Skip to main content

Practical Applications in Constrained Evolutionary Multi-objective Optimization

  • Chapter
  • First Online:

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 20))

Abstract

Constrained optimization is applicable to most real world engineering science problems. An efficient constraint handling method must be robust, reliable and computationally efficient. However, the performance of constraint handling mechanism deteriorates with the increase of multi-modality, non-linearity and non-convexity of the constraint functions. Most of the classical mathematics based optimization techniques fails to tackle these issues. Hence, researchers round the globe are putting hard effort to deal with multi-modality, non-linearity and non-convexity, as their presence in the real world problems are unavoidable. Initially, Evolutionary Algorithms (EAs) were developed for unconstrained optimization but engineering problems are always with certain type of constraints. The in-dependability of EAs to the structure of problem has led the researchers to re-think in applying the same to the problems incorporating the constraints. The constraint handling techniques have been successfully used to solve many single objective problems but there has been limited work in applying them to the multi-objective optimization problem. Since for most engineering science problems conflicting multi-objectives have to be satisfied simultaneously, multi-objective constraint handling should be one of the most active research area in engineering optimization. Hence, in this chapter authors have concentrated in explaining the constrained multi-objective optimization problem along with their applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bechikh, S., Ben Said, L., Ghédira, K.: Negotiating decision makers’ reference points for group preference-based evolutionary multi-objective optimization. In: 2011 11th International Conference on Hybrid Intelligent Systems (HIS), pp. 377–382. IEEE (2011)

    Google Scholar 

  2. Bechikh, S., Chaabani, A., Ben Said, L.: An efficient chemical reaction optimization algorithm for multiobjective optimization. IEEE Trans. Cybern. 45(10), 2051–2064 (2015)

    Article  Google Scholar 

  3. Bechikh, S., Kessentini, M., Said, L.B., Ghédira, K.: Chapter four-preference incorporation in evolutionary multiobjective optimization: a survey of the state-of-the-art. Adv. Comput. 98, 141–207 (2015)

    Article  Google Scholar 

  4. Azzouz, N., Bechikh, S., Ben Said, L.: Steady state ibea assisted by mlp neural networks for expensive multi-objective optimization problems. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, pp. 581–588. ACM (2014)

    Google Scholar 

  5. Mezura-Montes, E., Coello, C.A.C.: Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evol. Comput. 1(4), 173–194 (2011)

    Article  Google Scholar 

  6. Courant, R., et al.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Math. Soc 49(1), 1–23 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coello, C.A.C.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191(11), 1245–1287 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Woldesenbet, Y.G., Yen, G.G., Tessema, B.G.: Constraint handling in multiobjective evolutionary optimization. IEEE Trans. Evol. Comput. 13(3), 514–525 (2009)

    Article  Google Scholar 

  9. Jan, M.A., Zhang, Q.: Moea/d for constrained multiobjective optimization: some preliminary experimental results. In: 2010 UK Workshop on Computational Intelligence (UKCI) (2010)

    Google Scholar 

  10. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  11. Jan, M.A., Tairan, N., Khanum, R.A.: Threshold based dynamic and adaptive penalty functions for constrained multiobjective optimization. In: 2013 1st International Conference on Artificial Intelligence, Modelling and Simulation (AIMS), pp. 49–54. IEEE (2013)

    Google Scholar 

  12. Powell, D., Skolnick, M.M.: Using genetic algorithms in engineering design optimization with non-linear constraints. In: Proceedings of the 5th International Conference on Genetic Algorithms, pp. 424–431. Morgan Kaufmann Publishers Inc. (1993)

    Google Scholar 

  13. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2), 311–338 (2000)

    Article  MATH  Google Scholar 

  14. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  15. Pal, S., Qu, B.Y., Das, S., Suganthan, P.N.: Optimal synthesis of linear antenna arrays with multi-objective differential evolution. Prog. Electromagn. Res. B 21, 87–111 (2010)

    Google Scholar 

  16. Takahama, T., Sakai, S., Iwane, N.: Constrained optimization by the \(\varepsilon \) constrained hybrid algorithm of particle swarm optimization and genetic algorithm. In: AI 2005: Advances in Artificial Intelligence, pp. 389–400 (2005)

    Google Scholar 

  17. Takahama, T., Sakai, S.: Constrained optimization by \(\varepsilon \) constrained differential evolution with dynamic \(\varepsilon \)-level control. In: Advances in Differential Evolution, pp.139–154. Springer (2008)

    Google Scholar 

  18. Zhang, Q., Li, H.: Moea/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  19. Martínez, S.Z., Coello, C.A.C.: A multi-objective evolutionary algorithm based on decomposition for constrained multi-objective optimization, pp. 429–436 (2014)

    Google Scholar 

  20. Yang, Z., Cai, X., Fan, Z.: Epsilon constrained method for constrained multiobjective optimization problems: some preliminary results. In: Proceedings of the 2014 Conference Companion on Genetic and Evolutionary Computation Companion, pp. 1181–1186. ACM (2014)

    Google Scholar 

  21. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjective optimization test instances for the cec 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, Technical report, vol. 264 (2008)

    Google Scholar 

  22. Jiménez, F., Gómez-Skarmeta, A.F., Sánchez, G., Deb, K.: An evolutionary algorithm for constrained multi-objective optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC 2002, vol. 2, pp. 1133–1138. IEEE (2002)

    Google Scholar 

  23. Vieira, D.A., Adriano, R.L., Vasconcelos, J.A., Krähenbühl, L.: Treating constraints as objectives in multiobjective optimization problems using niched pareto genetic algorithm. IEEE Trans. Magn. 40(2), 1188–1191 (2004)

    Article  Google Scholar 

  24. Young, N.: Blended ranking to cross infeasible regions in constrainedmultiobjective problems. In: International Conference on Computational Intelligence for Modelling, Control and Automation, 2005 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, vol. 2, pp. 191–196. IEEE (2005)

    Google Scholar 

  25. Geng, H., Zhang, M., Huang, L., Wang, X.: Infeasible elitists and stochastic ranking selection in constrained evolutionary multi-objective optimization. In: Simulated Evolution and Learning, pp. 336–344 (2006)

    Google Scholar 

  26. Oyama, A., Shimoyama, K., Fujii, K.: New constraint-handling method for multi-objective and multi-constraint evolutionary optimization. Trans. Jpn. Soc. Aeronaut. Sp. Sci. 50(167), 56–62 (2007)

    Article  Google Scholar 

  27. Isaacs, A., Ray, T., Smith, W.: Blessings of maintaining infeasible solutions for constrained multi-objective optimization problems. In: IEEE Congress on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence), pp. 2780–2787. IEEE (2008)

    Google Scholar 

  28. Ray, T., Singh, H.K., Isaacs, A., Smith, W.: Infeasibility driven evolutionary algorithm for constrained optimization. In: Constraint-Handling in Evolutionary Optimization, pp. 145–165. Springer (2009)

    Google Scholar 

  29. Liu, H.-L., Wang, D.: A constrained multiobjective evolutionary algorithm based decomposition and temporary register. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 3058–3063. IEEE (2013)

    Google Scholar 

  30. Datta, R., Regis, R.G.: A surrogate-assisted evolution strategy for constrained multi-objective optimization. Expert Syst. Appl. 57, 270–284 (2016)

    Article  Google Scholar 

  31. Michalewicz, Z., Dasgupta, D., Le Riche, R.G., Schoenauer, M.: Evolutionary algorithms for constrained engineering problems. Comput. Ind. Eng. 30(4), 851–870 (1996)

    Article  Google Scholar 

  32. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms. i. a unified formulation. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 28(1), 26–37 (1998)

    Article  Google Scholar 

  33. Coello Coello, C.A., Christiansen, A.D.: Moses: a multiobjective optimization tool for engineering design. Eng. Optim. 31(3), 337–368 (1999)

    Article  Google Scholar 

  34. Ray, T., Tai, K., Seow, C.: An evolutionary algorithm for multiobjective optimization. Eng. Optim. 33(3), 399–424 (2001)

    Article  Google Scholar 

  35. Harada, K., Sakuma, J., Ono, I., Kobayashi, S.: Constraint-handling method for multi-objective function optimization: Pareto descent repair operator. In: Evolutionary Multi-Criterion Optimization, pp. 156–170, Springer (2007)

    Google Scholar 

  36. Asafuddoula, M., Ray, T., Sarker, R., Alam, K.: An adaptive constraint handling approach embedded moea/d. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)

    Google Scholar 

  37. Alam, K., Ray, T., Anavatti, S.G.: Design of a toy submarine using underwater vehicle design optimization framework. In: 2011 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS), pp. 23–29. IEEE (2011)

    Google Scholar 

  38. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  39. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–622 (2014)

    Article  Google Scholar 

  40. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015)

    Article  Google Scholar 

  41. Bechikh, S., Said, L.B., Ghédira, K.: Group preference based evolutionary multi-objective optimization with nonequally important decision makers: application to the portfolio selection problem. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 5(278–288), 71 (2013)

    Google Scholar 

  42. Kalboussi, S., Bechikh, S., Kessentini, M., Said, L.B.: Preference-based many-objective evolutionary testing generates harder test cases for autonomous agents. In: Search Based Software Engineering, pp. 245–250. Springer (2013)

    Google Scholar 

  43. Bechikh, S.: Incorporating decision maker’s preference information in evolutionary multi-objective optimization. Ph.D. thesis, University of Tunis, ISG-Tunis, Tunisia (2013)

    Google Scholar 

  44. Kurpati, A., Azarm, S., Wu, J.: Constraint handling improvements for multiobjective genetic algorithms. Struct. Multidiscip. Optim. 23(3), 204–213 (2002)

    Article  Google Scholar 

  45. Aute, V.C., Radermacher, R., Naduvath, M.V.: Constrained multi-objective optimization of a condenser coil using evolutionary algorithms (2004)

    Google Scholar 

  46. Pinto, E.G.: Supply chain optimization using multi-objective evolutionary algorithms, vol. 15 (2004). Accessed Dec 2014

    Google Scholar 

  47. Sarker, R., Ray, T.: Multiobjective evolutionary algorithms for solving constrained optimization problems. In: International Conference on Computational Intelligence for Modelling, Control and Automation, 2005 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, vol. 2, pp. 197–202. IEEE (2005)

    Google Scholar 

  48. Chakraborty, B., Chen, T., Mitra, T., Roychoudhury, A.: Handling constraints in multi-objective ga for embedded system design. In: 19th International Conference on VLSI Design, 2006. Held Jointly with 5th International Conference on Embedded Systems and Design, 6 pp. IEEE (2006)

    Google Scholar 

  49. Quiza Sardiñas, R., Rivas Santana, M., Alfonso Brindis, E.: Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes. Eng. Appl. Artif. Intell. 19(2), 127–133 (2006)

    Article  Google Scholar 

  50. Narayanan, S., Azarm, S.: On improving multiobjective genetic algorithms for design optimization. Struct. Optim. 18(2–3), 146–155 (1999)

    Article  Google Scholar 

  51. Jiang, H., Aute, V., Radermacher, R.: A user-friendly simulation and optimization tool for design of coils. In: Ninth International Refrigeration and Air Conditioning Conference (2002)

    Google Scholar 

  52. Srinivasan, N., Deb, K.: Multi-objective function optimisation using non-dominated sorting genetic algorithm. Evol. Comp. 2(3), 221–248 (1994)

    Article  Google Scholar 

  53. Li, L., Li, X., Yu, X.: Power generation loading optimization using a multi-objective constraint-handling method via pso algorithm. In: 6th IEEE International Conference on Industrial Informatics, 2008. INDIN 2008, pp. 1632–1637, IEEE (2008)

    Google Scholar 

  54. Guo, Y., Cao, X., Zhang, J.: Multiobjective evolutionary algorithm with constraint handling for aircraft landing scheduling. In: IEEE Congress on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence), pp. 3657–3662. IEEE (2008)

    Google Scholar 

  55. Moser, I., Mostaghim, S.: The automotive deployment problem: a practical application for constrained multiobjective evolutionary optimisation. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)

    Google Scholar 

  56. El Ela, A.A., Abido, M., Spea, S.R.: Differential evolution algorithm for emission constrained economic power dispatch problem. Electric Power Syst. Res. 80(10), 1286–1292 (2010)

    Article  Google Scholar 

  57. Tripathi, V.K., Chauhan, H.M.: Multi objective optimization of planetary gear train. In: Simulated Evolution and Learning, pp. 578–582. Springer (2010)

    Google Scholar 

  58. Puisa, R., Streckwall, H.: Prudent constraint-handling technique for multiobjective propeller optimisation. Optim. Eng. 12(4), 657–680 (2011)

    Article  MATH  Google Scholar 

  59. Hajabdollahi, H., Tahani, M., Fard, M.S.: CFD modeling and multi-objective optimization of compact heat exchanger using CAN method. Appl. Therm. Eng. 31(14), 2597–2604 (2011)

    Article  Google Scholar 

  60. Rajendra, R., Pratihar, D.: Multi-objective optimization in gait planning of biped robot using genetic algorithm and particle swarm optimization tool. J. Control Eng. Technol. 1(2), 81–94 (2011)

    Google Scholar 

  61. Liu, X., Bansal, R.: Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant. Appl. Energy 130, 658–669 (2014)

    Article  Google Scholar 

  62. Wang, Y., Yin, H., Zhang, S., Yu, X.: Multi-objective optimization of aircraft design for emission and cost reductions. Chin. J. Aeronaut. 27(1), 52–58 (2014)

    Article  Google Scholar 

  63. Pandey, A., Datta, R., Bhattacharya, B.: Topology optimization of compliant structures and mechanisms using constructive solid geometry for 2-d and 3-d applications. Soft Comput., 1–23 (2015)

    Google Scholar 

  64. Sorkhabi, S.Y.D., Romero, D.A., Beck, J.C., Amon, C.H.: Constrained multi-objective wind farm layout optimization: introducing a novel constraint handling approach based on constraint programming. In: ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. V02AT03A031–V02AT03A031. American Society of Mechanical Engineers (2015)

    Google Scholar 

  65. Droandi, G., Gibertini, G.: Aerodynamic blade design with multi-objective optimization for a tiltrotor aircraft. Aircr. Eng. Aerosp. Technol. Int. J. 87(1), 19–29 (2015)

    Article  Google Scholar 

  66. Datta, R., Pradhan, S., Bhattacharya, B.: Analysis and design optimization of a robotic gripper using multiobjective genetic algorithm. IEEE Trans. Syst. Man Cybern. Syst. 46(1), 16–26 (2016)

    Article  Google Scholar 

  67. Deb, K., Datta, R.: Hybrid evolutionary multi-objective optimization and analysis of machining operations. Eng. Optim. 44(6), 685–706 (2012)

    Article  MathSciNet  Google Scholar 

  68. Coello, C.A.C.C., Pulido, G.T.: A micro-genetic algorithm for multiobjective optimization. In: Evolutionary Multi-Criterion Optimization, pp. 126–140. Springer (2001)

    Google Scholar 

  69. Lahanas, M., Milickovic, N., Baltas, D., Zamboglou, N.: Application of multiobjective evolutionary algorithms for dose optimization problems in brachytherapy. In: Evolutionary Multi-Criterion Optimization, pp. 574–587. Springer (2001)

    Google Scholar 

  70. Li, X., Jiang, T., Evans, D.: Medical image reconstruction using a multi-objective genetic local search algorithm. Int. J. Comput. Math. 74(3), 301–314 (2000)

    Article  MATH  Google Scholar 

  71. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition, vol. 31. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sharma, A.K., Datta, R., Elarbi, M., Bhattacharya, B., Bechikh, S. (2017). Practical Applications in Constrained Evolutionary Multi-objective Optimization. In: Bechikh, S., Datta, R., Gupta, A. (eds) Recent Advances in Evolutionary Multi-objective Optimization. Adaptation, Learning, and Optimization, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-42978-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42978-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42977-9

  • Online ISBN: 978-3-319-42978-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics