
Balls and Funnels: Energy Efficient
Group-to-Group Anycasts

Jennifer Iglesias1 Rajmohan Rajaraman2, R. Ravi1, and Ravi Sundaram2

1 Carnegie Mellon University, Pittsburgh PA USA
{jiglesia, ravi}@andrew.cmu.edu

2 Northeastern University, Boston MA USA
{rraj, koods}@ccs.neu.edu

Abstract. We introduce group-to-group anycast (g2g-anycast), a net-
work design problem of substantial practical importance and consider-
able generality. Given a collection of groups and requirements for directed
connectivity from source groups to destination groups, the solution net-
work must contain, for each requirement, an omni-directional down-link
broadcast, centered at any node of the source group, called the ball;
the ball must contain some node from the destination group in the re-
quirement and all such destination nodes in the ball must aggregate into
a tree directed towards the source, called the funnel-tree. The solution
network is a collection of balls along with the funnel-trees they con-
tain. g2g-anycast models DBS (Digital Broadcast Satellite), Cable TV
systems and drone swarms. It generalizes several well known network de-
sign problems including minimum energy unicast, multicast, broadcast,
Steiner-tree, Steiner-forest and Group-Steiner tree. Our main achieve-
ment is an O(log4 n) approximation, counterbalanced by an log(2−ε) n
hardness of approximation, for general weights. Given the applicabil-
ity to wireless communication, we present a scalable and easily imple-
mented O(logn) approximation algorithm, Cover-and-Grow for fixed-
dimensional Euclidean space with path-loss exponent at least 2.

Keywords: Network design, wireless, approximation

1 Introduction

1.1 Motivation

Consider a DBS (Digital Broadcast Satellite) system such as Dish or DIRECTV
in the USA (see Fig. 1). The down-link is an omni-directional broadcast from
constellations of satellites to groups of apartments or neighborhoods serviced by
one or more dish installations. The up-link is sometimes a wired network but
in remote areas it is usually structured as a tree consisting of point-to-point
wireless links directed towards the network provider’s head-end (root). The high
availability requirement of such services are typically satisfied by having multiple
head-ends and anycasting to them. The same architecture is found in CATV
(originally Community Antenna TV), or cable TV distribution systems as well

ar
X

iv
:1

60
5.

07
19

6v
1

 [
cs

.N
I]

 2
3

M
ay

 2
01

6

as sensor networks where an omni-directional broadcast from a beacon is used
to activate and control the sensors; the sensors then funnel their information
back using relays. Moreover, this architecture is also beginning to emerge in
drone networks, for broadcasting the Internet, by companies such as Google
[10] and Facebook’s Connectivity Labs [8]. The Internet is to be broadcast from
drones flying fixed patterns in the sky to a collection of homes on the ground.
The Internet up-link from the homes is then aggregated using wireless links
organized as a tree to be sent back to the drones. Anycasting is an integral part
of high-availability services such as Content Delivery Networks (CDNs) where
reliable connectivity is achieved by reaching some node in the group. What
is the common architecture underlying all these applications and what is the
constraining resource that is driving their form?

The various distribution systems can be abstractly seen to consist of a down-
link ball and an up-link funnel-tree (see Fig. 1). The ball is an omni-directional

DEMAND GRAPH

Funnel Tree Broadcast Ball

Ground Stations

Satellites

Fig. 1: Pictogram of Digital Broadcast
Satellite System with 2 satellite groups
and 4 ground station groups on left with
associated demand graph on the right.
The broadcast balls are denoted by dot-
ted black lines, and the funnel trees by
solid yellow lines

broadcast from the publisher or
content-producer to a large collection
of subscribers or content-consumers.
At the same time, the consumers have
information that they need to dynam-
ically send back to the publisher in or-
der to convey their preferences and re-
quirements. The funnel-tree achieves
this up-link efficiently in terms of both
time and energy. Aggregation of infor-
mation and use of relays uses less en-
ergy as compared to omni-directional
broadcasts by each node back to the
publisher and also avoids the schedul-
ing needed to avoid interference. In
this work, we focus primarily on to-
tal energy consumption. The applica-
tion scenarios mentioned in the open-
ing paragraph are all energy sensitive.
Sensor networks [11] and drone fleets [12] are particularly vulnerable to energy
depletion. For the purpose of energy conservation, generally each wireless node
can dynamically adjust its transmitting power based on the distance of the re-
ceiving nodes and background noise. In the most common power-attenuation
model [14], the signal power falls as 1

rκ where r is the distance from the trans-
mitter to the receiver and κ is the path-loss exponent - a constant between 2
and 4 dependent on the wireless environment. A key implication of non-linear
power attenuation is that relaying through an intermediate node can sometimes
be more energy efficient than transmitting directly - a counter-intuitive viola-
tion of the triangle inequality - e.g., in a triangle ABC with obtuse angle ABC,
where d2AB + d2BC < d2AC .

1.2 Problem Formulation and Terminology

In this paper, we consider a general formulation that encompasses a wide variety
of scenarios: given a collection of groups (of nodes) along with a directed demand
graph over these groups the goal is to design a collection of balls and associated
funnel-trees of lowest cost so that every demand requirement is met - meaning
that if there is an arc from a source group to a destination group then the
solution must have a ball centered at a node of the source group that includes a
funnel-tree containing a node of the destination group.

Formally, we define the group-to-group anycast problem, or g2g-anycast, as
follows: as input we are given n nodes along with a collection of source groups
S1, S2, . . . , Sp and a collection of destination groups T1, T2, . . . , Tq which are
subsets of these nodes; a demand graph on these groups consisting of directed
arcs from source groups Si to destination groups Tj . A nonegative cost cuv is
specified between every pair of nodes; when a node u incurs a cost C in doing
an omni-directional broadcast it reaches all nodes v such that cuv ≤ C. A metric
duv is also specified between every pair of nodes and when a node u connects
to node v in the funnel-tree using a point-to-point link it incurs a cost duv. A
solution consists of a broadcast ball around every source node s (we give a radius
which the source can broadcast to), and a funnel tree rooted at s. A demand
Si, Tj is satisfied if there is a broadcast ball from some s ∈ Si which contains
some t ∈ Tj and the funnel tree of s also includes t. The cost of the solution is
the sum of the ball-radii around the source nodes (under the broadcast costs c)
and the sum of the costs of the funnel trees (under the funnel metric d) that
connect all terminal-nodes used to cover the demands to the source nodes within
whose balls they lie. We do not allow funnel trees to share edges (even if they
are going to the same source group), and will pay for each copy of an edge used.

– First, the bipartite demand graph is no less general than an arbitrary demand
graph since a given group can be both a source group and destination group.

– Second, since funnel trees sharing the same edge pay seperately, solutions
to the problem decompose across the sources and it is sufficient to solve
the case where we have exactly one source group S = {s1, s2, . . . , sk} and
destination groups T1, T2, . . . , Tq (i.e. the demand graph is a star consisting
of all arcs (S, Tj), 1 ≤ j ≤ q). This observation also enables parallelized
implementations.

– Lastly, there is no loss of generality in assuming a metric duv for funnel-tree
costs; even if the costs were arbitrary their metric completion is sufficient
for determining the optimal funnel-tree.

We refer collectively to the (ball) costs cuv and (funnel-tree) metric distances
duv as weights. In this paper we consider two cases - one, the general case where
the weights can be arbitrary and two, the special case where the nodes are
embedded in a Euclidean space and all weights are induced from the embedding.

1.3 Our Contributions

Our main results on the minimum energy g2g-anycast problem are as follows:

g2g, any metric g2s, any metric g2g, `22 norm

Upper O(log4 n) 2 lnn O(logn)

Lower Ω(log2−ε n) Ω(logn) (1− o(1)) lnn

Fig. 2: A summary of upper and lower bounds achieved in the different problems.
The lower bound holds for every fixed ε > 0

1. We present a polynomial-time O(log4 n) approximation algorithm for the
g2g-anycast problem on n nodes with general weights. We complement this
with an Ω(log2−ε n) hardness of approximation, for any ε > 0 (Section 2).

2. One scenario with practical application is where every destination group is
a singleton set while source groups continue to have more than one node; we
refer to this special case of g2g-anycast as g2s anycast. We present a tight
logarithmic approximation result for g2s-anycast (Section 3).

3. For the realistic scenario where the nodes are embedded in a 2-D Euclidean
plane with path-loss exponent κ ≥ 2, we design an efficientO(log n)-approximation
algorithm Cover-and-Grow, and also establish a matching logarithmic hard-
ness of approximation result (Section 4).

4. Lastly, we compare Cover-and-Grow with 4 alternative heuristics on random
2-D Euclidean instances; we discover that Cover-and-Grow does well in a
wide variety of practical situations in terms of both running time and quality,
besides possessing provable guarantees. This makes Cover-and-Grow a go-
to solution for designing near-optimal data dissemination networks in the
wireless infrastructure space (Section 5).

1.4 Related Work

A variety of power attenuation models for wireless networks have been studied
in the literature [14]. Though admittedly coarse, the model based on the path
loss exponent (varying from 2, in free space to 4, in lossy environments) is the
standard way of characterizing attenuation [13]. The problems of energy efficient
multicast and broadcast in this model have been extensively studied [17,18,16,9].
Two points worth mentioning in this context are: one, we consider the funnel-
tree as consisting of point-to-point directional transmissions rather than an omni-
directional broadcast since the nonlinear cost of energy makes it more economical
to relay through an intermediate node, and two, we consider only energy spent
in transmission but not in reception.

Network design problems are notoriously NP-hard. Over time sophisticated
approximation techniques have been developed, ranging from linear program-
ming and randomized rounding to metric embeddings [19]. The g2g-anycast
problem with general weights is a substantial generalization including problems
such as minimum spanning trees, multicast trees, broadcast trees, Steiner trees
and Steiner forests. Even the set cover problem can be seen as a special case
where the destination groups are singletons. The g2g-anycast also generalizes
the much harder group Steiner tree problem [5,6].

2 Approximating g2g-anycast

In this section, we present an O(log4 n)-approximation for the g2g-anycast prob-
lem with general weights by a reduction to the generalized set-connectivity prob-
lem. We then give a reduction from the group Steiner tree problem that demon-
strates that there is no polynomial-time log2−ε n-approximation algorithm for
g2g-anycast unless P = NP .

2.1 Approximation algorithm for g2g-anycast with general weights

The generalized set-connectivity problem [3] takes as input an edge-weighted
undirected graph G = (V,E), and collection of demands {(S1, T1), . . . , (Sk, Tk)},
each pair are disjoint vertex sets. The goal is to find a minimum-weight subgraph
that contains a path from any node in Si to any node in Ti for every i ∈
{1, . . . , k}. Without loss of generality, the edge weights can be assumed to form
a metric. Chekuri et al [3] present an O(log2 n log2 k)-approximation for this
problem using minimum density junction trees.

We show a reduction from the g2g-anycast problem with general weights to
the generalized set-connectivity problem. Recall that without loss of generality,
we may assume that in the g2g problem, we are given a single source group S,
a collection of destination groups T1, . . . , Tq, nonegative (broadcast) costs cuv,
and (funnel-tree) metric costs duv.

2.2 The Reduction

si(1) si(r)

si(0)

ti(1) ti(r)

Nodes within broadcast cost ci1
Nodes within broadcast cost cir

di1

dir

ci1 cir

G(i,1)

The graph G(i)

G(i,r)

Fig. 3: A connected component G(i) in
the reduction of the g2g-anycast prob-
lem with general weights to the general-
ized set connectivity problem.

The main idea of the reduction is to
overload the broadcast cost of the ball
radius around each node in the source
group S into a larger single metric
in which we use the generalized set-
connectivity algorithm. In particular,
for every source node si ∈ S, we sort
the nodes in T1 ∪ . . . ∪ Tq in increas-
ing order of broadcast cost from si
to get the sorted order, say ti1, . . . , t

i
r

where tij is at distance cij from si,
and we have ci1 ≤ ci2 . . . ≤ cir, where
|T1∪ . . .∪Tq| = r. We now build r dif-
ferent graphs G(i, 1), . . . , G(i, r) where G(i, j) is a copy of the metric completion
of G under the funnel tree costs d induced on the node set {si, ti1, . . . , tij}, with

the copies denoted as {si(j), ti1(j), . . . , tij(j)}. (Note that the terminal node tia ap-
pears in copies a through r.) Finally, we take the r copies of the node si denoted
si(1), si(2), . . . , si(r) and connect them to a new node si(0) where the cost of the
edge from si(j) to si(0) is cij . Thus these r different copies G(i, 1), . . . , G(i, r) all
connected to the new node si(0) together form one connected component G(i).

We now repeat this process for every source node si for i ∈ {1, . . . , k} to get k
different graphs G(1), . . . , G(k).

We are now ready to define the generalized set connectivity demands. We
define a new super source set SS = {s1(0), s2(0), . . . , sk(0)}. For each of the
destination groups Tx, we define the terminal set TTx to be the union of the
copies of all corresponding terminal nodes in any of the copies G(i). More pre-
cisely TTx = {∪itia(j)|a ≤ j ≤ r, tia ∈ Tx}. The final demand pairs for the set
connectivity problem are {(SS, TT1), . . . , (SS, TTq)}.

Lemma 1. Given an optimal solution to the g2g-anycast problem, there is a
solution to the resulting set connectivity problem described above of the same
cost.

Proof. Suppose the solution of the g2g problem involved picking broadcast ball
radii c1, . . . , ck from source nodes s1, . . . , sk respectively. We also have funnel
trees H1, . . . ,Hk that connect terminals T (H1), . . . , T (Hk) to s1, . . . , sk respec-
tively. Note that all terminals in T (Hx) are within the thresholds that receive
the broadcast from sx, i.e. for every such terminal t ∈ Hx, the broadcast cost
of the edge between sx and t is at most the radius threshold cx at which sx is
broadcasting.

Consider the tree Hx with terminals T (Hx) connected to the root sx, so that
cx is the largest weight of any of the edges from sx to any terminal in T (Hx). (If
all of them were even closer, we can reduce the broadcast cost cx of broadcasting
from sx and reduce the cost of the g2g solution.) Let the terminal in the funnel
tree with this broadcast cost be t(x) and in the sorted order of weights from sx
let the rank of t(x) be p. We now consider the graph copy G(x, p) and take a
copy of the funnel tree Hx in this copy. To this we add an edge from the root
sx(p) to the node sx(0) of cost cxp. The total cost of this tree thus contains
the funnel tree cost of Hx (denoted by d(Hx)) as well as the broadcast cost of
cxp from sx. Taking the union of such funnel trees over all the copies gives the
lemma.

Lemma 2. Given an optimal solution to the set connectivity problem described
above, there is a solution to the g2g-anycast problem from which it was derived
of the same total weight.

Proof. In the other direction, consider each copy G(x) in turn and consider the
set of edges in the tree containing the source node sx(0) in the solution to the
generalized set-connectivity instance. First notice that it contains at most one
of the edges to a copy sx(q) for some q. Indeed if we have edges to two different
copies sx(p) and sx(q) from sx(0) for p < q, then since G(x, p) ⊂ G(x, q), we
can consider the tree edges in G(x, p) and buy them in G(x, q) where they also
occur to cover the same set of terminals at smaller cost. In this way, we can save
the broadcast cost of the copy of the edge from sx(0) to sx(p) contradicting the
optimality of the solution. Now that we have only one of the edges, say to sx(q)
from sx(0), we can consider all the edges of the tree in the copy G(x, q) and
include these edges in a funnel tree H ′x. The distance of the edge from sx(0) to

sx(q) pays for the broadcasting cost from sx in the original instance and the cost
of the rest of the tree is the same as the funnel tree cost of H ′q (Note that our
observation above implies that edges in the metric completion in the tree can be
converted to paths in the graph and hence connect all the nodes in the tree).

Since every terminal superset TTj is connected to some source node of SS,
all the demands of the g2g problem must be satisfied in the collection of funnel
trees H ′x constructed in this way giving a solution to the g2g problem of the
same cost.

The above two lemmas with the result of [3] gives us the following result.

Theorem 1. The general weights version of the g2g-anycast problem with k
destination groups admits a polynomial-time approximation algorithm with per-
formance ratio O(log2(k) log2 n) in an n-node graph.

2.3 Hardness of approximating g2g-anycast

We observe that the g2g-anycast problem with general weights can capture the
group Steiner tree problem which is known to be log2−ε n-hard to approximate
unless NP is contained in quasi-polynomial time [7].

In the group Steiner tree problem, we are given an undirected graph with
metric edge costs, a root s and a set of subsets of nodes called groups, say
T1, . . . , Tg, and the goal is to find a minimum cost tree that connects the root
with at least one node from each group. We can easily define this as a g2g-anycast
problem with a singleton source group S = {s} with the single root node. The
terminal sets for the g2g-anycast problem are the groups T1, . . . , Tg, with the
demand graph (S, T1), . . . , (S, Tg). We can set the broadcast costs of any node in
the graph from s to be zero; we use the given metric costs in the group Steiner
problem as the funnel tree costs to capture the cost of the group Steiner tree.
Any solution to the resulting g2g-anycast problem is a single tree connecting s to
at least one node in each of the groups as required and its total weight is just its
funnel tree cost that reflects precisely the cost of this feasible group Steiner tree
solution. The hardness follows from this approximation-preserving reduction.

3 Approximating g2s-anycast

In this section, we consider g2s-anycast, a special case of the g2g-anycast, in
which each destination group is a singleton set (i.e., has exactly one terminal).
Let S denote the source-set and t1, . . . , tq denote the terminals.

The desired solution is a collection of broadcast balls and funnel trees Tv,
each rooted at a source node v, so that for every demand (S, tj), there exists at
least one node v in S such that tj ∈ Tv.

We now present a Θ(log n)-approximation algorithm for g2s-anycast problem.
Our algorithm iteratively computes an approximation to a minimum density
assignment, which assigns a subset of as yet unassigned terminals to a source
node, and then combines these assignments to form the final solution.

Minimum density assignment. We seek a source s and a tree Ts rooted at s
that connects s to a subset of terminals, such that the ratio (c(Ts) + d(Ts))/|Ts|
is minimized among all choices of s and Ts (here c(Ts) denotes the minimum
broadcast cost for s to reach the terminals in Ts, while d(Ts denotes the funnel-
tree cost, i.e. the sum of the metric distances duv over all edges uv ∈ Ts).
We present a constant-approximation to the problem, using a constant factor
approximation algorithm for the rooted k-MST problem, which is defined as
follows: given a graph G with weights on edges and a root node, determine a tree
of minimum weight that spans at least k vertices. The best known approximation
factor for the k-MST problem [15] is 2 [4]. We now present our algorithm for
minimum density assignment.

– For each source s ∈ S, integer k ∈ [1, n], and integer r drawn from the set
{cstj |1≤j≤q}:
• Let G′ denote the graph with vertex set {s} ∪ {tj |cstj ≤ r}, and edge

weights given by d.
• Compute a 2-approximation T ′(s, r, k) to the k-MST problem over the

graph G′ with s being the root.
– Among all trees computed in the above iterations, return a tree that mini-

mizes mins,r,k(d(T ′(s, r, k)) + r)/k.

Lemma 3. The above algorithm is a polynomial-time 2-approximation algo-
rithm for the minimum density assignment problem.

Proof. We first show that the algorithm is polynomial time. The number of
different choices for the source equals the size of the source set, the number
of choices for k is n, and the number of different values for r is the number
of different broadcast costs, which is at most n. Thus the number of iterations
in the for loop is at most n3. Consider an optimal solution T to the minimum
density assignment problem, rooted at source s. It is a valid solution to the k-
MST problem in the iteration given by s, r = c(T), k = |T |. For this particular
iteration, the tree T ′(s, r, k) satisfies (d(T ′(s, r, k) + r)/k ≤ (2d(T) + r)/k ≤
2 · (d(T) + r)/k). Since our algorithm returns the tree that has the best density,
we have a 2-approximation for the minimum density assignment.

Approximation algorithm for g2s-anycast. Our algorithm is a greedy it-
erative algorithm, in which we repeatedly compute an approximation to the
minimum density assignment problem, and return an appropriate union of all of
the trees computed.

– For each source s, set Ts to {s}.
– While all terminals are not assigned:
• Compute a 2-approximation T to the minimum density assignment prob-

lem using any source s and the unassigned terminals.
• If T is rooted at source s, then set Ts to be the minimum spanning tree

of the union of the trees T and Ts.
– Return the collection {Ts}.

Theorem 2. The greedy algorithm yields an approximation algorithm with per-
formance ratio 2 lnn to the g2s-anycast problem.

Proof. Let OPT denote the cost of the optimal solution to the problem. Any
solution is composed of at most m trees, one for each of the sources, with each
singleton group being included as a node in one of these trees. Let T ∗s denote
the tree rooted at source s in an optimal solution.

Consider any iteration i of our algorithm. Let ni denote the number of unas-
signed terminals at the start of the iteration i. By an averaging argument, we
know there exists a source s such that

d(T ∗s) + c(T ∗s)

|T ∗s |
≤ OPT

ni
,

By Lemma 3, it follows that in the ith iteration of the greedy algorithm, if Ti is
the tree computed in the step, then

d(Ti) + c(Ti)

|Ti|
≤ 2 ·OPT

ni
,

Adding over all steps, we obtain that the total cost is∑
i

(d(Ti) + c(Ti)) ≤ 2 ·OPT ·
∑
i

|Ti|
ni
≤ 2 ·OPT ·Hn ≤ 2OPT lnn.

Hardness of approximation We complement the positive result with a match-
ing inapproximability result which shows that the above problem is as hard as
set cover.

Theorem 3. Unless NP = P there is no polynomial-time α lnn approximation
to the g2s-anycast problem, for a suitable constant α > 0.

We defer the proof of this theorem to Appendix A.

4 Euclidean g2g-anycast

In this section, we present a Θ(log n)-approximation for the more realistic version
of the g2g-anycast problem in the 2-D Euclidean plane. We achieve our results
by a reduction to an appropriately defined set cover problem.

In detail, all the points in both the source group S and destination groups
T1, . . . , Tq lie in the 2-D Euclidean plane. The cost of an edge (u, v) is the Eu-
clidean distance between u and v raised to the path loss exponent κ. For the
rest of this section, we assume that κ = 2. (The corresponding results for κ > 2
follow with very simple modifications.) First we show that even this special case
of the g2g-anycast problem does not permit an approximation algorithm with
ratio (1− ε) lnn on an instance with n nodes unless NP is in quasi-polynomial
time. Next, we present Cover-and-Grow, an O(log n)-approximation algorithm
that applies a greedy heuristic to an appropriately defined instance of the set
covering problem.
Hardness of 2-D g2g-anycast Again we can prove a hardness via a reduction
from set cover.

Theorem 4. The 2-D Euclidean version of the g2g problem on n nodes does not
permit a polynomial-time (1 − o(1)) lnn approximation algorithm unless NP =
P .

The proof of this is deferred to Appendix B.

4.1 Cover-and-Grow

We now describe a matching O(log n)-approximation for the problem. For this
we first need the following property of minimum spanning trees of points in the
2-D Euclidean plane within a unit square, when the costs of any edge in the tree
are the squared Euclidean distances between the edge’s endpoints.

Theorem 5. [2] The weight of a minimum spanning tree of a finite number
of points in the 2-D Euclidean plane within a unit square, where the weight of
any edge is the square of the Euclidean distance between its endpoints, is at most
3.42.

We can apply this theorem to bound the cost of the funnel trees within any
demand ball in the solution within a factor of at most 3.42 of the cost of the
ball. Indeed, by scaling the diameter of the demand ball to correspond to unit
distance, the above theorem shows that for any finite set of terminal nodes (i.e.
nodes in the destination group) within the ball, a funnel tree which is an MST
that connects these terminal nodes to the center of the ball has total cost at
most 3.42. The cost of the demand ball is the square of the Euclidean distance
of the ball radius which, in the scaled version, has cost (1

2)2 = 1
4 . This shows

that the funnel tree has cost at most 13.68 times the cost of the funnel ball. This
motivates an algorithm that uses balls of varying radii around each source node
as a “set” that has cost equal to the square of the ball radius (the ball cost)
and covers all the terminal nodes within this ball (which can be connected in a
funnel tree of cost at most 13.68 times that of the demand ball).

Algorithm Cover-and-Grow

1. Initialize the solution to be empty.
2. While there is still an unsatisfied demand edge

– For every source node si, for every possible radius at which there is
a terminal node belonging to some destination group T for which the
demand (S, T) is yet unsatisfied, compute the ratio of the square of
the Euclidean radius of the ball to the number of as yet unsatisfied
destination groups whose terminal nodes lie in the ball.

– Pick the source node and ball radius whose ratio is minimum among
all the available balls, and add it to the solution (both the demand ball
around this node and a funnel tree from one node of each destination
group whose demand is unsatisfied at this point). Update the set of
unsatisfied demands accordingly.

Theorem 6. Algorithm Cover-and-grow runs in polynomial time and gives an
O(log n)-approximate solution for the 2-D g2g-anycast problem in an n-node
graph.

Proof. We will use a reduction from the given 2-D g2g-anycast problem to an
appropriate set cover problem as described in the algorithm: The elements of
the set cover problem are the terminal sets Tj such that the demand graph has
the edge (S, Tj). For every source node si ∈ S, and for every possible radius
r at which there is a terminal node belonging to some destination group T for
which there is a demand (S, T), we consider a set X(si, r) that contains all the
destination groups Tj such that some node of Tj lies within this ball. The cost
of this set is r2.

First, we argue that an optimal solution for the 2-D g2g-anycast problem
of cost C∗ gives a solution of cost at most C∗ to this set cover problem. Next,
we show how any feasible solution to the set cover problem of cost C gives a
feasible solution to the 2-D g2g-anycast problem of cost at most 14.68C. These
two observations give us the result since the algorithm we describe is the standard
greedy approximation algorithm for set cover.

To see the first observation, given an optimal solution for the 2-D g2g-anycast
problem of cost C∗, we pick the sets corresponding to the demand balls in the
solution for the set cover problem. Since these demand balls are a feasible solution
to the anycast problem, they together contain at least one terminal from each
of the destination groups Tj for which there is a demand edge (S, Tj). These
balls form a solution to the set cover problem and the demand ball costs of the
anycast solution alone pay for the corresponding costs of the set cover problem.
Hence this feasible set cover solution has cost at most C∗.

For the other direction, given any feasible solution to the set cover problem
of cost C, note that this pays for the demand balls around the source nodes
in this set cover solution. Now we can use the implication in the paragraph
following Theorem 5 to construct a funnel tree for each of these demand balls
that connects all the terminals within these balls to the source node at the center
of the ball with cost at most 13.68 times the cost of the demand ball around the
source node. Summing over all such balls in the solution gives the result.

5 Empirical Results

We conducted simulations comparing Cover-and-Grow with four different natu-
ral heuristics for points embedded in a unit square in the 2-D Euclidean plane.
These simulations allow us gain perspective on the real-world utility of Cover-
and-Grow vis a vis alternatives that do not possess provable guarantees but yet
have the potential to be practical. The specifics of the simulation and the details
of the results are discussed in Appendix C. Cover-and-Grow performs compara-
bly to the heuristics in performance; and the runtime of Cover-and-Grow was
better than the heuristics except for the T-centric approach.

References

1. Analytical approach to parallel repetition. In: Symposium on Theory of Comput-
ing, STOC 2014, New York, NY, USA. pp. 624–633 (2014)

2. Aichholzer, O., Allen, S., Aloupis, G., Barba, L., Bose, P., de Varufel, J.L., Iacono,
J., Langerman, S., Souvaine, D., Taslakian, P., Yagnatinsky, M.: Sum of squared
edges for MST of a point set in a unit square. In: Japanese Conference on Discrete
and Computational Geometry (JCDCG) (2013)

3. Chekuri, C., Even, G., Gupta, A., Segev, D.: Set connectivity problems in undi-
rected graphs and the directed steiner network problem. ACM Trans. Algorithms
7(2), 18:1–18:17 (Mar 2011)

4. Garg, N.: Saving an epsilon: a 2-approximation for the k-mst problem in graphs.
In: ACM Theory of Computing. pp. 396–402 (2005)

5. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for
the group steiner tree problem. J. Algorithms 37(1), 66–84 (2000)

6. Halperin, E., Kortsarz, G., Krauthgamer, R., Srinivasan, A., Wang, N.: Integrality
ratio for group steiner trees and directed steiner trees. SIAM J. Comput. 36(5),
1494–1511 (2007)

7. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: ACM The-
ory of Computing. pp. 585–594 (2003)

8. Lapowsky, I.: Facebook lays out its roadmap for creating internet-connected drones.
http://www.wired.com/2014/09/facebook-drones-2/. Wired (2014)

9. Li, D., Liu, Q., Hu, X., Jia, X.: Energy efficient multicast routing in ad hoc wireless
networks. Comput. Commun. 30(18), 3746–3756 (Dec 2007)

10. McNeal, G.: Google wants internet broadcasting drones, plans to run tests in new
mexico http://www.forbes.com/sites/gregorymcneal/2014/09/19/google-

wants-internet-broadcasting-drones-plans-to-run-tests-in-new-mexico/.
Forbes (2014)

11. Milyeykovski, V., Segal, M., Shpungin, H.: Location, location, location: Using cen-
tral nodes for efficient data collection in wsns. In: WiOpt. pp. 333–340 (May 2013)

12. Olsson, P.M.: Positioning Algorithms for Surveillance Using Unmanned Aerial Ve-
hicles. Licentiate thesis, Linköpings universitet (2011)

13. Path Loss Wikipedia: http://en.wikipedia.org/wiki/Path_loss

14. Rappaport, T.: Wireless Communications: Principles and Practice. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2nd edn. (2001)

15. Ravi, R., Sundaram, R., Marathe, M.V., Rosenkrantz, D.J., Ravi, S.S.: Spanning
trees short or small. In: ACM-SIAM Discrete Algorithms. pp. 546–555. SODA ’94,
SIAM (1994)

16. Wan, P.J., Călinescu, G., Li, X.Y., Frieder, O.: Minimum-energy broadcasting in
static ad hoc wireless networks. Wireless Networks 8(6), 607–617 (Nov 2002)

17. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: On the construction of energy-
efficient broadcast and multicast trees in wireless networks. In: INFOCOM. pp.
585–594 (2000)

18. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: Algorithms for energy-efficient
multicasting in static ad hoc wireless networks. MONET 6(3), 251–263 (2001)

19. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-
bridge University Press, New York, NY, USA, 1st edn. (2011)

A g2s-anycast Hardness

Theorem 7. Unless NP = P there is no polynomial-time α lnn approximation
to the g2s-anycast problem, for a suitable constant α > 0.

http://www.wired.com/2014/09/facebook-drones-2/
http://www.forbes.com/sites/gregorymcneal/2014/09/19/google-wants-internet-broadcasting-drones-plans-to-run-tests-in-new-mexico/
http://www.forbes.com/sites/gregorymcneal/2014/09/19/google-wants-internet-broadcasting-drones-plans-to-run-tests-in-new-mexico/
http://en.wikipedia.org/wiki/Path_loss

Proof. Our proof is by a reduction from the minimum set cover problem. Let U
denote a collection of elements, and let X1, . . . , Xm denote the sets containing
elements from U . The set covering objective is to minimize the number of sub-
sets whose union is U . We construct the following instance of the g2s-anycast
problem. The terminal nodes (i.e. nodes of the destination groups) correspond
to the elements of the set cover instance. The source nodes correspond to the
sets. We set the funnel-tree distance between a source Xi and an element e in
Xi to be 1. The remaining distances are captured by the metric completion of
these distances. We next set the broadcast costs. For any source node Xi and
element e in Xi, we set the cost c(Xi, e) to be L, for a suitably large L� n; for
all e /∈ Xi, we set c(Xi, e) to M � L.

If there is a solution of cost C to the set cover instance, there is a solution of
cost CL+n to the g2s-anycast problem. On the other hand, consider any solution
to the g2s-anycast problem. It incurs a funnel tree cost of at least n. If, in the
solution, every source node broadcasts only to terminal nodes corresponding to
its set in the set cover instance, then the broadcast cost equals L times the cost of
the resulting set cover obtained by those source nodes that broadcast to at least
one terminal; we refer to such as a solution as a canonical solution. If the solution
has a source node that broadcasts to a terminal outside its corresponding set,
then the broadcast cost is at least M . Given that there is a solution to the set
cover instance using all of the sets, there is a canonical solution to the anycast
problem of cost at most mL + n. By selecting M to be Ω(mL lnn), we can
ensure that any O(lg n)-approximation to the g2s-anycast instance will produce
a canonical solution. From this, we obtain that if we set L to be sufficiently
larger than n, any α lnn approximation to the g2s-anycast instance yields an
(α − ε) lnn approximation, for an ε > 0 that can be made arbitrarily small by
making L sufficiently large. This, along with the hardness for set cover in [1],
completes the proof of the theorem.

B Euclidean g2g Hardness

Recall that in the set covering problem, we are given a ground set E of n el-
ements and a collection of subsets X1, . . . , Xm ⊆ E of elements, and the goal
is to find a minimum number of these subsets whose union is E. We present
an approximation-preserving reduction from a given instance of the set covering
problem to one of the 2-D g2g-anycast as follows.

For each subset Xi we pick a point xi in the plane such that any pair of such
“set-points” are quite far from each other (distance >> n) in the plane. Our
source set S will consist of these m different set-points.

For each point xi, we pick a point yi at unit distance from xi in the plane
to place copies of the element-points. For each element e ∈ E, we create a
destination group Te, which consists of as many nodes as the number of sets in
which e occurs. If e ∈ Xi, then we create a terminal node t(e)i at the point yi
in the plane. Note that all elements that belong to a set Xi are co-located in
the point yi at unit distance from the set-point xi. The demand graph for the

resulting g2g-anycast problem is all pairs of the form (S, Te) for every element e
in the set cover problem. The following observations are now immediate.

Lemma 4. Given an optimal solution to the set cover problem with k∗ sets,
there is a solution to the 2-D g2g-anycast problem using the above reduction of
cost 2k∗.

Proof. To convert an optimal solution of the set cover problem, for each set Xi

in the optimal set cover, we pick the set-point xi and draw a unit ball around
it, which encloses the point yi containing all the terminal nodes corresponding
to elements contained in the set Xi. For all these element terminal nodes co-
located at yi, we build a funnel tree of a single edge from yi back to xi. The sum
of the Euclidean length squared costs of the ball around xi and the funnel tree
is two. Repeating for every set in the optimal solution, we get a solution to the
g2g-anycast problem.

Lemma 5. Given an optimal solution to the 2-D g2g-anycast problem arising
from a reduction from a set cover problem as described above of cost C, there is
a solution to the set cover from which it was derived that contains at most C

2
sets.

Proof. Observe that all minimal solutions correspond to unit-radius balls around
a set of set-points xi, and the funnel trees for each of these points in the solution
all consist of a single edge from yi to xi. Since the g2g-anycast solution is feasible,
these balls around the set-points cover all demands and hence form a feasible
set cover. The number of sets in the solution is exactly C

2 .

We now get the following lower bound on the approximability of the problem
using [1].

Theorem 8. The 2-D Euclidean version of the g2g problem on n nodes does
not permit a polynomial-time (1 − o(1)) lnn approximation algorithm, unless
NP = P .

C Empirical Results

We conducted simulations comparing Cover-and-Grow with four different heuris-
tics for points embedded in a unit square. Both broadcast costs and the funnel-
tree costs are assumed to be the square of the Euclidean distances (using the
path-loss exponent value of κ = 2).

In our simulations we had one S group (this is sufficient as mentioned in
Section 1.2) and for |S| we chose 1, 4, 16 and 64. We had 10 T groups each with
10 terminals. We ran our trials on two different basic point distributions; the
uniform distribution over a unit square in the plane and a Gaussian distribution
in the whole two dimensional plane. Our results are averaged over 100 trials for
each choice of parameter settings. The variance across the trials was negligible
(and so we do not show any error bars as they would only clutter our plots). The

simulations were run on an enterprise class server with an Intel(R) Core(TM) i7-
4500U (dual core) CPU @ 3.0 GHz Turbo with 32 GB of RAM. The entire suite
of simulations took 50 hours to complete. Due to the inherent combinatorial
explosiveness of g2g-anycast it was entirely infeasible to compute the optimal
solution; therefore, in our figures we depict the quality of the solutions of the
heuristics relative to the quality of Cover-and-Grow normalized to 1.

We now describe the four heuristics we implemented (in addition to Cover-
and-Grow). The descriptions below only detail the construction of the funnel-
trees since it follows that in a minimal solution the ball at each s ∈ S node will
be the smallest one that encloses the funnel-trees containing s.

– Smallest Edge repeatedly adds the smallest edge not yet in the set which
does not create a cycle or a component with two S nodes. The process stops
when every Tj has a vertex in some component with an S node. It then
(repeatedly) removes all edges that are in a component with no S node, as
well as the largest edges whose removal would not result in a disconnection of
any Tj from S. Note that this heuristic requires re-computation of shortest
distances between sets (current components) and nodes at every iteration
which can make it quite time-consuming.

– T-Centric for each Tj , finds the pair s ∈ S, t ∈ Tj such that d(s, t) is mini-
mized and assigns t to s. For each s, this process builds an MST on s and
the nodes t which were assigned to s.

– T-Adaptive grows clusters starting with each s in its own cluster. It repeat-
edly finds the closest pair r, t such that r is in a cluster and t is in a Tj
none of whose nodes are in a cluster yet and adds edge r, t. If we think of
Smallest Edge as a loose analog of Kruskal’s algorithm for MSTs tailored
to our problem, then T-Adaptive would be the corresponding Prim variant.
Unlike Smallest Edge, which uses Steiner nodes, this heuristic requires only
distances from any source cluster and a unassigned terminal node making it
less intensive computationally.

– Smallest Increment grows clusters starting with each s in it’s own cluster.
It repeatedly finds the r, t such that r is in a cluster and t is in a Tj none
of whose nodes are in a cluster yet and such that attaching t to r using
the shortest path increases the total cost of the solution (i.e. funnel-tree
cost as well as ball cost) the least. Just like Smallest Edge, this heuristic
also requires re-computation of shortest paths between clusters and nodes
at every step, making it potentially time intensive. This heuristic is also
similar to T-Adaptive in growing from source clusters but the differences are
the consideration of not just direct edges but shortest paths, as well as the
additional increase due to the broadcast cost.

Figures 4a and 4b show the quality of the solution of the heuristics relative
to Cover-and-Grow (normalized to 1) under the two distributions of points.
Cover-and-Grow performed as well as the heuristics, losing out only marginally
to Smallest Increment. Figure 5 shows the (absolute) runtimes of the heuristics
under the uniform distribution. (We do not show the runtimes for the Gaussian
distribution since the plot is identical.) The runtimes plot was plotted on a

1 4 16 64
Size of S

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e
 S

o
lu

ti
o
n
 V

a
lu

e

Cover-and-Grow
Smallest Edge
T-Centric
T-Adaptive
Smallest Inc

(a) Uniform distribution.

1 4 16 64
Size of S

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e
 S

o
lu

ti
o
n
 V

a
lu

e

Cover-and-Grow
Smallest Edge
T-Centric
T-Adaptive
Smallest Inc

(b) Gaussian distribution.

Fig. 4: Relative costs of the results of the algorithms on two different distribu-
tions.

logrithmic scale due to the large differences in the runtime. Smallest Edge and
Smallest Increment both incorporate Steiner nodes that have the potential to
greatly reduce the weight of the funnel trees with respect to `22. On the flip
side, allowing Steiner nodes increases the runtime of these algorithms by up to
a factor n.

1 4 16 64
Size of S

10-4

10-3

10-2

10-1

100

101

102

A
v
e
ra

g
e
 R

u
n
ti

m
e
 i
n
 S

e
co

n
d
s

Cover-and-Grow
Smallest Edge
T-Centric
T-Adaptive
Smallest Inc

Fig. 5: Absolute runtimes in seconds for
the Uniform Distribution. Runtime for
the Gaussian distribution was identical,
as the algorithms did not depend on the
distribution of points.

The picture that emerges from the
plots is that Smallest Edge and Small-
est Increment are impractical time-
wise. T-Adaptive performed well on
the larger instances and scaled well
time-wise, but did not do as well as
Cover-and-Grow on small instances.
This leaves T-Centric which is about
the same as Cover-and-Grow in terms
of quality of solution, and in gen-
eral runs much faster than Cover-and-
Grow. T-centric is by far the fastest
as it does not depend on what has
been already added or steiner nodes,
so it can make all the assignments in
one iteration. However, the following
simple example shows that T-Centric
can be as much as a factor q worse than the optimal: consider the unit square
with corners (0, 0), (0, 1), (1, 0), (1, 1); let S = {(1

q , 0), (2
q , 0), . . . , (1, 0)} and let

1 ≤ i ≤ q, Ti = {(iq , 1), (0, 1)}; it is easy to see T-Centric’s solution (ball and

funnel-trees) is Ω(q) whereas the optimal is O(1). Thus, not only does Cover-
and-Grow come with provable guarantees but in practice, it is superior to the
natural alternative that we have been able to come up with. This begs the ques-
tion - why does Cover-and-Grow do so well even though it too is myopic? We

believe that the answer lies in the fact that by focusing on the appropriate den-
sity ratio it is greedy in an intelligent way avoiding corner case like the one
depicted above.

	Balls and Funnels: Energy Efficient Group-to-Group Anycasts

