
Texts in Theoretical Computer Science.
An EATCS Series

Series editors

Monika Henzinger, Faculty of Science, Universität Wien, Vienna, Austria
Juraj Hromkovič, Department of Computer Science, ETH Zürich, Zürich,
Switzerland
Mogens Nielsen, Department of Computer Science, Aarhus Universitet, Denmark
Grzegorz Rozenberg, Leiden Center of Advanced Computer Science, Leiden,
The Netherlands
Arto Salomaa, Turku Centre of Computer Science, Turku, Finland

More information about this series at http://www.springer.com/series/3214

Dennis Komm

An Introduction to Online
Computation
Determinism, Randomization, Advice

123

Dennis Komm
Department of Computer Science
ETH Zürich
Zürich
Switzerland

ISSN 1862-4499
Texts in Theoretical Computer Science. An EATCS Series
ISBN 978-3-319-42747-8 ISBN 978-3-319-42749-2 (eBook)
DOI 10.1007/978-3-319-42749-2

Library of Congress Control Number: 2016955071

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

My parents,
my brothers,

my love.

Preface

The design and analysis of algorithms deals with extracting certain information
from instances of computational problems. In a way, this information is “hidden” in
the instances, and usually the aim is to come up with a clever way to obtain the
desired information with as little effort (for instance, using as little space and time)
as possible. In online computation, we are facing a situation that somewhat diverges
from this setting. Here, the instance is not known in advance, but we gradually get
to know it piece by piece over time. However, parts of the final output must already
be created before the whole input is known. As an example, consider the paging
problem, which we will study in the first three chapters of this book. In a nutshell,
the task is to manage the cache of a computer that can contain a small fraction of
the data that is needed during computation. All the data is stored in the larger and
much slower main memory, and our goal is to minimize the number of accesses to this
slow memory. In other words, the cache should be managed with the goal in mind
that the required data is available in the cache as often as possible. The smallest
unit of data that can be moved from the main memory to the cache is called a page.
If a requested page is currently not in the cache, it must be loaded into the cache
by replacing another page, since we assume that the CPU can only directly access
the cache but not the main memory. This must of course be done during runtime,
that is, the pages are requested while the operating system is running and executing
programs that require different pages in some order. Thus, the basic question that
we ask when dealing with this problem is “Which page should be replaced if we do
not know anything about the pages that are requested afterwards?”

In this book, we study online computation in different settings. The book it
organized as follows. Every chapter begins with an overview of its content and con-
cludes with some bibliographical remarks, historical notes, and literature for further
reading. The first three chapters each introduce a different model of computation
in an online environment—deterministic, randomized, and with advice. We use the
paging problem to serve as an example for each of them.

vii

We start with a very brief description of computing problems and then focus on the
concept of computing online. Chapter 1 investigates what can be done in this setting
when assuming that the requested data arrives in a worst possible manner. Such
a worst-case analysis will be used throughout this book. The output of an online
algorithm is compared to that of an optimal (offline) algorithm for the given problem;
this approach is known as competitive analysis. In this context, “optimal” means
that the algorithm knows the whole input, and thus has an enormous advantage
compared to the online algorithm which is analyzed. To model worst-case instances,
we introduce an adversary that knows the given online algorithm, and constructs the
input such that it makes the online algorithm perform as badly as possible compared
to an optimal algorithm. Of course, the existence of such an optimal algorithm
is merely hypothetical, and it usually obtains a solution quality that cannot be
reached when computing online. We illustrate what can be done when dealing with
such a situation for the aforementioned paging problem. In particular, we survey
different strategies to manage the cache, such as first in first out, last in first out,
least frequently used, and least recently used. More over, we analyze a broad class of
online algorithms for paging called marking algorithms.

We study the power of randomized computation, that is, algorithms that produce
output that is based on randomness, in Chapter 2. In this case, we assume that
the adversary still knows the algorithm, but it does not know the outcomes of the
random decisions. Here, we compare the expected value of the online algorithm’s
solution quality to an optimal output on instances which are again constructed by
the adversary in a worst-case manner. We will see in Section 2.2 that this allows the
design of online algorithms which are exponentially better (in expectation) than any
online algorithm that does not use randomness. To show that this result cannot be
asymptotically improved, we learn about a lower-bound technique for randomized
(online) algorithms, called Yao’s principle. Moreover, the ski rental problem is
used as another example in order to compare deterministic and randomized online
computation.

A major focus of this book which distinguishes it from other works (and there
are very good ones, see Section 1.7) is that we will always try to be very specific
about the information which is hidden in a given instance. In online computation, we
usually do not care about the running time of the algorithms we construct or study;
we are more interested in what we are losing due to computing without knowing
the whole input (one might say “the future”). The advice complexity of an online
algorithm, which is introduced in Chapter 3, measures the amount of information
that is needed to obtain a given solution quality. For every online problem we study,
we will pose the question of how much we must know about the input to perform
well; in a way, this is the information content of the problem. Knowing some simple
characteristic helps a lot in some cases; in others, full knowledge of the input is
required. This additional knowledge is called advice, and as a measurement, the
advice complexity (in simple words, the size of the advice) tries to gain some insight
into what makes an online problem hard. We first investigate how much advice is
both necessary and sufficient to design online algorithms for the paging problem

Preface

viii

that achieve a certain (for instance, optimal) solution quality. Then we make a
general observation that connects online algorithms with advice and randomized
online algorithms.

The following five chapters are each devoted to a single online problem, each of
which is investigated with respect to the above three models of computation.

Chapter 4 studies the 𝑘-server problem, which is one of the most prominent online
problems. It is of particular interest since, unlike the paging problem, it is not fully
understood. This is remarkable as the question “How well can a deterministic or
randomized online algorithm perform for the 𝑘-server problem?” is unanswered for
more than 25 years. We first study some simple subclasses of the problem, and then
focus on what can be done when given advice. These results have some interesting
implications for randomized online algorithms for the 𝑘-server problem.

Chapter 5 deals with a special variant of online scheduling where two partially
unknown sequences of tasks should be processed in such a way that as much work
as possible is parallelized. For this problem, we are mostly interested in comparing
randomized online algorithms to those with advice. It turns out that, for this
problem, the difference between whether information about the yet unknown parts
of the input is supplied or just guessed is rather small.

In Chapter 6, we study an online version of the knapsack problem, and our aim is
to give a complete picture of what is possible in each of the above three cases. This
is done for both the simple and the general version of the problem. In particular,
the former has an intriguing behavior when it comes to how much advice is both
sufficient and necessary to obtain a certain solution quality. On the one hand, the
case of no additional information leads to a situation where any deterministic online
algorithm can be forced by the adversary to perform arbitrarily badly. On the other
hand, as little as one single bit of advice allows for a solution that is never worse
than twice as bad as an optimal one. Any additional bit of advice does not change
this until advice is given which has a length that is logarithmic in the input length;
this much advice can be used to get a solution that is worse than an optimal one
only by a constant factor arbitrarily close to 1. However, to be optimal instead of
almost optimal, linear advice is necessary instead of only logarithmic advice.

Chapter 7 studies the bit guessing problem, which is a very generic problem that
basically captures the essence of what it means to “compute online.” Results about
deterministic and randomized online algorithms for the problem can be obtained
in a rather straightforward manner. However, our main focus is to use results on
the hardness of bit guessing to allow statements about the hardness of other online
problems by a special kind of reduction. We construct such reductions for three
online problems, namely the 𝑘-server problem, the online set cover problem, and the
disjoint path allocation problem.

Finally, we study different online graph problems in Chapter 8. In the online
setting considered, the vertices arrive in an online fashion; a vertex is revealed
together with all edges that connect it to previously revealed vertices. We start with
the coloring problem and present results for both deterministic online algorithms
and online algorithms with advice. Last, we investigate an online version of the

Preface

ix

minimum spanning tree problem. Here, we are particularly interested in connections
between the online and offline versions of the problem when dealing with special
graph classes.

This book by no means claims or even tries to be complete in any sense. It should
be understood as an introduction to a selected set of topics that are met in online
computation. There are, however, many other topics that are not addressed. For
a start, there are many different models that are all worth studying but which are
not investigated here. There are, for instance, different types of adversaries when
dealing with randomization in online computation that do have knowledge about
some of the random decisions made by the online algorithms. Furthermore, there
are approaches different to that of competitive analysis such as assuming some
probability distribution over inputs instead of having an adversary pick one. As a
matter of fact, competitive analysis was often criticized for being too pessimistic,
which is why a large number of refined models were introduced; this is also one of
the reasons why we study the advice complexity as a complementary measurement
asking questions that go beyond “How good can an online algorithm be for a given
problem?” and that are more along the lines of “What is it that makes a given
problem hard?” However, there are also different models of computing with advice
that we will not study in detail in this book; they are described in Section 3.6. Last,
there are of course many other online problems out there, many of which both pose
and answer interesting questions about the power of determinism, randomization,
and advice in online settings.

The Audience
This book is intended for computer science students that have some basic knowledge
in algorithmics and discrete mathematics; for instance, it is assumed that the
reader knows what a binomial coefficient is, how the expected value of a discrete
random variable is computed, how to read and apply the Landau symbols (big-𝒪
notation), and how a worst-case analysis of a given approximation algorithm is done.
Basically, the reader should be familiar with how theoretical computer scientists see
the world. However, most of the ideas and techniques presented in this book are
built on basic fundamentals. All in all, a sufficient preparation should been given
by an undergraduate course on theoretical computer science, algorithms and data
structures, and discrete mathematics.

At any point, the notation is kept as simple and basic as possible, and the intuition
behind the proofs is given, and not just the mathematical details. There are, however,
some theorems that are stated without a proof. In this case, pointers to these proofs
can be found in the section “Historical and Bibliographical Notes” at the end of
the corresponding chapter. Sections marked with “⋆” are technically advanced, but
should still be suitable for students on a graduate level.

Another goal of this book is to be useful to researchers who are interested in the
concept of advice complexity, and how to apply it. To this end, the basic principles

Preface

x

are discussed in detail, and put into context. Different techniques to obtain lower
and upper bounds are described and used, and the reader is challenged to apply her
or his knowledge in the exercises. Altogether, there are 101 of them; the solutions
are given at the end of this book. The idea behind these exercises is to gain a deeper
insight into some details, to try alternative proofs, and, most importantly, to get
a good intuition and technical understanding of the results. Most exercises can be
answered by readers at an undergraduate level. Exercises that are technically more
challenging are again marked with “⋆.”

Acknowledgment
There are many people who increased the quality of this book a lot. First, I would
like to thank Juraj Hromkovič for encouraging me to write a book on this topic
and for supporting me all the way. Second, I am very grateful to Meike Akveld,
Paola Bianchi, Elisabet Burjons, Jérôme Dohrau, Heidi Gebauer, Philipp Hupp, Nils
Jansen, Tobias Kohn, Rastislav Královič, Richard Královič, Sacha Krug, Tobias
Lieber, Jesper Mikkelsen, Tobias Mömke, Marcel Schöngens, Jasmin Smula, and
especially Hans-Joachim Böckenhauer for proofreading parts of the manuscript.

Some chapters of this book are based on parts of my dissertation [97], which I
defended in December 2011 at ETH. I had the great pleasure to have Georg Schnitger
and Peter Widmayer as co-referees, and I am very thankful for their comments.

Moreover, I had the opportunity to test the material contained in this book
in a course “Approximation and Online Algorithms” at ETH, which was so far
held in 2013, 2014, 2015, and 2016. The German lecture notes of this class [98]
contain a subset of the material that is presented in this book. Some of the students
who attended this class contributed a lot to improve this book, especially Tatjana
Brülisauer, Mathias Jostock, Sven Hammann, Dominik Müller, and Philipp Schmid.

I am very thankful to Ronan Nugent of Springer for his support.
Last but not least, I want to thank all the people with whom I worked on online

algorithms with advice in the last eight years. Without all the discussions we had,
this book would not have been possible.

The typesetting of this book was done with LATEX.
Finally, I hope you enjoy reading this book as much as I enjoyed writing it.

Zürich, September 2016 Dennis Komm

Preface

xi

Contents

1 Introduction 1
1.1 Offline Algorithms . 2
1.2 Online Algorithms and Paging 9
1.3 An Upper Bound for Paging . 19
1.4 A Lower Bound for Paging . 21
1.5 Marking Algorithms . 25
1.6 Refined Competitive Analysis . 27

1.6.1 Lookahead . 27
1.6.2 Resource Augmentation 27

1.7 Historical and Bibliographical Notes 28

2 Randomization 31
2.1 Introduction . 32
2.2 A Randomized Online Algorithm for Paging 40
2.3 Yao’s Principle . 44

2.3.1 Finite Problems . 45
2.3.2 Infinite Problems . 50

⋆2.3.3 Unbounded Problems . 52
2.4 Another Point of View: Game Theory 55
2.5 A Lower Bound for Randomized Online Algorithms for Paging . 60

⋆2.6 A Barely Random Algorithm for Paging 64
⋆2.7 Bounds with Probability Tending to One 72
2.8 The Ski Rental Problem . 76
2.9 Historical and Bibliographical Notes 82

3 Advice Complexity 85
3.1 Introduction . 86

xiii

3.2 Self-Delimiting Encoding of Strings 90
3.3 Proving Lower Bounds . 93
3.4 The Advice Complexity of Paging 95

3.4.1 Optimality . 96
3.4.2 Small Competitive Ratio 102

3.5 Advice and Randomization . 105
3.6 Historical and Bibliographical Notes 110

4 The k-Server Problem 113
4.1 Introduction . 114
4.2 A Lower Bound for Deterministic Algorithms 117
4.3 Potential Functions . 121
4.4 k-Server on the Line . 124
4.5 k-Server on Trees . 129
4.6 Advice Complexity . 132

4.6.1 Optimality for the General Case 132
4.6.2 Optimality for the Line 138
4.6.3 An Upper Bound for the Euclidean Plane 140

⋆4.6.4 An Upper Bound for the General Case 144
4.6.5 Advice and the Randomized k-Server Conjecture 153

4.7 Historical and Bibliographical Remarks 153

5 Job Shop Scheduling 155
5.1 Introduction . 156
5.2 Deterministic Algorithms . 160
5.3 Randomized Algorithms . 168

5.3.1 A One-Competitive Randomized Algorithm 170
5.3.2 Bounds with Probability Tending to One 170
5.3.3 A Barely Random Algorithm 171

5.4 Advice Complexity . 172
5.4.1 Optimality . 172
5.4.2 Small Competitive Ratio 176

5.5 Historical and Bibliographical Notes 181

6 The Knapsack Problem 183
6.1 Introduction . 184
6.2 Deterministic Algorithms . 185
6.3 Advice Complexity . 187

6.3.1 Optimality . 187
6.3.2 Small Advice . 188
6.3.3 Logarithmic Advice . 189

6.4 Randomized Algorithms . 193
6.4.1 A Barely Random Algorithm 193
6.4.2 A Lower Bound for Randomized Algorithms 196

Contents

xiv

6.5 Resource Augmentation . 197
6.6 The General Case . 202

⋆6.6.1 Advice Complexity . 203
6.6.2 Randomized Online Algorithms 208
6.6.3 Resource Augmentation 209

6.7 Historical and Bibliographical Notes 210

7 The Bit Guessing Problem 211
7.1 Introduction . 212
7.2 Deterministic and Randomized Algorithms 213
7.3 Advice Complexity . 214
7.4 Advice-Preserving Reductions . 226

7.4.1 The k-Server Problem . 227
7.4.2 The Set Cover Problem 230
7.4.3 The Disjoint Path Allocation Problem 235

7.5 Historical and Bibliographical Notes 240

8 Problems on Graphs 241
8.1 Introduction . 242
8.2 The Coloring Problem . 243

8.2.1 Deterministic Algorithms 244
8.2.2 Advice Complexity . 249

8.3 The Minimum Spanning Tree Problem 251
8.3.1 Deterministic and Randomized Algorithms 251
8.3.2 Advice Complexity . 253
8.3.3 Special Graph Classes . 257

8.4 Historical and Bibliographical Notes 266

Solutions to Exercises 269

Glossary 323

Bibliography 327

Index 341

Contents

xv

	Preface
	The Audience
	Acknowledgment

	Contents

