
ar
X

iv
:1

60
5.

07
06

8v
2 

 [
cs

.L
O

] 
 2

4 
A

ug
 2

01
6

Incorporating Quotation and Evaluation into

Church’s Type Theory:

Syntax and Semantics⋆

William M. Farmer

Computing and Software, McMaster University, Canada
wmfarmer@mcmaster.ca

27 July 2016

Abstract. cttqe is a version of Church’s type theory that includes quo-
tation and evaluation operators that are similar to quote and eval in the
Lisp programming language. With quotation and evaluation it is possi-
ble to reason in cttqe about the interplay of the syntax and semantics
of expressions and, as a result, to formalize syntax-based mathemati-
cal algorithms. We present the syntax and semantics of cttqe and give
several examples that illustrate the usefulness of having quotation and
evaluation in cttqe. We do not give a proof system for cttqe, but we do
sketch what a proof system could look like.

1 Introduction

The Lisp programming language is famous for its use of quotation and evalu-
ation. From code the Lisp quotation operator called quote produces meta-level
data (i.e., S-expressions) that represents the code, and from this data the Lisp
evaluation operator called eval produces the code that the data represents. In
Lisp, metaprogramming (i.e., programming at the meta-level) is performed by
manipulating S-expressions and is reflected (i.e., integrated) into object-level
programming by the use of quote and eval.

Metaprogramming with reflection is a very powerful programming tool. Be-
sides Lisp, several other programming languages employ quotation and evalua-
tion mechanisms to enable metaprogramming with reflection. Examples include
Agda [16,17], Archon [22], Elixir [18], F# [25], MetaML [23], MetaOCaml [20],
reFLect [12], and Template Haskell [21].

Analogous to metaprogramming in a programming language, metareasoning
is performed in a logic by manipulating meta-level values (e.g., syntax trees)
that represent expressions in the logic and is reflected into object-level reasoning

⋆ Published in: M. Kohlhase et al., eds, Intelligent Computer Mathemat-
ics (CICM 2016), Lecture Notes in Computer Science, Vol. 9791, pp. 83–
98, Springer, 2016. The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-42547-4 7. This research was supported by
NSERC.

http://arxiv.org/abs/1605.07068v2
http://dx.doi.org/10.1007/978-3-319-42547-4_7


2

using quotation and evaluation1 mechanisms [6]. In proof assistants like Coq
and Agda, metareasoning with reflection is implemented in the logic by defining
an infrastructure consisting of (1) an inductive type of syntactic values that
represent certain object-level expressions, (2) an informal quotation operator
that maps these object-level expressions to syntactic values, and (3) a formal
evaluation operator that maps syntactic values to the values of the object-level
expressions that they represent [4,10,26]. Metareasoning with reflection is used
for formalizing metalogical techniques and incorporating symbolic computation
into proof assistants [4,8,10,13,26].

The metareasoning and reflection infrastructures that have been employed
in today’s proof assistants are local in the sense that the syntactic values of
the inductive type represent only a subset of the expressions of the logic, the
quotation operator can only be applied to these expressions, and the evaluation
operator can only be applied to the syntactic values of the inductive type. Can
metareasoning with reflection be implemented in a traditional logic like first-
order logic or simple type theory using a global infrastructure with quotation
and evaluation operators like Lisp’s quote and eval? This is largely an open
question. As far as we know, there is no readily implementable version of a
traditional logic that admits global quotation and evaluation. We have proposed
a version of NBG set theory named Chiron [7] and a version of Alonzo Church’s
type theory [5]2 named Quqe

0 [9] that include global quotation and evaluation
operators, but these logics have a high level of complexity and are not easy to
implement.

Many challenging problems face the logic engineer who seeks to incorporate
global quotation and evaluation into a traditional logic. The three problems that
most concern us are the following. We will write the quotation and evaluation
operators applied to an expression e as peq and JeK, respectively.

1. Evaluation Problem. An evaluation operator is applicable to syntactic values
that represent formulas and thus is effectively a truth predicate. Hence, by
the proof of Alfred Tarski’s theorem on the undefinability of truth [24],
if the evaluation operator is total in the context of a sufficiently strong
theory like first-order Peano arithmetic, then it is possible to express the
liar paradox using the quotation and evaluation operators. Therefore, the
evaluation operator must be partial and the law of disquotation cannot hold
universally (i.e., for some expressions e, JpeqK 6= e). As a result, reasoning
with evaluation is cumbersome and leads to undefined expressions.

2. Variable Problem. The variable x is not free in the expression px+3q (or in
any quotation). However, x is free in Jpx + 3qK because Jpx + 3qK = x + 3.
If the value of a constant c is px + 3q, then x is free in JcK because JcK =
Jpx+3qK = x+3. Hence, in the presence of an evaluation operator, whether
or not a variable is free in an expression may depend on the values of the
expression’s components. As a consequence, the substitution of an expression

1 Evaluation in this context is also called unquoting, interpretation, dereferencing, and
dereification.

2 Church’s type theory is a version of simple type theory with lambda notation.



3

for the free occurrences of a variable in another expression depends on the
semantics (as well as the syntax) of the expressions involved and must be
integrated with the proof system of the logic. That is, a logic with quotation
and evaluation requires a semantics-dependent form of substitution in which
side conditions, like whether a variable is free in an expression, are proved
within the proof system. This is a major departure from traditional logic.

3. Double Substitution Problem. By the semantics of evaluation, the value of
JeK is the value of the expression whose syntax tree is represented by the
value of e. Hence the semantics of evaluation involves a double valuation
(see condition 6 of the definition of a model in section 3.3). If the value of a
variable x is pxq, then JxK = JpxqK = x = pxq. Hence the substitution of pxq
for x in JxK requires one substitution inside the argument of the evaluation
operator and another substitution after the evaluation operator is eliminated.
This double substitution is another major departure from traditional logic.

cttqe is a version of Church’s type theory [5] with quotation and evaluation
that overcomes these three problems. It is much simpler than Quqe

0 since (1) the
quotation operator can only be applied to expressions that do not contain the
evaluation operator and (2) substitution is not a logical constant (applied to
syntactic values). Like Quqe

0 , cttqe is based on Q0 [2], Peter Andrews’ version
of Church’s type theory. In this paper, we present the syntax and semantics of
cttqe and give several examples that illustrate the usefulness of having quotation
and evaluation in cttqe. We do not give a proof system for cttqe, but we do
sketch what a proof system could look like.

2 Syntax

The syntax of cttqe is very similar to the syntax of Q0 [2, pp. 210–211]. cttqe

has the syntax of Church’s type theory plus an inductive type of syntactic values,
a quotation operator, and a typed evaluation operator. LikeQ0, the propositional
connectives and quantifiers are defined using function application, function ab-
straction, and equality. For the sake of simplicity, cttqe does not contain, as in
Q0, a definite description operator or, as in the logic of HOL [11], an indefinite
description (choice) operator or type variables.

2.1 Types

A type of cttqe is a string of symbols defined inductively by the following for-
mation rules:

1. Type of individuals : ι is a type.
2. Type of truth values : o is a type.
3. Type of constructions : ǫ is a type.
4. Function type: If α and β are types, then (α → β) is a type.3

3 In Andrews’ Q0 [2] and Church’s original system [5], the function type (α → β) is
written as (βα).



4

Let T denote the set of types of cttqe. α, β, γ, . . . are syntactic variables ranging
over types. When there is no loss of meaning, matching pairs of parentheses in
types may be omitted. We assume that function type formation associates to the
right so that a type of the form (α → (β → γ)) may be written as α→ β → γ.

We will see in the next section that in cttqe types are directly assigned to
variables and constants and thereby indirectly assigned to expressions.

2.2 Expressions

A typed symbol is a symbol with a subscript from T . Let V be a set of typed
symbols such that, for each α ∈ T , V contains denumerably many typed sym-
bols with subscript α. A variable of type α of cttqe is a member of V with
subscript α. fα,gα,hα,uα,vα,wα,xα,yα, zα, . . . are syntactic variables ranging
over variables of type α. We will assume that fα, gα, hα, uα, vα, wα, xα, yα, zα, . . .

are actual variables of type α of cttqe.
Let C be a set of typed symbols disjoint from V that includes the typed sym-

bols in Table 1. A constant of type α of cttqe is a member of C with subscript α.
The typed symbols in Table 1 are the logical constants of cttqe. cα,dα, . . . are
syntactic variables ranging over constants of type α.

=α→α→o for all α ∈ T

is-varǫ→o

is-conǫ→o

appǫ→ǫ→ǫ

absǫ→ǫ→ǫ

quoǫ→ǫ

is-exprαǫ→o for all α ∈ T

Table 1. Logical Constants

An expression of type α of cttqe is a string of symbols defined inductively by
the formation rules below. Aα,Bα,Cα, . . . are syntactic variables ranging over
expressions of type α. An expression is eval-free if it is constructed using just
the first five formation rules.

1. Variable: xα is an expression of type α.
2. Constant : cα is an expression of type α.
3. Function application: (Fα→β Aα) is an expression of type β.
4. Function abstraction: (λxα . Bβ) is an expression of type α → β.
5. Quotation: pAαq is an expression of type ǫ if Aα is eval-free.
6. Evaluation: JAǫKBβ

is an expression of type β.

The purpose of the second component Bβ in an evaluation JAǫKBβ
is to establish

the type of the evaluation. A formula is an expression of type o. When there is
no loss of meaning, matching pairs of parentheses in expressions may be omitted.



5

We assume that function application formation associates to the left so that an
expression of the form ((Gα→β→γ Aα)Bβ) may be written as Gα→β→γ Aα Bβ .

2.3 Constructions

A construction of cttqe is an expression of type ǫ defined inductively as follows:

1. pxαq is a construction.

2. pcαq is a construction.

3. If Aǫ and Bǫ are constructions, then appǫ→ǫ→ǫAǫBǫ, absǫ→ǫ→ǫ Aǫ Bǫ, and
quoǫ→ǫ Aǫ are constructions.

The set of constructions is thus an inductive type whose base elements are quota-
tions of variables and constants and whose constructors are appǫ→ǫ→ǫ, absǫ→ǫ→ǫ,
and quoǫ→ǫ. We will call these three constants syntax constructors.

Let E be the function mapping eval-free expressions to constructions that is
defined inductively as follows:

1. E(xα) = pxαq.

2. E(cα) = pcαq.

3. E(Fα→β Aα) = appǫ→ǫ→ǫ E(Fα→β) E(Aα).

4. E(λxα . Bβ) = absǫ→ǫ→ǫ E(xα) E(Bβ).

5. E(pAαq) = quoǫ→ǫ E(Aα).

E is clearly injective. When Aα is eval-free, E(Aα) is a construction that repre-
sents the syntax tree of Aα. That is, E(Aα) is a syntactic value that represents
how Aα is syntactically constructed. For every eval-free expression, there is a
construction that represents its syntax tree, but not every construction repre-
sents the syntax tree of an eval-free expression. For example, appǫ→ǫ→ǫ pxαq pxαq

represents the syntax tree of (xα xα) which is not an expression of cttqe since
the types are mismatched. A construction is proper if it is in the range of E , i.e.,
it represents the syntax tree of an eval-free expression.

The five kinds of eval-free expressions and the syntactic values that represent
their syntax trees are given in Table 2.

Kind Syntax Syntactic Values

Variable xα pxαq

Constant cα pcαq

Function application Fα→β Aα appǫ→ǫ→ǫ E(Fα→β) E(Aα)
Function abstraction λxα . Bβ absǫ→ǫ→ǫ E(xα) E(Bβ)
Quotation pAαq quoǫ→ǫ E(Aα)

Table 2. Five Kinds of Eval-Free Expressions



6

2.4 Definitions and Abbreviations

As Andrews does in [2, p. 212], we introduce in Table 3 several defined logical
constants and abbreviations. The former includes constants for true and false
and the propositional connectives. The latter includes notation for equality, the
propositional connectives, universal and existential quantification, and a simpli-
fied notation for evaluations.

(Aα = Bα) stands for =α→α→o Aα Bα.
To stands for =o→o→o = =o→o→o.
Fo stands for (λxo . To) = (λxo . xo).
(∀xα . Ao) stands for (λxα . To) = (λxα . Ao).
∧o→o→o stands for λxo . λ yo .

((λ go→o→o . go→o→o To To) =
(λ go→o→o . go→o→o xo yo)).

(Ao ∧Bo) stands for ∧o→o→oAo Bo.
⊃o→o→o stands for λxo . λ yo . (xo = (xo ∧ yo)).
(Ao ⊃ Bo) stands for ⊃o→o→oAo Bo.
¬o→o stands for =o→o→o Fo.
(¬Ao) stands for ¬o→o Ao.
∨o→o→o stands for λxo . λ yo . ¬(¬xo ∧ ¬yo).
(Ao ∨Bo) stands for ∨o→o→oAo Bo.
(∃xα . Ao) stands for ¬(∀xα . ¬Ao).
JAǫKβ stands for JAǫKBβ

.

Table 3. Definitions and Abbreviations

3 Semantics

The semantics of cttqe extends the semantics of Q0 [2, pp. 238–239] by defining
the domain of the type ǫ and what quotations and evaluations mean.

3.1 Frames

A frame of cttqe is a collection {Dα | α ∈ T } of domains such that:

1. Dι is a nonempty set of values (called individuals).

2. Do = {t, f}, the set of standard truth values.

3. Dǫ is the set of constructions of cttqe.

4. For α, β ∈ T , Dα→β is the set of total functions from Dα to Dβ .



7

3.2 Interpretations

An interpretation of cttqe is a pair ({Dα | α ∈ T }, I) consisting of a frame and
an interpretation function I that maps each constant in C of type α to an element
of Dα such that:

1. For all α ∈ T , I(=α→α→o) is the function f ∈ Dα→α→o such that, for all
d1, d2 ∈ Dα, f(d1)(d2) = t iff d1 = d2. That is, I(=α→α→o) is the identity
relation on Dα.

2. I(is-varǫ→o) is the function f ∈ Dǫ→o such that, for all Aǫ ∈ Dǫ, f(Aǫ) = t

iff Aǫ = pxαq for some variable xα ∈ V .
3. I(is-conǫ→o) is the function f ∈ Dǫ→o such that, for all Aǫ ∈ Dǫ, f(Aǫ) = t

iff Aǫ = pcαq for some constant cα ∈ C.
4. I(appǫ→ǫ→ǫ) is the function f ∈ Dǫ→ǫ→ǫ such that, for all Aǫ,Bǫ ∈ Dǫ,
f(Aǫ)(Bǫ) is the construction appǫ→ǫ→ǫ AǫBǫ.

5. I(absǫ→ǫ→ǫ) is the function f ∈ Dǫ→ǫ→ǫ such that, for all Aǫ,Bǫ ∈ Dǫ,
f(Aǫ)(Bǫ) is the construction absǫ→ǫ→ǫ AǫBǫ.

6. I(quoǫ→ǫ) is the function f ∈ Dǫ→ǫ such that, for all Aǫ ∈ Dǫ, f(Aǫ) is the
construction quoǫ→ǫ Aǫ.

7. For all α ∈ T , I(is-exprαǫ→o) is the function f ∈ Dǫ→o such that, for all
Aǫ ∈ Dǫ, f(Aǫ) = t iff Aǫ = E(Bα) for some (eval-free) expression Bα.

Remark 3.21 (Domain of Constructions) We would prefer to define Dǫ to
be the set of proper constructions because we need only proper constructions
to represent the syntax trees of eval-free expressions. However, then the natu-
ral interpretations of the three syntax constructors — appǫ→ǫ→ǫ, absǫ→ǫ→ǫ, and
quoǫ→ǫ — would be partial functions. Since cttqe admits only total functions, it
is more convenient to allow Dǫ to include improper constructions than to inter-
pret the syntax constructors as total functions that represent partial functions.

An assignment into a frame {Dα | α ∈ T } is a function ϕ whose domain
is V such that, for each variable xα, ϕ(xα) ∈ Dα. Given an assignment ϕ,
a variable xα, and d ∈ Dα, let ϕ[xα 7→ d] be the assignment ψ such that
ψ(xα) = d and ψ(yβ) = ϕ(yβ) for all variables yβ 6= xα. Given an interpretation
M = ({Dα | α ∈ T }, I), assign(M) is the set of assignments into the frame of
M.

3.3 Models

An interpretation M = ({Dα | α ∈ T ), I} is a model for cttqe if there is a
binary valuation function VM such that, for all assignments ϕ ∈ assign(M) and
expressions Cγ , V

M
ϕ (Cγ) ∈ Dγ and each of the following conditions is satisfied:

1. If Cγ ∈ V , then VM
ϕ (Cγ) = ϕ(Cγ).

2. If Cγ ∈ C, then VM
ϕ (Cγ) = I(Cγ).

3. If Cγ is Fα→β Aα, then V
M
ϕ (Cγ) = VM

ϕ (Fα→β)(V
M
ϕ (Aα)).



8

4. If Cγ is λxα . Bβ, then V
M
ϕ (Cγ) is the function f ∈ Dα→β such that, for

each d ∈ Dα, f(d) = VM

ϕ[xα 7→d](Bβ).

5. If Cγ is pAαq, then V
M
ϕ (Cγ) = E(Aα).

6. If Cγ is JAǫKβ and VM
ϕ (is-exprβǫ→o Aǫ) = t, then

VM
ϕ (Cγ) = VM

ϕ (E−1(VM
ϕ (Aǫ))).

Proposition 3.31 Models for cttqe exist.

Proof. It is easy to construct an interpretation M = ({Dα | α ∈ T }, I) that is a
model for cttqe. Note that, if VM

ϕ (is-exprβǫ→oAǫ) = f, then VM
ϕ (JAǫKβ) can be

any value in Dβ . ✷

Remark 3.32 (Standard vs. General Models) The notion of a model de-
fined here is a standard model in which each function domain Dα→β is the set
of all total functions from Dα to Dβ. Andrews’ semantics for Q0 is based on
the notion of a general model, introduced by Leon Henkin [15], in which each
function domain Dα→β is a set of some total functions from Dα to Dβ . General
models can be easily defined for cttqe. The definition of a frame, however, has
to be changed so that the domain Dǫ may include “nonstandard constructions”.

Remark 3.33 (Semantics of Evaluations) When VM
ϕ (is-exprβǫ→oAǫ) = t,

the semantics of VM
ϕ (JAǫKβ) involves a double valuation as mentioned in the

Double Substitution Problem described in the Introduction.

Remark 3.34 (Undefined Evaluations) Suppose VM
ϕ (Aǫ) is an improper

construction. Then VM
ϕ (E−1(VM

ϕ (Aǫ))) is undefined and VM
ϕ (JAǫKβ) has no

natural value. Since cttqe does not admit undefined expressions, VM
ϕ (JAǫKβ) is

defined but its value is unspecified. Similarly, if VM
ϕ (Aǫ) is a proper construction

of the form E(Bγ) with γ 6= β, VM
ϕ (JAǫKβ) is unspecified.

Let M be a model for cttqe. Ao is valid in M, written M |= Ao, if

VM

ϕ (Ao) = T for all assignments ϕ ∈ assign(M).

Proposition 3.35 Let M be a model for cttqe, Aǫ be a construction, and

ϕ ∈ assign(M). Then VM

ϕ (Aǫ) = Aǫ.

Proof. Follows immediately from conditions 4–6 of the definition of an interpre-
tation and condition 5 of the definition of a model. ✷

Theorem 3.36 (Law of Quotation) pAαq = E(Aα) is valid in every model
of cttqe.

Proof. Let M be a model of cttqe and ϕ ∈ assign(M). Then

VM

ϕ (pAαq) (1)

= E(Aα) (2)

= VM

ϕ (E(Aα)) (3)



9

(2) follows from condition 5 of the definition of a model, and (3) follows from
Proposition 3.35. Hence VM

ϕ (pAαq) = VM
ϕ (E(Aα)) for all ϕ ∈ assign(M) which

implies pAαq = E(Aα) is valid in M. ✷

Theorem 3.37 (Law of Disquotation) JpAαqKα = Aα is valid in every
model of cttqe.

Proof. Let M be a model of cttqe and ϕ ∈ assign(M). Then

VM

ϕ (JpAαqKα) (1)

= VM

ϕ (E−1(VM

ϕ (pAαq))) (2)

= VM

ϕ (E−1(E(Aα))) (3)

= VM

ϕ (Aα) (4)

Since VM
ϕ (is-exprαǫ→o pAαq) = t, (2) follows from condition 6 of the definition of

a model. VM

ϕ (pAαq) = E(Aα) by condition 5 of the definition of a model. (3) and

(4) are then immediate. Hence VM

ϕ (JpAαqKα) = VM

ϕ (Aα) for all ϕ ∈ assign(M)
which implies JpAαqKα = Aα is valid in M. ✷

Remark 3.38 (Evaluation Problem) Theorem 3.37 shows that disquotation
holds universally in cttqe contrary to the Evaluation Problem described in the
Introduction. We have avoided the Evaluation Problem in cttqe by admitting
only quotations of eval-free expressions. If quotations of non-eval-free expressions
were allowed in cttqe, the logic would be significantly more expressive, but also
much more complicated, as seen in Quqe

0 [9].

Remark 3.39 (Quotation restricted to Closed Expressions) If quota-
tion is restricted to closed eval-free expressions in cttqe, then the Variable
Problem and Double Substitution Problem disappear. However, most of the
usefulness of having quotation and evaluation in cttqe would also disappear —
which is illustrated by the examples in the next section.

4 Examples

We will present in this section four examples that illustrate the utility of the
quotation and evaluation facility in cttqe.

4.1 Reasoning about Syntax

Reasoning about the syntax of expressions is normally performed in the met-
alogic, but in cttqe reasoning about the syntax of eval-free expressions can
be performed in the logic itself. This is done by reasoning about constructions
(which represent the syntax trees of eval-free expressions) using quotation and
the machinery of constructions. Algorithms that manipulate eval-free expressions



10

can be formalized as functions that manipulate constructions. The functions can
be executed using beta-reduction, rewriting, and other kinds of simplification.

As an example, consider the constant make-implicationǫ→ǫ→ǫ defined as

λxǫ . λ yǫ . (appǫ→ǫ→ǫ (appǫ→ǫ→ǫ p⊃o→o→oq xǫ) yǫ).

It can be used to build constructions that represent implications. As another
example, consider the constant is-appǫ→o defined as

λxǫ . ∃ yǫ . ∃ zǫ . xǫ = (appǫ→ǫ→ǫ yǫ zǫ).

It can be used to test whether a construction represents a function application.
Reasoning about syntax is a two-step process: First, a construction is built

using quotation and the machinery of constructions, and second, the construction
is employed using evaluation. Continuing the example above,

make-implicationǫ→ǫ→ǫ pAoq pBoq

builds a construction equivalent to the quotation pAo ⊃ Boq and

Jmake-implicationǫ→ǫ→ǫ pAoq pBoqKo

employs the construction as the implication Ao ⊃ Bo. Using this mixture of
quotation and evaluation, it is possible to express the interplay of syntax and
semantics that is needed to formalize syntax-based algorithms that are commonly
used in mathematics [8]. See section 4.4 for an example.

4.2 Quasiquotation

Quasiquotation is a parameterized form of quotation in which the parameters
serve as holes in a quotation that are filled with expressions that denote syntac-
tic values. It is a very powerful syntactic device for specifying expressions and
defining macros. Quasiquotation was introduced by Willard Van Orman Quine
in 1940 in the first version of his book Mathematical Logic [19]. It has been
extensively employed in the Lisp family of programming languages [3].4

In cttqe, constructing a large quotation from smaller quotations can be te-
dious because it requires many applications of syntax constructors. Quasiquota-
tion provides a convenient way to construct big quotations from little quotations.
It can be defined straightforwardly in cttqe.

A quasi-expression of cttqe is defined inductively as follows:

1. ⌊Aǫ⌋ is a quasi-expression called an antiquotation.
2. xα is a quasi-expression.
3. cα is a quasi-expression.

4 In Lisp, the standard symbol for quasiquotation is the backquote (‘) symbol, and
thus in Lisp, quasiquotation is usually called backquote.



11

4. If M and N are quasi-expressions, then (M N), (λxα . N), (λ ⌊Aǫ⌋ . N),
and pMq are quasi-expressions.

A quasi-expression is thus an expression where one or more subexpressions have
been replaced by antiquotations. For example, ¬(Ao∧⌊Bǫ⌋) is a quasi-expression.
Obviously, every expression is a quasi-expression.

Let E ′ be the function mapping quasi-expressions to expressions of type ǫ
that is defined inductively as follows:

1. E ′(⌊Aǫ⌋) = Aǫ.
2. E ′(xα) = pxαq.
3. E ′(cα) = pcαq.
4. E ′(M N) = appǫ→ǫ→ǫ E

′(M) E ′(N).
5. E ′(λM . N) = absǫ→ǫ→ǫ E

′(M) E ′(N).
6. E(pMq) = quoǫ→ǫ E

′(M).

Notice that E ′(M) = E(M) when M is an expression. Continuing our example
above, E ′(¬(Ao ∧ ⌊Bǫ⌋)) =

appǫ→ǫ→ǫ p¬o→oq (appǫ→ǫ→ǫ (appǫ→ǫ→ǫp∧o→o→oq E
′(Ao))Bǫ).

A quasiquotation is an expression of the form pMq where M is a quasi-
expression. Thus every quotation is a quasiquotation. The quasiquotation pMq

serves as an alternate notation for the expression E ′(M). So p¬(Ao ∧ ⌊Bǫ⌋)q
stands for the significantly more verbose expression in the previous paragraph.
It represents the syntax tree of a negated conjunction in which the part of the tree
corresponding to the second conjunct is replaced by the syntax tree represented
by Bǫ. If Bǫ is a quotation pCoq, then the quasiquotation p¬(Ao ∧ ⌊pCoq⌋)q is
equivalent to the quotation p¬(Ao ∧Co)q.

4.3 Schemas

A schema is a metalogical expression containing syntactic variables. An instance
of a schema is a logical expression obtained by replacing the syntactic variables
with appropriate logical expressions. In cttqe, a schema can be formalized as a
single logical expression.

For example, consider the law of excluded middle (LEM) that is expressed
as the formula schema A ∨ ¬A where A is a syntactic variable ranging over all
formulas. LEM can be formalized in cttqe as the universal statement

∀xǫ . is-expr
o
ǫ→o xǫ ⊃ JxǫKo ∨ ¬JxǫKo.

An instance of this formalization of LEM is any instance of the universal state-
ment. Using quasiquotation, LEM could also be formalized in cttqe as

∀xǫ . is-expr
o
ǫ→o xǫ ⊃ Jp⌊xǫ⌋ ∨ ¬⌊xǫ⌋qKo.



12

If we assume that the domain of the type ι is the natural numbers and C
includes the usual constants of natural number arithmetic (including a constant
Sι→ι representing the successor function), then the (first-order) induction schema
for Peano arithmetic can be formalized in cttqe as

∀ fǫ . (is-expr
ι→o
ǫ→o fǫ ∧ is-peanoǫ→o fǫ) ⊃

((JfǫKι→o 0 ∧ (∀xι . JfǫKι→o xι ⊃ JfǫKι→o (Sι→ι xι))) ⊃ ∀xι . JfǫKι→o xι)

where is-peanoǫ→o fǫ holds iff fǫ represents the syntactic tree of a formula of
first-order Peano arithmetic. Hence it is possible to directly formalize first-order
Peano arithmetic in cttqe. The induction schema for Presburger arithmetic can
be formalized similarly using an appropriate predicate is-presburgerǫ→o.

4.4 Meaning Formulas

Many symbolic algorithms work by manipulating mathematical expressions in
a mathematically meaningful way. A meaning formula for such an algorithm is
a statement that captures the mathematical relationship between the input and
output expressions of the algorithm. For example, consider a symbolic differen-
tiation algorithm that takes as input an expression (say x2), repeatedly applies
syntactic differentiation rules to the expression, and then returns as output the
final expression (2x) that is produced. The intended meaning formula of this
algorithm states that the function (λx : R . 2x) represented by the output ex-
pression is the derivative of the function (λx : R . x2) represented by the input
expression.

Meaning formulas are difficult to express in a traditional logic like first-order
logic or simple type theory since there is no way to directly refer to the syntactic
structure of the expressions in the logic [8]. However, meaning formulas can be
easily expressed in cttqe.

Consider the following example. Assume that the domain of the type ι is
the real numbers and C includes the usual constants of real number arith-
metic plus (1) is-polyǫ→o such that is-polyǫ→o Aǫ = t iff Aǫ represents a syn-
tax tree of an expression of type ι that is a polynomial, (2) deriv(ι→ι)→(ι→ι)

such that deriv(ι→ι)→(ι→ι)Fι→ι is the derivative of the function Fι→ι, and (3)
poly-diffǫ→ǫ→ǫ such that, if is-polyǫ→oAǫ holds, then poly-diffǫ→ǫ→ǫAǫ pxιq is
the result of applying the usual differentiation rules for polynomials to Aǫ with
respect to xι. Then the meaning formula for poly-diffǫ→ǫ→ǫ is

∀uǫ . ∀ vǫ . (is-varǫ→o uǫ ∧ is-exprιǫ→o uǫ ∧ is-polyǫ→o vǫ) ⊃

deriv(ι→ι)→(ι→ι)(Jabsǫ→ǫ→ǫ uǫ vǫKι→ι) =

Jabsǫ→ǫ→ǫ uǫ (poly-diffǫ→ǫ→ǫ vǫ uǫ)Kι→ι.
5

5 We restrict this example to polynomials since polynomial functions and their deriva-
tives are always total. Thus issues of undefinedness do not arise in the formulation
of the meaning formula for poly-diffǫ→ǫ→ǫ.



13

The string of equations

deriv(ι→ι)→(ι→ι)(λxι . x
2
ι ) (1)

= deriv(ι→ι)→(ι→ι)(Jpλxι . x
2
ι qKι→ι) (2)

= deriv(ι→ι)→(ι→ι)(Jabsǫ→ǫ→ǫ pxιq px
2
ι qKι→ι) (3)

= Jabsǫ→ǫ→ǫ pxιq (poly-diffǫ→ǫ→ǫ px
2
ι q pxιq)Kι→ι (4)

= Jabsǫ→ǫ→ǫ pxιq p2 ∗ xιqKι→ι (5)

= Jpλxι . 2 ∗ xιqKι→ι (6)

= λxι . 2 ∗ xι (7)

proves (informally) the desired result where the equation given by (3) and (4)
results from instantiating the meaning formula for poly-diffǫ→ǫ→ǫ with pxιq and
px2ι q.

5 A Sketch of a Simple Proof System

At first glance, it would appear that a proof system for cttqe could be straight-
forwardly developed by extending Andrews’ proof system for Q0 [2, p. 213].
We can define is-varǫ→o (and is-conǫ→o in a similar way) by the axiom schemas
is-varǫ→o pxαq and ¬is-varǫ→o Aǫ where Aǫ is any construction that is not a
quoted variable. We can recursively define is-exprαǫ→o using a set of axioms that
say how expressions are constructed. We can specify that the type ǫ of construc-
tions is an inductive type using a set of axioms that say (1) the constructions
are distinct from each other and (2) induction holds for constructions. We can
specify quotation using the Law of Quotation pAαq = E(Aα) (Theorem 3.36).
And we can specify evaluation using the Law of Disquotation JpAαqKα = Aα

(Theorem 3.37).
Andrews’ proof system with these added axioms would enable simple the-

orems involving quotation and evaluation to be proved, but the proof system
would not be able to substitute expressions for free variables occurring in the
argument of an evaluation. Hence schemas and meaning formulas could be ex-
pressed in cttqe, but they would be useless because they could not be instanti-
ated. Clearly, a useful proof system for cttqe requires some form of substitution
that is applicable to evaluations.

Due to the Variable Problem, substitution involving evaluations cannot be
purely syntactic as in a traditional logic. It must be a semantics-dependent op-
eration in which side conditions, like whether a variable is free in an expression,
are proved within the proof system. Since cttqe supports reasoning about syn-
tax, an obvious way forward is to add to C a logical constant subǫ→ǫ→ǫ→ǫ such
that, if Cβ is the result of substituting Aα for each free occurrence of xα in Bβ

without any variable captures, then

subǫ→ǫ→ǫ→ǫ pAαq pxαq pBβq = pCβq.

subǫ→ǫ→ǫ→ǫ thus plays the role of an explicit substitution operator [1].



14

This approach, however, does not work in cttqe since Bβ may contain eval-
uations, but quotations in cttqe may not contain evaluations. Although the
approach does work in Quqe

0 [9] in which quotations in cttqe may contain eval-
uations, it is extremely complicated due to the Evaluation Problem.

A more promising approach is to add some axiom schemas to the five beta-
reduction axiom schemas used by Andrews’ in his proof system for Q0 [2, p. 213]
that specify beta-reduction of an application of the form (λxα . JBǫKβ)Aα. But
how do we overcome the Double Substitution Problem? There seems to be no
easy way of emulating a double substitution with beta-reduction, so the best
approach appears to be to consider only cases that do not require a second
substitution, as formalized by the following axiom schema:

(is-exprβǫ→o ((λxα . Bǫ)Aα) ∧ ¬(is-free-inǫ→ǫ→o pxαq ((λxα . Bǫ)Aα))) ⊃

(λxα . JBǫKβ)Aα = J(λxα . Bǫ)AαKβ .

Here is-free-inǫ→ǫ→o would be a new logical constant in C, and the second con-
dition would say that xα is not free in the expression whose syntax tree is
represented by (λxα . Bǫ)Aα. As a result, there would be no free occurrences
of xα in the right-hand side of the conclusion after the evaluation is eliminated.
Details of this approach will be given in a future paper that presents the proof
system for cttqe that we have sketched.

6 Conclusion

Quotation and evaluation provide a basis for metaprogramming as seen in Lisp
and other programming languages. We believe that these mechanisms can also
provide a basis for metareasoning in traditional logics like first-order logic or
simple type theory. However, incorporating quotation and evaluation into a tra-
ditional logic is much more challenging than incorporating them into a program-
ming language due to the three problems we described in the Introduction.

In this paper we have introduced cttqe, a logic based on Q0 [2], Andrews’
version of Church’s type theory, that includes quotation and evaluation. We
have presented the syntax and semantics of cttqe, sketched a proof system for
it, and given examples that show the practical benefit of having quotation and
evaluation in a logic.

cttqe is a simpler version of Quqe
0 [9], a richer, but more complicated, version

of Q0 with undefinedness, quotation, and evaluation. In Quqe
0 , quotation may be

applied to expressions containing evaluations, expressions may be undefined and
functions may be partial, and substitution is implemented explicitly as a logical
constant. Allowing quotation to be applied to all expressions makes Quqe

0 much
more expressive than cttqe but also much more difficult to implement since
substitution in the presence of evaluations is highly complex. We believe that
cttqe would not be hard to implement. Since it is a version of Church’s type
theory, it could be implemented by extending an implementation of HOL [11]
such as HOL Light [14].



15

Our approach for incorporating quotation and evaluation into Church’s type
theory — introducing an inductive type of constructions, a quotation operator,
and a typed evaluation operator — can be applied to other logics including
many-sorted first-order logic. We have shown that developing the needed syntax
and semantics is relatively straightforward, while developing a proof system for
the logic is fraught with difficulties.

Acknowledgments

The author thanks the reviewers for their helpful comments and suggestions.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitution. Journal
of Functional Programming, 1:375–416, 1991.

2. P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
through Proof, Second Edition. Kluwer, 2002.

3. A. Bawden. Quasiquotation in Lisp. In O. Danvy, editor, Proceedings of the 1999
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, pages 4–12, 1999. Technical report BRICS-NS-99-1, University of
Aarhus, 1999.

4. A. Chlipala. Certified Programming with Dependent Types: A Pragmatic Introduc-
tion to the Coq Proof Assistant. MIT Press, 2013.

5. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56–68, 1940.

6. S. Costantini. Meta-reasoning: A survey. In A. C. Kakas and F. Sadri, editors,
Computational Logic: Logic Programming and Beyond, Essays in Honour of Robert
A. Kowalski, Part II, volume 2408 of Lecture Notes in Computer Science, pages
253–288, 2002.

7. W. M. Farmer. Chiron: A set theory with types, undefinedness, quotation, and
evaluation. Computing Research Repository, abs/1305.6206 (154 pp.), 2013.

8. W. M. Farmer. The formalization of syntax-based mathematical algorithms us-
ing quotation and evaluation. In J. Carette, D. Aspinall, C. Lange, P. Sojka,
and W. Windsteiger, editors, Intelligent Computer Mathematics, volume 7961 of
Lecture Notes in Computer Science, pages 35–50. Springer, 2013.

9. W. M. Farmer. Simple type theory with undefinedness, quotation, and evaluation.
Computing Research Repository, abs/1406.6706 (87 pp.), 2014.

10. G. Gonthier, A. Mahboubi, and E. Tassi. A Small Scale Reflection Extension for
the Coq system. Research Report RR-6455, Inria Saclay Ile de France, 2015.

11. M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

12. J. Grundy, T. Melham, and J. O’Leary. A reflective functional language for hard-
ware design and theorem proving. Journal of Functional Programming, 16, 2006.

13. J. Harrison. Metatheory and reflection in theorem proving: A survey and
critique. Technical Report CRC-053, SRI Cambridge, 1995. Available at
http://www.cl.cam.ac.uk/~jrh13/papers/reflect.ps.gz.

http://www.cl.cam.ac.uk/~jrh13/papers/reflect.ps.gz


16

14. J. Harrison. HOL Light: An overview. In S. Berghofer, T. Nipkow, C. Urban,
and M. Wenzel, editors, Theorem Proving in Higher Order Logics, volume 5674 of
Lecture Notes in Computer Science, pages 60–66. Springer, 2009.

15. L. Henkin. Completeness in the theory of types. Journal of Symbolic Logic, 15:81–
91, 1950.

16. U. Norell. Towards a Practical Programming Language based on Dependent Type
Theory. PhD thesis, Chalmers University of Technology, 2007.

17. U. Norell. Dependently typed programming in Agda. In A. Kennedy and
A. Ahmed, editors, TLDI, pages 1–2. ACM, 2009.

18. Plataformatec. Elixir. http://elixir-lang.org/, 2015.
19. W. V. O. Quine. Mathematical Logic: Revised Edition. Harvard University Press,

2003.
20. Rice University Programming Languages Team. Metaocaml: A compiled, type-safe,

multi-stage programming language. http://www.metaocaml.org/, 2011.
21. T. Sheard and S. P. Jones. Template meta-programming for Haskell. ACM SIG-

PLAN Notices, 37:60–75, 2002.
22. A. Stump. Directly reflective meta-programming. Higher-Order and Symbolic

Computation, 22:115–144, 2009.
23. W. Taha and T. Sheard. MetaML and multi-stage programming with explicit

annotations. Theoretical Computer Science, 248:211–242, 2000.
24. A. Tarski. The concept of truth in formalized languages. In J. Corcoran, edi-

tor, Logic, Semantics, Meta-Mathematics, pages 152–278. Hackett, second edition,
1983.

25. The F# Software Foundation. F#. http://fsharp.org/, 2015.
26. P. Van Der Walt and W. Swierstra. Engineering proof by reflection in Agda. In

R. Hinze, editor, Implementation and Application of Functional Languages, volume
8241 of Lecture Notes in Computer Science, pages 157–173. Springer, 2012.

http://elixir-lang.org/
http://www.metaocaml.org/
http://fsharp.org/

	Incorporating Quotation and Evaluation into Church's Type Theory: Syntax and Semantics

