Skip to main content

Motion Primitive Forests for Human Activity Recognition Using Wearable Sensors

  • Conference paper
  • First Online:
PRICAI 2016: Trends in Artificial Intelligence (PRICAI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9810))

Included in the following conference series:

Abstract

Human activity recognition is important in many applications such as fitness logging, pervasive healthcare, near-emergency warning, and social networking. Using body-worn sensors, these applications detect activities of the users to understand the context and provide them appropriate assistance. For accurate recognition, it is crucial to design appropriate feature representation of sensor data. In this paper, we propose a new type of motion features: motion primitive forests, which are randomized ensembles of decision trees that act on original local features by clustering them to form motion primitives (or words). The bags of these features, which accumulate histograms of the resulting motion primitives over each data frame, are then used to build activity models. We experimentally validated the effectiveness of the proposed method on accelerometer data on three benchmark datasets. On all three datasets, the proposed motion primitive forests provided substantially higher accuracy than existing state-of-the-art methods, and were much faster in both training and prediction, compared with k-means feature learning. In addition, the method showed stable results over different types of original local features, indicating the ability of random forests in selecting relevant local features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bulling, A., Blanke, U., Schiele, B.: A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. 46(3), 33 (2014)

    Article  Google Scholar 

  4. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Google Scholar 

  5. Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S.T., Tröster, G., Millán, J.D.R., Roggen, D.: The opportunity challenge: a benchmark database for on-body sensor-based activity recognition. Pattern Recogn. Lett. 34(15), 2033–2042 (2013)

    Article  Google Scholar 

  6. Dimitrovski, I., Kocev, D., Loskovska, S., Džeroski, S.: Fast and efficient visual codebook construction for multi-label annotation using predictive clustering trees. Pattern Recogn. Lett. 38, 38–45 (2014)

    Article  Google Scholar 

  7. Frank, J., Mannor, S., Precup, D.: Activity recognition with time-delay embeddings. In: 2011 AAAI Spring Symposium Series (2011)

    Google Scholar 

  8. Ghasemzadeh, H., Loseu, V., Jafari, R.: Collaborative signal processing for action recognition in body sensor networks: a distributed classification algorithm using motion transcripts. In: Proceedings of the 9th IPSN, pp. 244–255. ACM (2010)

    Google Scholar 

  9. He, Z., Jin, L.: Activity recognition from acceleration data based on discrete consine transform and svm. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2009, pp. 5041–5044. IEEE (2009)

    Google Scholar 

  10. Hoey, J., Plötz, T., Jackson, D., Monk, A., Pham, C., Olivier, P.: Rapid specification and automated generation of prompting systems to assist people with dementia. Pervasive Mob. Comput. 7(3), 299–318 (2011)

    Article  Google Scholar 

  11. Huỳnh, T., Blanke, U., Schiele, B.: Scalable recognition of daily activities with wearable sensors. In: Hightower, J., Schiele, B., Strang, T. (eds.) LoCA 2007. LNCS, vol. 4718, pp. 50–67. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Huỳnh, T., Fritz, M., Schiele, B.: Discovery of activity patterns using topic models. In: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 10–19. ACM (2008)

    Google Scholar 

  13. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SIGKDD Explor. Newsl. 12(2), 74–82 (2011)

    Article  Google Scholar 

  14. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutorials 15(3), 1192–1209 (2013)

    Article  Google Scholar 

  15. Moosmann, F., Triggs, B., Jurie, F.: Fast discriminative visual codebooks using randomized clustering forests. In: NIPS 2006, pp. 985–992. MIT Press (2007)

    Google Scholar 

  16. Pham, C., Hooper, C., Lindsay, S., Jackson, D., Shearer, J., Wagner, J., Ladha, C., Ladha, K., Plötz, T., Olivier, P., et al.: The ambient kitchen: a pervasive sensing environment for situated services. In: DIS 2012. ACM (2012)

    Google Scholar 

  17. Pham, C., Plötz, T., Olivier, P.: A dynamic time warping approach to real-time activity recognition for food preparation. In: de Ruyter, B., Wichert, R., Keyson, D.V., Markopoulos, P., Streitz, N., Divitini, M., Georgantas, N., Mana Gomez, A. (eds.) AmI 2010. LNCS, vol. 6439, pp. 21–30. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Plötz, T., Hammerla, N.Y., Olivier, P.: Feature learning for activity recognition in ubiquitous computing. In: IJCAI 2011, vol. 22, p. 1729 (2011)

    Google Scholar 

  19. Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Forster, K., Troster, G., Lukowicz, P., Bannach, D., Pirkl, G., Ferscha, A., et al.: Collecting complex activity datasets in highly rich networked sensor environments. In: 2010 Seventh International Conference on Networked Sensing Systems (INSS), pp. 233–240. IEEE (2010)

    Google Scholar 

  20. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: IEEE Conference on CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  21. Zappi, P., Lombriser, C., Stiefmeier, T., Farella, E., Roggen, D., Benini, L., Tröster, G.: Activity recognition from on-body sensors: accuracy-power trade-off by dynamic sensor selection. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 17–33. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Zeng, M., Nguyen, L.T., Yu, B., Mengshoel, O.J., Zhu, J., Wu, P., Zhang, J.: Convolutional neural networks for human activity recognition using mobile sensors. In: 6th International Conference on Mobile Computing, Applications and Services (2014)

    Google Scholar 

  23. Zhang, M., Sawchuk, A.A.: A feature selection-based framework for human activity recognition using wearable multimodal sensors. In: Proceedings of the 6th International Conference on Body Area Networks, pp. 92–98. ICST (2011)

    Google Scholar 

  24. Zhang, M., Sawchuk, A.A.: Motion primitive-based human activity recognition using a bag-of-features approach. In: 2nd ACM SIGHIT, pp. 631–640. ACM (2012)

    Google Scholar 

  25. Zheng, Y., Wong, W.k., Guan, X., Trost, S.: Physical activity recognition from accelerometer data using a multi-scale ensemble method. In: Proceedings of the 25th Innovative Applications of Artificial Intelligence Conference, pp. 1575–1581 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Ngoc Diep .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Diep, N.N., Pham, C., Phuong, T.M. (2016). Motion Primitive Forests for Human Activity Recognition Using Wearable Sensors. In: Booth, R., Zhang, ML. (eds) PRICAI 2016: Trends in Artificial Intelligence. PRICAI 2016. Lecture Notes in Computer Science(), vol 9810. Springer, Cham. https://doi.org/10.1007/978-3-319-42911-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42911-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42910-6

  • Online ISBN: 978-3-319-42911-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics