:ndeg> integer array of size
n+1 usingcomputeDegree() method.

Post-condition TheIDO ordering of matrixA (graphG(A)) is stored in the out-parameter
<id:order>, an integer array of sizen+1, such that ifk = order[j] then the column
j is thek-th element,k= 1,2, . . . ,n, in the IDO ordering, andj = 1,2, . . . ,n.

Parameters Out-parameter<id:order>, an integer pointer to an array of sizen+1. The
array will contain the ordering information when the function normally returns.

65

Return value Returnstrue when the function is executed successfully, otherwise returns
false.

A.4.8 bool lfo(int *order)

Purpose ComputesLargest-First Ordering (LFO)of the columns of a sparse matrixA (i.e.
the vertices of the column intersection graphG(A)).

Pre-condition The matrix object is nonempty. Assumes that the degree of thecolumns
have already been computed in the data member<id:ndeg>, an integer array of size
n+1, usingcomputeDegree() method.

Post-condition TheLFO ordering of matrixA (graphG(A)) is stored in the out-parameter
<id:order>, an integer array of sizen+ 1, such that ifk = order[j] then the
column j is thek-th element,k= 1,2, . . . ,n, in the LFO ordering, andj = 1,2, . . . ,n.

Parameters Out-parameter<id:order>, an integer pointer to an array of sizen+1. The
array will contain the ordering information when the function normally returns.

Return value Returnstrue when the function is executed successfully, otherwise returns
false.

A.4.9 int sdo(int *color)

Purpose ComputesSaturation-Degree Coloring(SDO) of the columns of a sparse matrix
A (i.e. the vertices of the column intersection graphG(A)).

Pre-condition The matrix object is nonempty. Assumes that the degree of thecolumns
have already been computed in the data member<id:ndeg>, an integer array of size
n+1, usingcomputeDegree() method.

Post-condition SDOcoloring of MatrixA (graphG(A)) is stored in the in-out-parameter
<id:color>, an integer array of sizen+ 1, such that ifk = color[j] then the
column j is colored with colork, where j = 1,2, . . . ,n.

Parameters Out-parameter<id:color>, an integer pointer to an array of sizen+1. The
array will contain the color values of the columns in successful completion. The
integer array uses 1-based indexing.

Return value Returns the number of colors if succeeds, otherwise returns0 (zero).

A.4.10 int greedycolor
(int *order, int *color)

Purpose Computes the greedy coloring of the columns of a sparse matrix A (i.e. the ver-
tices of the column intersection graphG(A)).

66

Pre-condition The matrix object is nonempty. Assumes that an ordering has been pro-
vided in the in-parameter<id:order>, an integer array of sizen+ 1, such that
order[1], . . ., order[n] is a permutation of{1, ...,n}.

Post-condition The greedy coloring of MatrixA (graphG(A)) is stored in the in-out-
parameter<id:color>, an integer array of sizen+ 1, such that ifk = color[j]
then the columnj is colored with colork, where j = 1,2, . . . ,n.

Parameters In-parameter<id:order>, an integer pointer to an array of sizen+1, con-
taining a permutation of{1, . . . ,n}. The integer array uses 1-based indexing.

In-out-parameter<id:color>, an integer pointer to an array of sizen+1, it stores
the color values of the columns in successful completion.The integer array uses 1-
based indexing.

Return value Returns the number of colors if succeeds, otherwise returns0 (zero).

A.4.11 int rlf(int *color)

Purpose ComputesRecursive Largest-Firstcoloring (RLF) of the columns of a sparse
matrixA (i.e. the vertices of the column intersection graphG(A)).

Pre-condition The matrix object is nonempty. Assumes that the degree of thecolumns
have already been computed in the data member<id:ndeg>, an integer array of size
n+1, usingcomputeDegree() method.

Post-condition RLF coloring of MatrixA (graphG(A)) is stored in the in-out-parameter
<id:color>, an integer array of sizen+1, such that ifk = color[j] then the column
j is colored with colork, where j = 1,2, . . . ,n.

Parameters Out-parameter<id:color>, an integer pointer to an array of sizen+1. The
array will contain the color values of the columns in successful completion. The
integer array uses 1-based indexing.

Return value Returns the number of colors if succeeds, otherwise returns0(zero).

A.4.12 void rlf_slo(int *ngrp, int p)

Purpose Computes RLF and SLO coloring (Hybrid Coloring) of the columns of a sparse
matrix A (i.e. the vertices of the column intersection graphG(A)), partitions first
p columns according toRLF ordering and then colors remaining columns withSLO
ordering algorithm.

Pre-condition The matrix object is nonempty. Assumes that the degree of thecolumns
have already been computed in the data member<id:ndeg>, an integer array of size
n+1, usingcomputeDegree() method.

67

Post-condition RLF-SLO coloring of MatrixA (graphG(A)) is stored in the in-out-parameter
<id:color>, an integer array of sizen+1, such that ifk = color[j] then the column
j is colored with colork, where j = 1,2, . . . ,n.

Parameters Out-parameter<id:color>, an integer pointer to an array of sizen+1. The
array will contain the color values of the columns in successful completion. The
integer array uses 1-based indexing.

Return value void.

A.5 Reading Matrix Market Data File

DSJMcode depends on the application’s code to supply the data of the sparse matrix. We
also provide a way to readMatrix Marketexchange format.

A.5.1 Reading Matrix Market Banner

Matrix Marketformat provides a banner which lists meta-data for the matrix. The following
code snippet can retrieve important meta-data by reading .mtx file.

MM_typecode matcode;
int ret_code;

FILE *f;
f = fopen("filename.mtx", "r");
if (mm_read_banner (f, &matcode) != 0)
{

fprintf (stderr,
"filename.mtx -> Could not process Matrix Market banner.\n");
exit (1);

}

/**
* --
* This is how one can screen matrix types if their applicaiton
* only supports a subset of the Matrix Market data types.
**/

if (mm_is_complex (matcode) && mm_is_matrix (matcode) &&
mm_is_sparse (matcode))

{
printf ("Sorry, this application does not support ");
printf ("Market Market type: [%s]\n", mm_typecode_to_str (matcode));

68

exit (1);
}

/**
*
* Find out the size of the sparse matrix
**/

if ((ret_code = mm_read_mtx_crd_size (f, &M, &N, &nz)) != 0)
exit (1);

is_symmetric = mm_is_symmetric(matcode);
is_pattern = mm_is_pattern(matcode);
nz = 2 * nz;

A.5.2 Reading sparsity pattern

The client code can provide the data to thematrix object using the following code.

// As we are not going to use the value, we are simply using
// this placeholder variable ’value’ to read each line
// from the input matrix.

double value;

for (int i = 1,row,col ; i <= nz; i++)
{

if (is_pattern)
{

fscanf (f, "%d %d\n", &row, &col);
}
else
{

fscanf (f, "%d %d %lg\n", &row, &col, &value);
}

matrix->setIndRowEntry(i,row);
matrix->setIndColEntry(i,col);

69

if(is_symmetric)
{

matrix->setIndRowEntry(i + nz,col);
matrix->setIndColEntry(i + nz,row);

}

}

if (f != stdin)
fclose(f);

A.6 Matlab Usage

The functionalities of theDSJMtoolkit has been exposed through thedsjmcolor() func-
tion. This function requires two parameters, a MATLAB sparse matrix and a method name.
For example, to obtainSmallest-Last-Coloringon a matrixA in MATLAB we would have
to call the function in the following way:

B = dsjmcolor(A,‘slo’);

The coloring assignment will be stored in theB matrix, i.e.,ith column will be in the
orthogonal column groupB(i), wherei ∈ {1, . . . ,n}.

The following functions of theDSJMcan be called throughdsjmcolor():

1. Matrix Class

• Largest First Ordering Coloring.

B = dsjmcolor(A,‘lfo’);

• Smallest Last Ordering Coloring.

B = dsjmcolor(A,‘slo’);

• Incidence Degree Coloring.

B = dsjmcolor(A,‘ido’);

• Saturation Degree Coloring.

B = dsjmcolor(A,‘sdo’);

• Recursive Largest First Coloring.

B = dsjmcolor(A,‘rlf’);

DSJM functionalities are exposed toMATLAB throughMEX(MATLAB executable)
interface.

70

A.6.1 Compiling for Matlab

MEX source codes are located inmex directory in source distribution. To compile the mex
files, you have to perform the following steps :

1. Compile and build static librarylibmatrix.a. See section (A.2) for details on com-
pilation of the static library.

2. Editmex/Makefile such that:

(a) MATLABHOME contains the Matlab installation path.

MATLABHOME = /path/to/matlab/installation

(b) MEX variable contains the full path-name of themex executable.

MEX = /path/to/mex/executable

3. Runmake in mex directory to compile the*.mexglh files.

$ make

A.6.2 Calling Matrix functions from Matlab

Setup Path

Before callingDSJM functions from MATLAB , make sure thatmex directory is added to
the Matlab search path. You can type the following command intheMatlab console so
that MATLAB is setup correctly to findDSJMmex files.

>> addpath(’/path/to/mex/directory’)

71

