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Agust́ın Mayo-Iscar2

Abstract A methodology for robust fuzzy clustering is proposed. This
methodology can be widely applied in very different statistical problems given
that it is based on probability likelihoods. Robustness is achieved by trim-
ming a fixed proportion of “most outlying” observations which are indeed
self-determined by the data set at hand. Constraints on the clusters’ scatters
are also needed to get mathematically well-defined problems and to avoid the
detection of non-interesting spurious clusters. The main lines for computa-
tionally feasible algorithms are provided and some simple guidelines about
how to choose tuning parameters are briefly outlined. The proposed method-
ology is illustrated through two applications. The first one is aimed at hetero-
geneously clustering under multivariate normal assumptions and the second
one migh be useful in fuzzy clusterwise linear regression problems.

1 Introduction

Hard clustering methods are aimed at searching meaningful partitions of a
data set into k disjoint clusters. Therefore, “0-1” membership values of obser-
vations to clusters are provided. On the other hand, fuzzy clustering meth-
ods provide nonnegative membership values which may generate overlapping
clusters where every subject is shared among all clusters [28, 2].

It is known that the presence of an (even a small) amount of outlying
observations can be problematic when applying traditional hard clustering
methods. For instance, clearly differentiated clusters can be wrongly joined
together and non-interesting clusters (made up of only few outlying obser-
vations) can be detected. This is also the case when applying many fuzzy
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clustering techniques. In fact, historically, the fuzzy clustering community
was the first one to face this robustness issue. This is due to the fact that
outliers may be approximately “equally remote” from all clusters and, thus,
they may have similar (but not necessarily small) membership values.

References on robustness in hard clustering can be found in [10] and in two
recent [7, 24] books. On the other hand, [4, 1] are good reviews on robust fuzzy
clustering. These proposals in fuzzy clustering include “noise clustering” [3],
the replacement of the Euclidean distance by other discrepancy measures
[31, 22] or the use of “possibilistic” clustering [19].

Trimming has a long history as a simple way to provide robustness to
statistical procedures. Its application in clustering needs to be done by taking
into account the possibility of discarding “bridge points”. A sensible way
to perform trimming is to let the data decide which observations must be
trimmed such that we find an optimal clustering for the non-trimmed ones.
This is the “impartial” trimming approach adopted when using the TCLUST
method [9]. This approach was extended in [8] to fuzzy clustering. This can
be also seen as an extension of the “least trimmed squares” approach in fuzzy
clustering [17]. Discarding a fixed fraction of data was also considered in [18].

One clear advantage of the methodology in [8] is that it allows the detection
of non-necessarily spherically-shaped clusters. Additionally, the use of likeli-
hoods in its statement allows its generalization to very different frameworks.
The use of procedures based on likelihoods is not new in fuzzy clustering (see,
e.g., [13, 12, 32, 25, 26, 30]). Note also that some type of constraint on the
clusters’ scatters is always needed. Otherwise, the defining problem would
become a mathematically ill-posed one. By using these constraints, clusters
with arbitrarily very different scatters are not allowed. The use of procedures
based on likelihoods is also useful in clusterwise linear regression problems.
Instead of detecting clusters just around centroids, it is often interesting to
detect clusters around linear structures [15, 21, 29] (hard clustering) and
[14, 16] (fuzzy clustering).

2 Methodology

Suppose that we have n observations {x1, ..., xn} in Rp and we want to group
them into k clusters in a fuzzy way. Therefore, our aim is to obtain a collection
of nonnegative membership values uij ∈ [0, 1] for all i = 1, ..., n and j =
1, ..., k. A membership value 1 indicates that object i fully belongs to cluster j
while a 0 membership value means that it does not belong at all to this cluster.
However, intermediate degrees of membership are allowed when uij ∈ (0, 1).
We consider that an observation is fully trimmed if uij = 0 for all j = 1, ..., k.

Let us assume that φ(·; θj) is a p-variate probability density function in Rp

that depends on a set of parameters θj . Given a fixed trimming level α ∈ [0, 1)
and a fixed value of the fuzzifier parameter m > 1; a robust constrained fuzzy



Robust Fuzzy Clustering via Trimming and Constraints 3

clustering problem can be defined through the maximization of:

n∑
i=1

k∑
j=1

um
ij log(pjφ(xi; θj)), (1)

where the membership values uij ≥ 0 are assumed to satisfy

k∑
j=1

uij = 1 if i ∈ I and

k∑
j=1

uij = 0 if i /∈ I,

for a subset I ⊂ {1, 2, ..., n} with #I = [n(1−α)], when θ = (θ1, ..., θk) ∈ Θ,
for a given parametric space Θ, and the pj ’s are positive weights satisfying∑k

j=1 pj = 1. Notice that ui1 = ... = uik = 0 for all i /∈ I, so these observa-
tions do not contribute to the summation in (1). The notation [·] is used for
the floor function.

For instance, we may consider θj = (mj , Sj) and

φ(xi; θj) = (2π)−p/2|Sj |−1 exp
(
− (xi −mj)

′S−1
j (xi −mj)/2

)
. (2)

In a clusterwise linear regression framework, if xi = (yi,x
′
i) with yi ∈ R

as the response variable value and xi ∈ Rp−1 as the values taken by p − 1
explanatory variables, then we can use θj = (βj , s

2
j ) and

φ(xi; θj) = (2πs2j )
−1/2 exp

(
− (yi − x′

iβj)
2/(2s2j )

)
. (3)

In the target function (1), clusters’ weights pj ’s are also included. This
may be seen as an “entropy regularization” [23]. Including these weights
is interesting when the number of clusters is misspecified, because some pj
weights can be set close to 0 when k is larger than the “true” number of
clusters. Another possibility is to exclude these weights by directly assuming
p1 = ... = pk = 1/k. This would shrink assignments towards similar number
of observations within each cluster.

It is important to note that the maximization of (1) when k > 1 is com-
monly an ill-posed problem without any constraint on the scatter parameters.
For instance, in the two previous problems, we can see that (1) becomes un-
bounded when |Sj | → 0 or when s2j → 0. Additionally, these constraints are
useful to avoid the detection of non-interesting “spurious” solutions. Thus,
in [8], it is proposed the use of an eigenvalue ratio constraint

maxkj=1 maxpl=1 λl(Sj)

minkj=1 minpl=1 λl(Sj)
≤ c, (4)

for a fixed constant c ≥ 1, where {λl(S)}pl=1 denote the p eigenvalues of the
matrix S. In a similar way, the use of (3) with the constraint
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maxkj=1 s
2
j

minkj=1 s
2
j

≤ c, (5)

is proposed in [6] for fuzzy clusterwise linear clustering.
Therefore, if Θc ⊆ Θ denotes the restricted parametric space, the maxi-

mization of (1) when θ ∈ Θc yields the FTCLUST method (φ(·) as in (2)
and (4)) and the FTCLUST-R method (φ(·) as in (3) and (5)).

3 Algorithm

The maximization of (1) under those constraints is not an easy problem.
However, a feasible algorithm can be given:

1. Initialization: The procedure is initialized several times by randomly se-
lecting initial θj ’s parameters. This can be done by selecting k subsets of
size p+1 in general position. Fitting k simple models within each subsam-
ple allows to obtain these initial θj ’s. Weights p1, ..., pk with pj ∈ (0, 1)
and summing up to 1 are also randomly chosen.

2. Iterative steps: The following steps are executed until convergence or a
maximum number of iterations is reached.

2.1. Membership values: If maxj=1,...,k pjφ(xi; θj) ≥ 1, then

uij = I
{
pjφ(xi; θj) = max

q=1,...,k
pqφ(xi; θq)

}
(hard assignment),

with I{·} as the 0-1 indicator function. If maxq=1,...,k pqφ(xi; θq) < 1,
then

uij =

( k∑
q=1

(
log(pjφ(xi; θj))

log(pqφ(xi; θq))

) 1
m−1

)−1

(fuzzy assignment).

2.2. Trimmed observations: Let

ri =
k∑

j=1

um
ij log(pjφ(xi; θj)) (6)

and r(1) ≤ r(2) ≤ ... ≤ r(n) be these values sorted. The observations to
be trimmed are those with indexes {i : ri < r([nα])}. The membership
values for those observations are redefined as uij = 0, for every j if
ri < r([nα]).

2.3. Update parameters: Given the membership values obtained in the pre-
vious step, the parameters are updated as
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pj =
n∑

i=1

um
ij

/ n∑
i=1

k∑
j=1

um
ij ,

and the θj ’s are updated by maximizing (1) where the uij ’s are those
obtained in the previous step. For instance, this maximization implies
the use of weighted means and weighted covariance matrices for the
FTCLUST and the use of weighted least squares for the FTCLUST-R
(weights um

ij in both cases). In more general frameworks, a weighted
likelihood should be maximized in a closed form or numerically.
It may happen that these so obtained θj ’s do not fall within Θc. In
this case, as done in [8] and [6], it is needed to modify them properly
by using optimally truncated scatter parameters. I.e., if {dl} are these
scatter parameters (eigenvalues in the case of the FTCLUST and error
terms’ variances in the case of FTCLUST-R), then we use

[dl]t =

dl if dl ∈ [t, ct]
t if dl < t
ct if dl > ct

,

with t being a threshold value. Note that these truncated {dl} do sat-
isfy the required constraints and we only need to obtain the optimal
threshold value topt which maximizes (1). Sometimes, there are closed
forms expressions for obtaining topt (see [8] and [6]).

3. Evaluate objective function and return parameters yielding the highest (1).

This algorithm can be seen as a fuzzy extension of the classical EM algo-
rithm [5] where “concentration steps”, as those in [27], are also applied. Note
also that it naturally leads to a fuzzy clustering method with “high contrast”
[25] (a compromise between “hard” and “fuzzy” clustering methods).

4 Tuning parameters

The proposed methodology exhibits high flexibility but the price we pay is
that of specifying several tuning parameters. In this section, we briefly discus
about them and we give some practical guidelines for their choice.

Fuzzifier parameter: Parameter m serves to control the degree of fuzziness
in the obtained clustering. The m = 1 case provides “hard” or “crisp” clus-
tering membership values. In fact, with m = 1, we recover the TCLUST
method in [9] from the FTCLUST and the robust linear grouping in
[11] (without second trimming) from the FTCLUST-R. However, there
is an unexpected problem if m > 1 when applying fuzzy clustering ap-
proaches based on the maximum likelihood principle. This inherent prob-
lem has to do with the different effect of m depending on the scale (i.e.,
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when we replace xi by S · xi for a given constant S). This problem can
be addressed by choosing simultaneously m and the scale of data (S)
in such a way that we achieve some pre-specified “proportions of hard
assignments” and “relative entropy”. The relative entropy is defined as∑k

j=1

∑n
i=1 uij log uij/[n(1− α)] log(k).

Trimming level: The trimming level α is the proportion of observations
discarded. Although an α value smaller than the true contamination level
can be problematic, we can see that α (slightly) higher than needed most
of times provides good θj estimates. Then, wrongly trimmed observations
can be recovered back. Additionally, given a tentative α value and r(1) ≤
... ≤ r(n) being the sorted ri values in (6), we can check if this α was a
sensible choice by seeing whether these r(i) increase quickly when i/n < α
and increase slowly when i/n > α.

Constraint on the scatter parameters: The constant c serves to control the
degree of “heteroscedasticity” in the obtained clusters. A large c value al-
lows for more different variances in the error terms when using FTCLUST-
R. Large c values also allows for more severe departures from sphericity
in FTCLUST. The most constrained case c = 1 (with α = 0 and “equal
weights”) yields the classical fuzzy k-means [2] when using FTCLUST and
fuzzy k-regressions [14] when using FTCLUST-R.

5 An example

We conclude with an example of the application of FTCLUST to the
“M5data” set in [9] (available at the tclust package in the CRAN reposi-
tory). This data set is obtained from three normal bivariate distributions with
different scales and proportions (see the “true” cluster labels in Fig.1(a)).
One of the components strongly overlaps with another one and there is a
10% background noise. Fig.1(b) shows the very bad results obtained when
applying FTCLUST with α = 0 (all observations are wrongly shared with
similar membership values). We can see in Fig.1(c) that the use α = .1 and
c = 1 gives better clustering results but it is unable to deal with the very dif-
ferent cluster scatters. Finally, Fig.1(d) shows the excellent results obtained
α = .1 and c = 50, i.e. a higher eigenvalues ratio constraint value.
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Fig. 1 (a) “M5data” dataset with the true assignments. Results of applying FTCLUST

with α = 0 and c = 1 in (b), α = .1 and c = 1 in (c) and α = .1 and c = 50 in (d).
A mixture of red, blue and green colors with intensities proportional to the membership
values are used to summarize the clustering results and “◦” are the trimmed observations.
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