Skip to main content

Detecting Inconsistencies in Revision Problems

  • Conference paper
  • First Online:
Soft Methods for Data Science (SMPS 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 456))

Included in the following conference series:

  • 1615 Accesses

Abstract

When dealing with complex knowledge, inconsistencies become a big problem. One important aspect of handling inconsistencies is their detection. In this paper we consider approaches to detect different types of inconsistencies that may occur in the formulation of revision problems. The general discussion focuses on the revision of probability distributions. In our practical analysis, we refer to probability distributions represented as Markov networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alchourrón CE, Gärdenfors P, Makinson D (1985) On the logic of theory change: partial meet contraction and revision functions. J Symbolic Logic 50(02):510–530

    Article  MathSciNet  MATH  Google Scholar 

  2. Borgelt C, Kruse R (2004) Knowledge revision in Markov networks. Vm075031.Usc.Es, 11:93–107

    Google Scholar 

  3. Cooper GF (1990) The computational complexity of probabilistic inference using bayesian belief networks. Artif Intell 42(2–3):393–405 March

    Article  MathSciNet  MATH  Google Scholar 

  4. Csiszar I (1975) $I$-Divergence geometry of probability distributions and minimization problems. Ann Probab 3(1):146–158

    Article  MathSciNet  MATH  Google Scholar 

  5. Darwiche A (1997) On the logic of iterated belief revision. Artif Intell 89(1–2):1–29

    Article  MathSciNet  MATH  Google Scholar 

  6. Gabbay D (2003) Controlled revision—an algorithmic approach for belief revision. J Logic Comput 13(1):3–22

    Article  MathSciNet  MATH  Google Scholar 

  7. Gabbay D, Smets P (eds) (1998) Handbook of defeasable reasoning and uncertainty management systems, vol 3, Belief change. Kluwer Academic Press, Netherlands

    Google Scholar 

  8. Ganapathi V, Vickrey D, Duchi J, Koller D (2008) Constrained approximate maximum entropy learning of markov random fields. In: Proceedings of uncertainty on artificial intelligence, pp 196–203

    Google Scholar 

  9. Gärdenfors P (1988) Knowledge in flux: modeling the dynamics of epistemic states. MIT Press

    Google Scholar 

  10. Gebhardt J, Detmer H, Madsen AL (2003) Predicting parts demand in the automotive industry—an application of probabilistic graphical models. In: Proceedings of international joint conference on uncertainty in artificial intelligence

    Google Scholar 

  11. Gebhardt J, Klose A, Detmer H, Ruegheimer F, Kruse R (2006) Graphical models for industrial planning on complex domains. Decis Theory Multi-Agent Plann 482:131–143

    Article  Google Scholar 

  12. Gebhardt J, Klose A, Wendler J (2012) Markov network revision: on the handling of inconsistencies. Computational intelligence in intelligent data analysis, vol 445 of Studies in computational intelligence. Springer, Berlin, pp 153–165

    Google Scholar 

  13. Katsuno H, Mendelzon AO (1991) Propositional knowledge base revision and minimal change. Artif Intell 52(3):263–294

    Article  MathSciNet  MATH  Google Scholar 

  14. Klose A, Wendler J, Gebhardt J, Detmer H (2012) Resolution of inconsistent revision problems in Markov networks. Synergies of soft computing and statistics for intelligent data analysis, vol 190 of Advances in intelligent systems and computing. Springer, Berlin, pp 517–524

    Google Scholar 

  15. Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT Press

    Google Scholar 

  16. Kruse R (2013) Computational intelligence., A methodological introductionSpringer, London

    Book  MATH  Google Scholar 

  17. Lauritzen SL (1992) Propagation of probabilities, means and variances in mixed graphical association models. J Am Stat Assoc 87(420):1098–1108

    Article  MathSciNet  MATH  Google Scholar 

  18. Nebel B (1994) Base revision operations and schemes: representation, semantics and complexity. In: Proceedings of the eleventh European conference on artificial intelligence (ECAI94), Amsterdam, The Netherlands. Wiley, pp 341–345

    Google Scholar 

  19. Pearl J (1991) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann

    Google Scholar 

  20. Pietra SD, Pietra VD, Lafferty J (1997) Inducing features of random fields. IEEE Trans Pattern Anal Mach Intell 19(4):380–393

    Article  Google Scholar 

  21. Pukelsheim F, Simeone B (2009) On the iterative proportional fitting procedure: structure of accumulation points and L1-error analysis. Structure (05):28

    Google Scholar 

  22. Schmidt F, Wendler J, Gebhardt J, Kruse R (2013) Handling inconsistencies in the revision of probability distributions. In: Pan J et al. (ed) HAIS13, vol 8073 of Lecture notes in computer science. Springer, Berlin, pp 598–607

    Google Scholar 

  23. Teh YW, Welling M (2003) On improving the efficiency of the iterative proportional fitting procedure, pp 0–7

    Google Scholar 

  24. Whittaker J (1990) Graphical models in applied multivariate statistics. Wiley

    Google Scholar 

  25. Yu H, Engelen R (2011) Symbolic and quantitative approaches to reasoning with uncertainty: 11th European conference, ECSQARU 2011, Belfast, UK, June 29–July 1, 2011. Proceedings, chapter importance. Springer, Berlin, pp 146–157

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Schmidt, F., Gebhardt, J., Kruse, R. (2017). Detecting Inconsistencies in Revision Problems. In: Ferraro, M., et al. Soft Methods for Data Science. SMPS 2016. Advances in Intelligent Systems and Computing, vol 456. Springer, Cham. https://doi.org/10.1007/978-3-319-42972-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42972-4_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42971-7

  • Online ISBN: 978-3-319-42972-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics