Skip to main content

Approximating the Maximum Rectilinear Crossing Number

  • Conference paper
  • First Online:
Book cover Computing and Combinatorics (COCOON 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9797))

Included in the following conference series:

Abstract

Drawing a graph in a way that minimizes the number of edge-crossings is a well-studied problem. Recently there has been work characterizing both the minimum and maximum number of edge-crossings possible in various graph classes, assuming rectilinear (straight-line) edges. In this paper, we investigate the algorithmic problem of maximizing the number of edge-crossings over all rectilinear drawings a graph. We show that this problem is NP-hard and lies in \(\exists \mathbb {R}\). We give a nontrivial derandomization of the natural randomized 1/3-approximation algorithm, which generalizes to a weighted setting as well as to an ordering constraint satisfaction problem. We evaluate these algorithms and other heuristics in simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For ease of exposition, we refer simply to the number of crossings for the remainder of the proof, although exactly the same analysis applies in the weighted setting, whether the weights of crossings are based on underlying edge weights or are permitted to be completely arbitrary, as in an OCSP.

References

  1. Alon, N., Spencer, J.: The Probabilistic Method, chap. 15, pp. 249–258. Wiley, Hoboken (1992)

    Google Scholar 

  2. Alpert, M., Feder, E., Harborth, H.: The maximum of the maximum rectilinear crossing numbers of \(d\)-regular graphs of order \(n\). Electr. J. Comb. 16(1) (2009)

    Google Scholar 

  3. Bienstock, D.: Some provably hard crossing number problems. Discrete Comput. Geom. 6(5), 443–459 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM J. Comput. 42(5), 1803–1829 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Canny, J.: Some algebraic and geometric computations in pspace. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 460–467. ACM, New York (1988)

    Google Scholar 

  6. Chuzhoy, J.: An algorithm for the graph crossing number problem. CoRR, abs/1012.0255 (2010)

    Google Scholar 

  7. Erdős, P., Guy, R.K.: Crossing number problems. Am. Math. Mon. 80, 52–58 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erdős, P., Rényi, A.: On random graphs. i. Publicationes Math. 6, 290–297 (1959)

    MATH  Google Scholar 

  9. Feder, E., Harborth, H., Herzberg, S., Klein, S.: The maximum rectilinear crossing number of the Petersen graph. Congr. Numerantium 206, 31–40 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Furry, W., Kleitman, D.: Maximal rectilinear crossings of cycles. Stud. Appl. Math. 56, 159–167 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebraic Discrete Methods 4(3), 312–316 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guruswami, V., Hstad, J., Manokaran, R., Raghavendra, P., Charikar, M.: Beating the random ordering is hard: every ordering CSP is approximation resistant. SIAM J. Comput. 40(3), 878–914 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harborth, H.: Drawing of the cycle graph. Congr. Numer. 66, 15–22 (1988)

    MathSciNet  Google Scholar 

  14. Hlinéný, P.: Crossing number is hard for cubic graphs. J. Comb. Theory Ser. B 96(4), 455–471 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kang, M., Pikhurko, O., Ravsky, A., Schacht, M., Verbitsky, O.: Obfuscated drawings of planar graphs. CoRR, abs/0803.0858 (2008)

    Google Scholar 

  16. Pach, J., Ábrego, B., Fernández-Merchant, S., Salazar, G.: The rectilinear crossing number of \(K_n\): closing in (or are we?). In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 5–18. Springer, New York (2013)

    Chapter  Google Scholar 

  17. Pach, J., Tóth, G.: Thirteen problems on crossing numbers. Geombinatorics 9, 194–207 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Pach, J., Tóth, G.: Which crossing number is it anyway? J. Comb. Theory, Ser. B 80(2), 225–246 (2000)

    Google Scholar 

  19. Ringel, G.: Extremal problems in the theory of graphs. In: Fiedler, M. (ed.) Theory of Graphs and Its Applications, Proceedings of Symposium Smolenice 1963, Prague, pp. 85–90 (1964)

    Google Scholar 

  20. Schaefer, M.: Complexity of some geometric and topological problems. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 334–344. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Schaefer, M.: The graph crossing number, its variants: a survey. Electron. J. Combin. Dyn. Surv. 21 (2014)

    Google Scholar 

  22. Turán, P.: A note of welcome. J. Graph Theory 1(1), 7–9 (1977)

    Article  Google Scholar 

  23. Verbitsky, O.: On the obfuscation complexity of planar graphs. Theor. Comput. Sci. 396(1–3), 294–300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Weisstein, E.W.: Star polygon (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by PSC-CUNY Research Award 67665-00 45, CUNY Collaborative Incentive Research Grant (CIRG 21) 2153, and a Research in the Classroom Idea Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Bald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bald, S., Johnson, M.P., Liu, O. (2016). Approximating the Maximum Rectilinear Crossing Number. In: Dinh, T., Thai, M. (eds) Computing and Combinatorics . COCOON 2016. Lecture Notes in Computer Science(), vol 9797. Springer, Cham. https://doi.org/10.1007/978-3-319-42634-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42634-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42633-4

  • Online ISBN: 978-3-319-42634-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics